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ABSTRACT This paper provides a detailed study on the convergence properties of the cubic regularized
symmetric rank-1 (SR1) method (CuREG-SR1) proposed in [2]. The main advantage of incorporating cubic
regularization technique to SR1 is to alleviate the problem of indefinite resulting matrix in SR1. However, its
convergence under the line search framework is less studied. Here, we first show that CuREG-SR1 converges
to a first-order critical point. Moreover, we give a novel result that provided the uniformly independent
assumption, the difference between approximated Hessian matrix generated by CuREG-SR1 and the true
Hessian is bounded. In addition, we show that for a problem with dimension d , CuREG-SR1 generates
q−d superlinear steps every q iterations. We also propose a novel incremental CuREG-SR1 (ICuREG-SR1)
algorithm to adapt SR1 and CuREG-SR1 efficiently for solving large scale problems. The basic idea is
to incorporate incremental optimization scheme, which updates progressively information for objective
function involving a sum of individual functions, which are frequently encountered in large-scale machine
learning. Numerical experiments on several machine learning problems show that the proposed algorithm
offers superior performance in terms of the gradient magnitude than other conventional algorithms tested.

INDEX TERMS Quasi-Newton method, symmetric rank-1, superlinear convergence rate, cubic regulariza-
tion, incremental optimization.

I. INTRODUCTION
Many practical engineering problems can be formulated as
the solution of unconstrained or constrained optimization
problems, e.g., computational biology [18], [19], wireless
communications [16], [17] and machine learning [35], [41],
etc. In this paper, we are concerned with quasi-Newton meth-
ods for the unconstrained optimization problems:

min
x∈Rn

f (x), (1)

where f (x) is the objective function and x ∈ Rn is the
optimizing variable with dimension n.
A variety of quasi-Newton methods solves the problem (1)

by using a quadratic model of (1). To be specific, at each
iteration k , the objective function f (x) is approximated at
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current iterate xk by applying the second-order Taylor series
with an approximation of the Hessian matrix in lieu of true
Hessian matrix. A classical form of the quasi-Newtonmethod
is as follows:

xk+1 = xk − λkB
−1
k ∇f (xk ), (2)

where Bk is the approximated Hessian matrix and λk is the
stepsize chosen by standard line search algorithm.

To obtain a descent direction of the objective funtion
in terms of the approximated quadratic model, it requires
to solve the corresponding linear system at each iteration.
If the true Hessian matrix is used, the second-order deriva-
tives need to be evaluated in addition to the solution of the
linear system and matrix inversion, which can be compu-
tationally expensive especially when the objective function
is complicated to evaluate, say via physical situation and
vice versa. Therefore, various recursive update schemes for
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the approximated Hessian matrix have been proposed to
alleviate the intensive computation: These include symmet-
ric rank-one (SR1) update [1], [3], [5] and rank-two variants
such as the Davidon-Fletcher-Powell (DFP) scheme [6], [7]
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
scheme [4], [8]. For the rank-two methods in which Bk+1 is
obtained by adding a matrix of rank at most two, the DFP
update has been shown (under mild condition) to generate a
sequence {xk} which will converge to a local optimal point
x∗ at Q-superlinear convergence rate when implemented with
stepsize chosen by standard line search criterion. Moreover,
the Hessian approximation matrix sequence {Bk} generated
by the DFP update does not have the property of converging
to the true Hessian matrix, which is a standard technique
for proving a method with Q-superlinear convergence rate.
In fact, the consistency condition that {Bk} converges to
∇

2f (x∗) is sufficient but not necessary. The DFP updating
formula is quite effective and it has been applied recently to
training of complex-valued neural networks for pattern recog-
nition and signal processing [9]. However, the DFP method
was soon superseded by the BFGS formula [23], which
is considered the most commonly applied quasi-Newton
method. A good property of BFGS method is that the gen-
erated sequence {Bk} remains positive definite in strongly
convex problems, which guarantees a descent direction. The
convergence properties which is similar to DFP method can
be found in [4].

For rank-one update, the SR1 scheme requires less compu-
tation at each iteration. The recursion formula is given by:

Bk+1 = Bk +
(yk − Bksk )(yk − Bksk )T

sTk (yk − Bksk )
, (3)

where sk = xk+1 − xk and yk = ∇f (xk+1) − ∇f (xk ).
Computational experiments have shown that the SR1 is very
competitive compared to BFGS method [3], and it appears to
be substantially more efficient in the trust region framework
than any other quasi-Newton method tested [5]. However,
to the best of our knowledge, very few existing works have
studied the convergence analysis of SR1method. On the other
hand, [5] studied the convergence of SR1 in the framework
of both trust region and line search. The proof technique is
based on the assumption of uniformly independence of the
sequence {sk}. The result shows that the sequence {Bk} gen-
erated by SR1 method converges to explicit Hessian matrix.
Nevertheless, the condition of uniform linear independence
of {sk} is too strong to hold in many practical problems.
Thus, the result that the sequence {Bk} converges to the true
Hessian matrix may not hold in general. [3] further studies
the convergence properties of SR1 without assuming that the
sequence {sk} uniformly independent and the result shows
that the SR1 update with standard line search framework
exhibits (n + 1)-step Q-superlinear and 2n-step quadratic
convergence rate. Unlike BFGS update, one of the drawbacks
of the SR1 update is that it can generate indefinite matrix
Bk even in strongly convex problems, which may result in
a non-descent direction.

In the big data era, large scale optimization problems with
large number measurements and variables will be increas-
ingly popular. Since the gradient evaluation is proportional
to the number of measurements, the computational cost can
be huge. Moreover, the storage of the gradients of the loss
functions can cost large amount of memory. Thus, there is a
growing interest in developing efficient stochastic optimiza-
tion algorithms. The main motivation is to obtain simple and
yet unbiased estimator of the full gradient [36].Stochastic
BFGS methods have been among the most popular stochastic
quasi-Newton (SQN) methods and adapted to solve large
scale problems [13]–[15], [37]. In strongly convex problems,
the sequence {Bk} generated by the stochastic BFGS method
is guaranteed to be positive definite.

In [15], a SQN method is proposed to solve large scale
strongly convex problems. Since the quality of the curva-
ture estimate can be difficult to control under the stochas-
tic regime, an efficient subsampled Hessian-vector product
is proposed based on the limited memory BFGS (LBFGS)
method, which artfully avoids double evaluating the gra-
dients. In [13], a general framework of SQN methods is
proposed to solve nonconvex optimization problems. Since
the problem of how to preserve positive definiteness of the
Hessian approximation in nonconvex problem is challenging,
a stochastic damped BFGS has been proposed to remedy the
problem, in which the damped BFGS is based on [21]. More-
over, it has been shown that the Hessian approximationmatrix
can be singular or near singular and thus the norm of the
Hessian inverse approximation are not uniformly bounded,
which harms the convergence.

In [12], a regularized stochastic BFGS (RES) method is
proposed to alleviate the problem. It modifies the proximity
condition of BFGS to ensure that the norm of the Hessian
approximation is above a specified level and thus uniformly
bounded. For the class of problems aiming to minimize the
objective function written in a large sum of strongly con-
vex functions, an incremental quasi-Newton methodology
(IQN) [14] is proposed to alleviate the high computational
cost at each iteration. In lieu of random selection of a sin-
gle function, incremental methods choose a single function
for efficient implementation via both the BFGS method and
iterately update in a cyclic fashion. Therefore, computational
cost at each iteration is substantially reduced at the expenses
of slower convergence speed. The aggregated gradients of all
functions are able to reduce the noise of gradient approxi-
mation, which makes the IQN method local convergence at a
superlinear rate.

Most studies on the quasi-Newton methods for solving
large scale problems are based on the BFGS method and its
efficient variants. However, to the best of our knowledge, few
works have been developed for the SR1 method for solving
large scale problems. This may attribute to the two major
drawbacks of SR1 update formula: (i) The denominator of
SR1 recursion formula in (3) may vanish; (ii) The result-
ing Hessian approximation matrix can be indefinite even
in strongly convex problems, which leads to non-descent
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direction of the step. To remedy problem (i), a standard
technique is to skip the SR1 update if

|sTk (yk − Bksk )| < ε ‖sk‖ ‖yk − Bksk‖ , (4)

where the value of the constant ε is normally chosen as 10−8.
Provided the Hessian approximation matrix is positive def-
inite, skipping SR1 update is reasonable in practice since
the current positive definite Bk still results in sufficient
reduction in objective function. For the purpose of alleviat-
ing problem (ii), [2] has proposed a cubic regularized SR1
(CuREG-SR1) method. The main strategy is to calculate
the gradient difference based on cubic approximation of the
objective function. By choosing a suitable cubic parame-
ter which satisfies the specified condition, SR1 recursion
formula can lead to positive definite Hessian approxima-
tion matrix. Moreover, cubic regularization technique has
been studied in [10], [11]. Since cubic regularized method
has avoided the problem of indefinite Hessian approxima-
tion matrix, it has improved performance over standard line
search criterion. However, the current study on the conver-
gence properties of cubic regularized SR1 method is lim-
ited. Besides, in the big data era, how to develop efficient
algorithms to solve large scale problem with massive data
has attracted much attention recently. Hence, in this paper,
we mainly focus on two problems, the first is the convergence
analysis of CuREG-SR1 algorithm, and the second is to
develop efficient algorithm based on SR1 to solve large scale
problems.

Our main contributions are as follows:

• Based on the line search framework and the motivation
of CuREG-SR1 [2], we show that CuREG-SR1 con-
verges to a first-order critical point (see Theorem 1).

• Novel results on the convergence rate of the algorithm
are derived. We first propose Lemma 1which shows that
under specific assumptions, the quantity

∥∥yj − Bisj∥∥ for
i ≤ j − 1 is bounded above. Based on Lemma 1 and
using the assumption that the sequence {sk} is uniformly
independent, we obtain a novel result that the difference
between the approximated Hessian matrix and the true
Hessian is bounded above (see Theorem 2).

• Since the uniformly independent assumption is
too strong in practice, we show that the quantity∥∥∥[Bkp−∇2f (x∗)]skp

∥∥∥∥∥∥skp∥∥∥ , which is closely related to superlinear

convergence rate, is small with other reasonable assump-
tions (see Lemma 3). Based on the above result, we show
that for every q ≥ d + 1 iterations, the CuREG-SR1
algorithm generates at least q− d superlinear steps (see
Theorem 3).

• A novel incremental optimization method based on the
SR1 and CuREG-SR1 is proposed. The main idea is
to update the information of a selected set of indi-
vidual functions in the objective function involving a
large sum of component functions at each iteration,
while others remain intact as in previous iteration.

Numerical experiments show that our proposed algo-
rithm offers superior performance in terms of the gradi-
ent magnitude than other conventional algorithms tested.

The rest of the paper is organized as follows: Section II
reviews the general CuREG-SR1 algorithm based on the line
search framework. In Section III, we provide a detailed con-
vergence analysis of CuREG-SR1 algorithm. In Section IV,
we propose a novel ICuREG-SR1 algorithm ICuREG-SR1.
Numerical experiments are conducted to evaluate the perfor-
mance of the proposed ICuREG-SR1 algorithm in Section V.
The conclusion is drawn in Section VI. Moreover, we have
included the comparison of our proposed method with the
state-of-art approaches Adam [52] and RMSProp [53] in sup-
plementary material.
Mathematical Notation: we use ‖a‖ to denote the

Euclidean norm of vector a and ‖A‖ := max { ‖Ax‖
‖x‖ } to

denote the matrix norm of a matrix A. A � B indicates the
matrix A−B is positive semidefinite. The identity matrix with
appropriate dimension is signified as I .

II. ALGORITHM DEFINITION
In this paper, we consider the following unconstrained opti-
mization problems: x∗ = argminx∈Rd f (x), where d is
the dimension of the variable x and f : Rd

→ R
is the objective function. In this section, we first review
the conventional quasi-Newton methods using the line
search framework. Specifically, we shall consider the deriva-
tion of SR1 update and provide the cubically regularized
SR1 method. Then, the cubic regularization technique is
briefly introduced. Incorporation of the cubic regularization
technique to SR1 method leads to CuREG-SR1. We will
also discuss the condition for Hessian approximation update
resulted from CuREG-SR1 to be positive definite.

A. LINE SEARCH FRAMEWORK
In classical line search method, a search direction pk ∈ Rd

that can sufficiently reduce the objective function is computed
at each iteration via the following update:

xk+1 = xk + λkpk , (5)

where λk is the stepsize that decides how far to move along
the search direction. An ideal choice of the stepsize is to solve
the sub problem: λ∗k = argminλ∈R ϕ(λ) := f (xk + λpk ),
However, it is computationally expensive in general to seek
the exact one dimensional minimum, since it may require
many evaluations of the objective function f and the gradient
∇f at each iteration. In practice, various termination criteria
for inexact line search have been proposed, which aims to
achieve a satisfactory reduction in the objective function,
without spending toomuch effort in computation. The inexact
line search based on the following Wolfe condition is widely
used:

f (xk + λpk ) < f (xk )+ c1λ∇f (xk )T pk , (6)

∇f (xk + λpk )T pk ≥ c2∇f (xk )T pk , (7)
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where c1 ∈ (0, 1) and c2 ∈ (c1, 1) are constants. The
inequality in (6) is also known as Armijo condition. Intu-
itively, inequality (6) means that the updated objective func-
tion f (xk+λpk ) lies below the linear function l(λ) := f (xk )+
c1λ∇f (xk )T pk , which has a negative slope c1∇f (xk )T pk with
respect to λ to ensure that the function will decrease at least
at a certain rate (since pk is a decrease direction and c1 is a
positive constant, c1∇f (xk )T pk < 0 holds). Moreover, since
f (xk +λpk ) < f (xk ), it indicates that for small λ, the inequal-
ity ϕ(λ) < l(λ) holds, i.e., the Armijo condition is always
satisfied at small stepsize, this may cause insufficient reduc-
tion when the resultant stepsize is small. The Armijo condi-
tion is thus insufficient to guarantee a reasonable progress.
Therefore, the curvature condition (7) is introduced, which
is called curvature condition. Note the left hand side of (7)
is the derivative of the function ϕ(·) at λ, i.e., ϕ′(λ) =
∇f (xk + λpk )T pk . Similarly for the right hand side, ϕ′(0) =
∇f (xk )T pk . Consequently, for a stepsize chosen to ensure
significant decrease along the search direction, it implies
that the corresponding slope ϕ′(λ) should be intuitively less
slightly negative than ϕ′(0). It makes sense since we have the
intuition that at a point that results in sufficient reduction,
the related slope is negatively flatter. Thus, combining the
Armijo condition and curvature condition, the algorithm can
make reasonable progress.

B. SR1 QUASI-NEWTON METHODS
For Newton’s method, the search direction pk is obtained
by solving the system: ∇2f (xk )pk = −∇f (xk ). How-
ever, two drawbacks make Newton’s method impractical:
(i). evaluation of second-order derivative at each itera-
tion is generally too expensive; (ii). solving the system
takes much time and effort, and matrix inversion or fac-
torization increase the arithmetic complexity, which can be
computationally huge for large scale problem. Therefore,
we consider the quasi-Newton methods, which seek for an
approximate Hessian matrix Bk . We now turn our attention
to SR1 update (3). It has been shown that if the second-order
derivative of the objective function is Lipschitz continuous
and the sequence { sk

‖sk‖
} (recall sk is defined as sk :=

xk+1 − xk ) is uniformly linearly independent, the sequence
{Bk} generated by SR1 formula converges to the true Hes-
sian matrix at optimal point, i.e., lim

k→∞

∥∥Bk −∇2f (x∗)
∥∥ =

0 [3], [5]. The convergence results generally involve the fol-
lowing assumptions.
Assumption1: The objective function f (x) is twice contin-

uously differentiable.
Assumption2: The first-order derivative∇f (x) is Lipschitz

continuous with L ′ > 0, i.e., for all x, y ∈ Rd , the following
inequality holds:

‖∇f (x)−∇f (y)‖ < L ′ ‖x − y‖ . (8)

Assumption3: The second-order derivative ∇2f (x) is Lip-
schitz continuous with L ′′ > 0, i.e., for all x, y ∈ Rd ,

the following inequality holds:∥∥∥∇2f (x)−∇2f (y)
∥∥∥ < L ′′ ‖x − y‖ . (9)

Assumption4: A sequence {sk} in Rd is defined to be uni-
formly linearly independent, if there exists a positive constant
τ > 0, an integer k0 andm ≥ d such that for each k ≥ k0, one
can choose d distinct indices between k and k + m, namely
k ≤ k1 < · · · < kd ≤ k + m, such that σmin(Sk ) ≥ τ , where
σmin(Sk ) is the minimum singular value of the matrix

Sk = [
sk1∥∥sk1∥∥ , · · · , skd∥∥skd∥∥ ]. (10)

Next, we first follow the development in [22] to briefly
review the derivation of the SR1 formula, which motivates
the CuREG-SR1 formula. Recall yk is defined as:

yk := ∇f (xk+1)−∇f (xk ), (11)

By using first-order Taylor expansion, we can further obtain:

yk = ∇2f (xk )sk + o(‖sk‖). (12)

For a quadratic function f (x) = 1
2x

TAx + bT x + c, where
A is positive definite, b, c ∈ Rd , it can be verified straight-
forwardly that the higher order term is zero. In this case,
we can set Bk = A and obtain the secant equation yk ≈ Bksk .
Though the secant equation does not hold true for the general
nonlinear functions due to the higher order term, it serves as
a useful condition for updating the Hessian approximation
matrix given sk and yk at each iteration:

yk = Bk+1sk . (13)

For rank one update, the recursion formula has the following
form, and the resulting matrix is symmetric:

Bk+1 = Bk + ρvvT , (14)

Combining the secant equation in (13), it follows that:

yk = Bksk + ρvvT sk (15)

Note from the right hand side in (15) that vT sk is a scalar,
hence the vector v has the same direction with (yk − Bksk )
for some scalar ϑ . Therefore, we can simply set v = ϑ(yk −
Bksk ). It subsequently leads to the following equation:

yk − Bksk = ρϑ2[sTk (yk − Bksk )](yk − Bksk ), (16)

where sTk (yk − Bksk ) 6= 0. Comparing the LHS and
RHS, there only exists two possible scenarios: (i). sTk (yk −
Bksk ) < 0, then ρ = −1 and ϑ2

= [−sTk (yk − Bksk )]−1;
(ii). sTk (yk − Bksk ) > 0, then ρ = 1 and ϑ2

= [sTk (yk −
Bksk )]−1. Substituting the results, we obtain the SR1 formula
as follows:

Bk+1 = Bk +
(yk − Bksk )(yk − Bksk )T

(yk − Bksk )T sk
. (17)

Subsequently, the search direction pk can be calculated by
solving the system Bkpk = −∇f (xk ). Moreover, if the
inverse Hessian approximation matrix denoted by Hk is
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positive definite, it can also be updated by employing the
Sherman-Morrison formula

Hk+1 = Hk +
(sk − Hkyk )(sk − Hkyk )T

(sk − Hkyk )T yk
. (18)

Therefore, instead of solving the system Bkpk = −∇f (xk )
by matrix inverse operation, we can simply obtain the search
direction pk = −Hk∇f (xk ) through efficient matrix-vector
product, making the algorithm computationally very attrac-
tive. As mentioned above, when the sequence {xk} converges
to the optimal point with Assumption 3, the Hessian approx-
imation sequence generated by (17) will converge to the true
Hessian matrix. However, the denominator tends to zero if
{xk} converges to x∗, which implies that all the future updates
will be dominated by the update matrix and violate the uni-
form linearly independent assumption [2]. Hence, to allevi-
ate both the theoretical and practical problems, the Hessian
approximation matrix skips the update whenever the denom-
inator is too small:

|(yk − Bksk )T sk | < ε ‖yk − Bksk‖ ‖sk‖ , (19)

i.e., at each iteration, setBk+1 = Bk whenever (19) is satisfied
while otherwise, Bk+1 is calculated via (17). The skipping
scenario has been shown to be effective since we can still get
the descent direction if Bk is positive definite.

C. CUBIC REGULARIZATION TECHNIQUE
It should be noted that even if Bk is positive definite, Bk+1
can still be indefinite since the denominator in (17) can be
negative. In [2], the cubic regularized technique has been
proposed to address this issue. We shall first review the cubic
regularization technique [10], [11].

Recall that the search direction in quasi-Newton
method for problem (1) is obtained by solving pk =
argminp∈Rd f (xk )+∇f (xk )

T p+ 1
2p

TBkp. Similarly in cubic
model for the objective function f (x) with Lipschitz continu-
ous ∇2f (x), the search direction p is calculated via minimiz-
ing the cubic model mck (p):

mck (p) := f (xk )+∇f (xk )T p+
1
2
pTBkp+

Mk

6
‖p‖3 . (20)

In general, Mk is chosen to satisfy Mk ≤ L ′′. It should
be noted that minimizing the cubic model is a non-convex
problem and it can have local minima [11]. Here, the search
direction pk ∈ Argminp∈Rd mck (p) means that pk is a global
minimizer of the cubicmodelmck (p). It has been shown in [10]
that p∗k is a global minimizer of the problem if and only if
∇mck (p

∗
k ) = 0 and Bk + 1

2Mk
∥∥p∗k∥∥ � 0. The necessary

and sufficient condition has provided us a way to compute
a global minimizer of the cubic model. However, from a
computational point of view, doing so can be prohibitively
sophisticated. In fact, an approximate solution to the global
minimizer can make the algorithm progress well with less
computational complexity. Specifically, for the framework of
adaptive regularization using cubics (ARC) proposed in [10],
the search direction pk is only required to ensure the decrease

in the cubic model at least as good as that produced by
the corresponding Cauchy point. Because in this way and
with the condition that ∇f (x) is uniformly continuous on the
sequence {xk}, the ARC algorithm has been shown to con-
verge to the first-order critical point, i.e., lim

k→∞
‖∇f (xk )‖ = 0.

Hence, the more efficient Krylov method can be applied to
well approximate the global solution.

D. CUBIC REGULARIZED SR1 METHOD
We have briefly introduced the cubic regularization tech-
nique. Let us turn our attention to SR1 formula (17).
As we mentioned above, one of the drawbacks that SR1 for-
mula is that the updated Hessian approximation matrix can
be indefinite. Cubic regularization technique incorporated
into SR1 has been proved theoretically and computation-
ally effective to alleviate such concern with light extra
calculation. In fact, if Bk is not positive definite, the well-
known Levenberg-Marquardt regularization as suggested
in [24], [25] can also overcome the problem. The main ingre-
dient is to regularize Bk with a unit matrix times a specified
scalar β and the resultant iteration is:

xk+1 = xk − (Bk + βI )−1∇f (xk ). (21)

To be specific, when the smallest eigenvalue λmin(Bk ) of
the matrix Bk is non-positive, the regularized parameter β
should be chosen to satisfy β > |λmin(Bk )|. Doing so implies
complicated computation since we need to factor a dense
matrix Bk at each iteration.
For incorporating cubic regularization technique into SR1,

we start with the secant equation (13), namely yk = Bk+1sk .
Recall the definition of yk := ∇f (xk+1) − ∇f (xk ), replace
f (xk+1) with the cubic model

mck (xk+1 − xk ) = f (xk )+∇f (xk )T (xk+1 − xk )

+
1
2
(xk+1 − xk )TBk (xk+1 − xk )+

1
6
Mk ‖xk+1 − xk‖3 ,

(22)

it follows that:

yck = ∇m
c
k (xk+1 − xk )−∇m

c
k (0)

= Bk (xk+1 − xk )+
Mk

2
‖sk‖ sk

= Bksk +
1
2
‖sk‖ sk

≈ yk +
Mk

2
‖sk‖ sk (23)

Therefore, the secant equation is modified to

yk = Bk+1sk −
Mk

2
‖sk‖ sk . (24)

By substituting the above equation into the rank-1 update
Bk+1 = Bk + ρvvT , we can obtain v = ϑ[yk + (Mk

2 ‖sk‖ I −
Bk )sk ] for some scalar ϑ . Thus, there exists two possible
scenarios (i). if sTk [yk + (Mk

2 ‖sk‖ I − Bk )sk ] < 0, then
ρ = −1 and ϑ2

= {−sTk [yk + (Mk
2 ‖sk‖ I − Bk )sk ]}−1;

(ii). if sTk [yk + (Mk
2 ‖sk‖ I − Bk )sk ] > 0, then ρ = 1 and
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ϑ2
= {sTk [yk+(

Mk
2 ‖sk‖ I−Bk )sk ]}

−1. According to the above
discussion, the CuREG-SR1 update formula can be derived as
follows:

Bk+1 = Bk +
[yk + (Mk

2 ‖sk‖ I − Bk )sk ]

[yk + (Mk
2 ‖sk‖ I − Bk )sk ]

T sk

·[yk + (
Mk

2
‖sk‖ I − Bk )sk ]T . (25)

Since it is necessary to solve a linear system Bkpk =
−∇f (xk ) at each iteration to obtain the search direction,
the inverse Hessian approximation matrix can be updated via
Sherman-Morrison formula as follows

Hk+1=Hk+
[sk − Hk (yk +

Mk
2 ‖sk‖ sk )]

[sk − Hk (yk +
Mk
2 ‖sk‖ sk )]

T (yk +
Mk
2 ‖sk‖ sk )

·[sk − Hk (yk +
Mk

2
‖sk‖ sk )]T . (26)

In this way, direct matrix inverse operation is avoided and the
computation is substantially reduced.

Recall that the main purpose to incorporate cubic regu-
larization technique into SR1 formula is to efficiently avoid
the indefinite update. Let us consider the formula (26) and
assume Hk is positive definite. Since the numerator is the
product of a vector and its transpose, the resultant matrix
is positive semidefinite with rank one. Hence, the only way
for the updated Hk+1 to be indefinite is that the denomina-
tor is non-positive, i.e., [sk − Hk (yk +

Mk
2 ‖sk‖ sk )]

T (yk +
Mk
2 ‖sk‖ sk ) < 0. Subsequently, by suitably choosing the
cubic regularized parameter Mk , the denominator can be
positive and the resultant update matrix Hk+1 is ensured pos-
itive definite. Even when the denominator is slightly negative
which still results in positive definite update, we enforce the
denominator to be positive:

[sk − Hk (yk +
Mk

2
‖sk‖ sk )]T (yk +

Mk

2
‖sk‖ sk ) > 0. (27)

By straightforward calculation and regrouping terms,
we obtain a quadratic inequality with respect to Mk : aM2

k +

bMk + c < 0, where

a =
sTk Hksk

4
‖sk‖2 , (28)

b = sTk Hkyk ‖sk‖ −
‖sk‖3

2
(29)

c = −(sk − Hkyk )T yk . (30)

Since Hk is positive definite, it follows that a > 0. For b,
since ∇f (x) is Lipschitz continuous with L ′, using triangle
inequality, we have

b = sTk Hkyk ‖sk‖ −
‖sk‖3

2

≥ (L ′µH −
1
2
) ‖sk‖3 (31)

where µH > 0. The inequality follows from the Assump-
tion 2 and Hk is positive definite with ‖Hk‖ ≥ µH . Thus,
we cannot make sure of the sign of b. For c, it should be

noted that c is actually the negative denominator in (18).
As the algorithm is designed to incorporate cubic regularized
technique whenever the denominator in (18) is negative, c is
strictly positive.Moreover, provided the discriminant is larger
than zero, i.e., b2 − 4ac ≥ 0, the roots of the quadratic

function is Mk =
−b±
√
b2−4ac
2a . According to the discussion

above, there are three cases for the root of quadratic function
aM2

k + bMk + c depending on both the coefficients and
discriminant b2 − 4ac, which are summarized as follows:
Case I: if b2 − 4ac < 0, there are no real roots for the

quadratic function and the inequality aM2
k + bMk + c < 0

cannot be satisfied. It indicates that there is no Mk to guar-
antee the matrix updated via (25) or (26) is positive def-
inite. Whenever case I happens, we suggest to skip the
Hessian approximation update or adopt rank-two quasi-
Newton update. It should be noted that b = 0 belongs to this
case and thus we do not need to consider b = 0 for the other
two cases.

Case II: if b2 − 4ac > 0 and b < 0. Obviously −b +√
b2 − 4ac > 0, moreover, we have −b −

√
b2 − 4ac >

−b − |b| = 0. Hence, the roots of the quadratic function are
both positive. Theoretically we can choose one value between
the two roots to ensure positive definiteness of the updated
matrix. However, numerical tests have shown that settingMk
with a value between the smaller root and −b2a works better.
This matches ARC method which allows for a broader step
once the algorithmworks sufficient well. Intuitively for ARC,
smaller cubic regularized parameter indicates broader step for
the next iteration.

Case III: if b2−4ac > 0 and b > 0. Obviously the smaller
root is negative. Moreover, we have−b+

√
b2 − 4ac < −b+

b = 0. Thus, we obtain two negative roots for this case. Since
we cannot choose a positive value to satisfy the inequality
aM2

k +bMk + c < 0, we deal this case with the same strategy
in Case I.

According to the above discussions, the CuREG-SR1
based algorithm is summarized in Algorithm 1. Note from
step 3 to step 8 in Algorithm 1, we apply backtracking
line search scheme to dispense with the extra condition (7)
and use just the Armijo condition for sufficient reduction to
terminate the line search procedure [23]. In the step 11-17,
as the generated Hessian approximation matrix may have
large eigenvalue and thus ill-conditioned when the denomina-
tor is small, a simple and effective way to control the Hessian
approximation matrix is adopted [3], [5], namely: skip the
Hessian approximation matrix update when the denominator
is small.

III. CONVERGENCE RESULTS
The idea of incorporating cubic regularized technique into
SR1 quasi-Newton methods has been proposed by [2].
However, limited convergence results have been studied
in [2]. Hence, in this section, we aim to further study
the convergence results of CuREG-SR1. To be specific,
by applying the technique of CuREG-SR1, we can obtain
a positive definite update for the Hessian approximation
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Algorithm 1 CuREG-SR1
Input: initial optimization variable x0 randomly generated

from the uniform distribution [−1, 1]d , the initial inverse
Hessian approximation matrix H0 = I , c1 ∈ (0, 1) and
c2 ∈ (c1, 1), ε = 10−8 and α ∈ (0, 1), the desired
iteration number K

Output: xK
1: for k = 0, 1, . . . ,K do
2: Set the search direction pk = −Hk∇f (xk )
3: Set stepsize λk = 1
4: if f (xk + λpk ) < f (xk )+ c1λ∇f (xk )T pk , then
5: Goes to the step 9.
6: else
7: Set stepsize λk ← αλk and goes back to step 4.
8: end if
9: Update the iterate xk+1 = xk − λkHk∇f (xk )
10: Set Hk+1 = Hk ,
11: if |(yk − Bksk )T sk | > ε ‖yk − Bksk‖ ‖sk‖ then
12: if (sk − Hkyk )T yk > 0 then
13: Calculate Hk+1 via (18),
14: else
15: Compute a, b and c according (28)(29) and (30)

respectively,
16: if b2 − 4ac > 0 and b < 0 then
17: Set Mk = −

b
2a and calculate Hk+1 according

to (26),
18: end if
19: end if
20: end if
21: end for

matrix. Therefore, we assume that there is a positive con-
stant m,M > 0 such that mI � Hk � MI . Following
Theorem 3.2 in [23], we have the result that the algorithm
converges to a first-order critical point:
Theorem 1: Consider Algorithm 1 with Assumption 2,

we assume that the generated Hk is positive definite and
its maximum eigenvalue is bounded above by M > 0,
i.e.,mI � Hk � MI . We further assume that the stepsize λk is
chosen to satisfy the Wolfe condition (6) and (7). Moreover,
the objective function f (x) is bounded below in Rd , then it
follows:

lim
k→∞
‖∇f (xk )‖ = 0. (32)

Proof: From the Armijo condition that f (xk+1) < f (xk ) +
c1λk∇f (xk )T pk , take summation of both sides from 0 to k ,
we have

f (xk+1) < f (x0)+ c1
k∑
i=0

λk∇f (xk )T pk . (33)

Observe from (33), since we have assumed that the func-
tion f is bounded below and Algorithm 1 generates descent
direction at each iteration, we have −

∑k
i=0 λk∇f (xk )

T pk

is bounded above by a positive scalar. Next, we derive
the result that the stepsize is bounded below. Since the
gradient of f is Lipschitz continuous in Rd , we have
‖∇f (xk+1)−∇f (xk )‖ ≤ L ′ ‖xk+1 − xk‖ = λkL ′ ‖pk‖,
which indicates:

[∇f (xk+1)−∇f (xk )]T pk ≤ λkL ′ ‖pk‖2 . (34)

On the other hand, from the curvature condition that
∇f (xk+1)T pk ≥ c2∇f (xk )T pk , we have the LHS of (34) is
bounded below:

[∇f (xk+1)−∇f (xk )]T pk ≥ (c2 − 1)∇f (xk )T pk (35)

Hence, observe from (34) and (35), it follows that the stepsize
is bounded below:

λk ≥
(c2 − 1)∇f (xk )T pk

L ′ ‖pk‖2
. (36)

Substituting the above result into (33), we have

k∑
i=0

[∇f (xk )T pk ]2

‖pk‖2
< γ, (37)

where γ = f (x0)−fmin
L ′(1−c2)

> 0 with fmin is the minimum value of
the sequence {f (xk )}∞k=0. By applying the triangle inequality
to the denominator, it follows that the summand in (37)
satisfies:

[∇f (xk )T pk ]2

‖pk‖2
=

[∇f (xk )THk∇f (xk )]2

∇f (xk )THk∇f (xk )
≥

m2

M2 ‖∇f (xk )‖
2

(38)

The second inequality in (38) follows from mI � Hk � MI .
Hence, combining (37) and (38) and taking the limits, we get:

∞∑
k=0

‖∇f (xk )‖2 <
γM2

m2 <∞. (39)

The result in (39) implies that lim
k→∞
‖∇f (xk )‖ = 0 holds.

We have shown that Algorithm 1 has converged to a
first-order critical point. Next, out aim is to obtain the con-
vergence rate of the algorithm. Note from (27), when Case II
happens, we have

[sk − Hk (yk +
Mk

2
‖sk‖ sk )]T (yk +

Mk

2
‖sk‖ sk ) > ε′ (40)

for some positive constant ε′ > 0.
Thus, similar to SR1 that |sTk (yk − Bksk )| ≥

ε ‖sk‖ ‖yk − Bksk‖, we update Bk whenever the following
holds:

v|[yk + (
Mk

2
‖sk‖ I − Bk )sk ]T sk |

≥ ε

∥∥∥∥[yk + (
Mk

2
‖sk‖ I − Bk )sk

∥∥∥∥ ‖sk‖ (41)

where ε is normally chosen to be 10−8. Now we proceed
to introduce the following assumption, based on which we
derive Lemma 1.
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Assumption 5: At the critical point x∗, the second-order
derivative is positive definite ∇2 f (x∗) � δI , for some
positive constant δ > 0.
Lemma 1: Suppose that Assumptions 1-3 and 5 hold. The

Hessian approximation matrix is assumed to be updated
through CuREG-SR1 at each iteration, and Mk is obtained
via Case II, i.e., b2 − 4ac > 0 and b < 0, which happens
with a, b and c calculated in (28), (29) and (30) respectively.
Moreover, (41) holds at each iteration, the generated sequence
{xk} is sufficient close to the critical point x∗ and the sequence
{Hk} satisfies mI � Hk � MI . Then the following inequality
holds:∥∥yj − Bisj∥∥ ≤ (ζ + 2L ′′ηi,j

2ε

)(
2
ε
+ 1

)i−j−2 ∥∥sj∥∥ , (42)

for j ≤ i − 1, where ζ is a constant defined by ζ := 1−2mδ
m

and ηi,j is defined by

ηi,j := max{‖xs − xl‖ : j ≤ s ≤ l ≤ i}. (43)

Proof: we proof (42) by induction. Suppose (42) holds for
i = j + 1, . . . , k and k ≥ j + 1. By using the inductive
assumption, we have for i = k + 1,∥∥yj−Bk+1sj∥∥
≤
∥∥yj−Bksj∥∥
+

∥∥∥∥∥ [yk+(Mk
2 ‖sk‖ I−Bk )sk ][yk+(

Mk
2 ‖sk‖ I−Bk )sk ]

T sj

[yk+(
Mk
2 ‖sk‖ I−Bk )sk ]

T sk

∥∥∥∥∥
≤
∥∥yj−Bksj∥∥+ |[yk+Mk

2 ‖sk‖ sk−Bksk ]
T sj|

ε ‖sk‖
(44)

where the first inequality follows from the triangle inequal-
ity the second follows from the Cauchy-Schwarz inequal-
ity and (41). Now, let us consider the second term
|[yk+

Mk
2 ‖sk‖sk−Bk sk ]

T sj|
ε‖sk‖

, it follows that

|[yk +
Mk
2 ‖sk‖ sk − Bksk ]

T sj|

ε ‖sk‖
≤
|yTk sj − s

T
k Bksj|

ε ‖sk‖

+

Mk
2 ‖sk‖

∥∥sj∥∥
ε

(45)

By adding and abstract sTk yj to the nominator of the first term
on the LHS, it leads to

|yTk sj − s
T
k Bksj| ≤ |y

T
k sj − s

T
k yj| + ‖sk‖

∥∥yj − Bksj∥∥
≤ |yTk sj − s

T
k yj| +

(
ζ + 2L ′′ηk,j

2ε

)
(
2
ε
+ 1

)k−j−2 ∥∥sj∥∥ ‖sk‖ (46)

where for first inequality, we have used the triangle inequality
and the Cauchy-Schwarz inequality, and the result in (42) for
the second inequality. Note yk = ∇f (xk+1)− f (xk ), by using
mean value theorem, we can obtain:

yk = ∇2f (xk + tksk )sk , for tk ∈ (0, 1). (47)

Similarly we can obtain yj = ∇2f (xj + tjsj)sj for tj ∈ (0, 1).
Substituting the above results into |yTk sj − s

T
k yj|, we have

|yTk sj − s
T
k yj| = |s

T
k (∇

2f (xk + tksk )−∇2f (xj + tjsj))sj|

≤ ‖sk‖
∥∥∥∇2f (xk + tksk )−∇2f (xj + tjsj)

∥∥∥ ∥∥sj∥∥
≤ L ′′ηk+1,j ‖sk‖

∥∥sj∥∥ , (48)

where we have used the assumption that the Hessian of f
is Lipschitz continuous. Now, let us consider Mk ‖sk‖ in the
RHS of (45). Recall thatMk can have various values between
the two roots in Case II. However, for simplicity, we assume
Mk is chosen to be Mk =

−b
2a . Hence, it follows:

Mk ‖sk‖ =
−b
2a
‖sk‖ =

‖sk‖2 − 2sTk Hkyk
sTk Hksk

=
‖sk‖2 − 2sTk Hk∇

2f (xk + tksk )sk
sTk Hksk

=
‖sk‖2 − 2sTk Hk∇

2f (xk + tksk )sk
sTk Hksk

(49)

Since {xk} is sufficiently close to x∗, using the continuity of f ,
we have∇2 f (xk+tksk ) � δI . Moreover, combiningHk � mI
leads to

Mk ‖sk‖ ≤
1− 2mδ

m
= ζ. (50)

Combining (45)-(50) and substituting the results into (44),
we obtain∥∥yj − Bk+1sj∥∥
≤

(
1
ε
+ 1

)∥∥yj − Bksj∥∥+ (ζ + 2L ′′ηk+1,j
2ε

)∥∥sj∥∥
≤

(
1
ε
+ 1

)(
ζ + 2L ′′ηk+1,j

2ε

)(
2
ε
+ 1

)k−j−2 ∥∥sj∥∥
+

(
ζ + 2L ′′ηk+1,j

2ε

)∥∥sj∥∥ := Lk+1 (51)

where we have used the simple inequality ηk+1,j ≥ ηk,j. Now,
our work left is to compare the last inequality in (51) with

Bk+1 :=
(
ζ+2L ′′ηk+1,j

2ε

) (
2
ε
+ 1

)k−j−1 ∥∥sj∥∥ . By straightfor-
wardly calculating Bk+1 − Lk+1, we have

Bk+1 − Lk+1 =
[
1
ε

(
2
ε
+ 1

)k−j−2
− 1

]

·

(
ζ + 2L ′′ηk+1,j

2ε

)
. (52)

Hence, Bk+1 > Lk+1 holds by taking into account ε ∈ (0, 1),
which gives (42) for i = k + 1.
As mentioned above, the sequence {Bk} generated by clas-

sical SR1 formula in (17) converges to the true Hessian,
provided Assumption 4 holds true. However, for CuREG-SR1
formulas (25) and (26), the sequence {Bk} generated by
CuREG-SR1 formula (25) no longer converges to the true
Hessian since we have incorporated cubic regularized tech-
nique with the parameterMk . Nonetheless, we can still show
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that their difference is bounded above based on Lemma 1 and
Assumption 4 in the next theorem.
Theorem 2. Assume the conditions in Lemma 1 and

Assumption 4 hold. {xk} is the generated sequence. Then,
there exit positive constants c1, c2 > 0, an integer k0 and
m ≥ d such that for any k ≥ k0,∥∥∥Bk+m+1 −∇2f (x∗)

∥∥∥ ≤ c1 + c2εk (53)

where εk = max{‖xs − x∗‖ |k ≤ s ≤ k + m+ 1}.
Proof:We have derived the bounded result for

∥∥yj − Bksj∥∥
in (42). Observe from (53), it implies that our next step is to
derive the bounded result for

∥∥yj −∇sf (x∗)sj∥∥. Then, we can
further use the triangle inequality and Assumption 4 to show
that the sequence {sk} is uniformly independent. To start with,
we apply the mean value theorem for k ≤ j ≤ k + m, and it
yields:∥∥∥yj −∇2f (x∗)sj

∥∥∥ = ∥∥∥(∇2f (xj + tjsj)−∇2f (x∗))sj
∥∥∥

≤

∥∥∥∇2f (xj + tjsj)−∇2f (x∗)
∥∥∥ ∥∥sj∥∥

≤ L ′′εk
∥∥sj∥∥ . (54)

Now, we consider
∥∥yj − Bk+m+1sj∥∥. By using Lemma 1,

we have:∥∥yj−Bk+m+1sj∥∥≤(ζ + 2L ′′ηk+m+1,j
2ε

)
·

(
2
ε
+ 1

)k+m−j−1 ∥∥sj∥∥
≤

(
ζ + 4L ′′εk

2ε

)(
2
ε
+ 1

)m−1 ∥∥sj∥∥ , (55)

where we have used the triangle inequality

ηk+m+1,j ≤ ηk+m+1,k = max{‖xs − xl‖ : j ≤ s ≤ l ≤ i}

≤ max{
∥∥xs − x∗∥∥+ ∥∥xl − x∗∥∥ : j ≤ s ≤ l ≤ i}

≤ 2εk . (56)

Hence, it follows by combining (54) and (55) that∥∥∥[Bk+m+1 −∇2f (x∗)]sj
∥∥∥

≤

∥∥∥yj −∇2f (x∗)sj
∥∥∥+ ∥∥yj − Bk+m+1sj∥∥

=

{(
ζ + 4L ′′εk

2ε

)(
2
ε
+ 1

)m−1
+ L ′′εk

}∥∥sj∥∥ . (57)

Subsequently, for k ≤ j ≤ k+m, according to Assumption 4,
one can choose d distinct indices between k and k + m for
the sequence {sk} to formulate the matrix Sk defined in (10).
Thus, for any j ∈ [k, k + m], it yields:∥∥∥[Bk+m+1 −∇2f (x∗)]Sk

∥∥∥ ≤ √d ∥∥∥[Bk+m+1 −∇2f (x∗)]sj
∥∥∥ .

(58)

Moreover, because of Assumption 4, the minimum eigenvalue
of the matrix Sk is positive, i.e., σmin(Sk ) > 0, it indicates:∥∥∥[Bk+m+1 −∇2f (x∗)]Sk

∥∥∥≥τ ∥∥∥Bk+m+1 −∇2f (x∗)
∥∥∥ , (59)

for some τ > 0 satisfying σmin(Sk ) ≥ τ . Combining (57)-(59),
we obtain the desired result in (53) with c1 and c2 given
respectively as follows:

c1 =

√
dζ

2ετ

(
2
ε
+ 1

)m−1
, (60)

c2 =

√
d
τ

[
2L ′′

ε

(
2
ε
+ 1

)m−1
+ L ′′

]
(61)

The result in Theorem 2 shows that the difference between
the approximate Hessian matrix updated via (25) and the
true Hessian is bounded above. Moreover, as the itera-
tion sequence converges to a critical point by Theorem 1,
we have

lim
k→∞

∥∥∥Bk+m+1 −∇2f (x∗)
∥∥∥ ≤ c1. (62)

However, for the SR1 update in (17) with the similar
conditions, it will converge to the true Hessian [5]. The
difference is due to the use of cubic regularization param-
eter Mk , which leads to the shift c1 > 0. While the
condition of {Bk} converging to the true Hessian indicates
superlinear convergence result for a class of quasi-Newton
methods [4], [6], conversely for an algorithm to reach super-
linear convergence rate, it does not require {Bk} converging
to ∇2f (x∗). For Algorithm 1, before we derive the conver-
gence rate, we need the following lemmas, in which we
have adopted the proof technique of Lemma 3.2 in [3]
with different settings, based on which, we further derive
a similar result for the CuREG-SR1 algorithm. In addition,
we mention that it does not require the uniform independent
assumption.
Lemma 2. Suppose the sequence {xk} converges to a

first-order critical point x∗. For any set of d + 1 steps ψ :=
{ski : k0 ≤ k1 ≤ · · · ≤ kd+1} with some integer k0, and
i = 1, · · · , d + 1, consider the matrix Si ∈ Rd×i defined
by

Si = [
sk1∥∥sk1∥∥ , · · · , ski∥∥ski∥∥ ]. (63)

There exits an index kp for p ∈ {2, · · · , d + 1} such that
skp∥∥∥skp∥∥∥ = Sp−1u+ ν, with some vectors u ∈ Rp−1 and µ ∈ Rd

satisfying:

‖u‖ <
2

ε
(d−1)κ
ψ

, ‖ν‖ < 2εκψ , (64)

where εψ is defined as εψ := max{
∥∥xki − x∗∥∥ : i =

1, · · · , d + 1}.
Proof: For i = 1, · · · , d , let us denote σi as the smallest

singular value of the matrix Si and σd+1 := 0. Subsequently,
it follows that [3]:

1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σd+1 = 0. (65)

Choose p ∈ {2, · · · , d + 1} to be the smallest integer such
that σp

σp−1
< εκψ with κ > 0. Since σp−1 < 1, it follows
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that σp < εκψ . Moreover, since σp−1 = σ1

(
σ2
σ1

)
· · ·

(
σp−1
σp−2

)
,

with (65) and p ≤ d + 1, we have:

σp−1 > ε
(p−2)κ
ψ > ε

(d−1)κ
ψ . (66)

We choose a vector z = [uT ,−1]T with u ∈ Rp−1 such that∥∥Spz∥∥ = σp ‖z‖ . (67)

Since Sp = [Sp−1,
skp∥∥∥skp∥∥∥ ], by defining ν := Spz, it leads to

Skp∥∥∥skp∥∥∥ = Sp−1u− ν. Subsequently, we have

‖u‖ ≤
1

σp−1

∥∥Sp−1u∥∥ ≤ ‖ν‖ + 1

ε
(d−1)κ
ψ

(68)

where the first inequality follows that σp−1 is the small-
est singular value of Sp−1, and the second follows
from triangle inequality and (66). Now, we continue to
derive the bound on ‖ν‖. Combining (67) and (68),
we have

‖ν‖2 =
∥∥Spz∥∥2 = σ 2

p ‖z‖
2
= σ 2

p (1+ ‖u‖
2). (69)

Together with σp < εκψ and using (68), it subsequently leads
to

‖ν‖2 < ε2κψ + ε
2κ
ψ (‖ν‖ + 1)2

< 4ε2κψ (‖ν‖ + 1)2. (70)

Furthermore, since xk → x∗, without loss of generality,
we assume εψ < ( 12 )

1/κ . Subsequently, it leads to ‖ν‖ <
2εκψ . Substituting the above results into (68), we can obtain
‖u‖ < 2

ε
(d−1)κ
ψ

.

Lemma 2 shows that ‖ν‖ is small, which implies that for
sufficiently large k , skp is nearly in the space spanned by Sp−1.
In particular, when p happens to be d + 1, skp is exactly in
the space spanned by Sp−1, provided that Sp−1 has full rank
and is well conditioned. With the above result, we continue
to derive the following lemma. The basic idea is to show
that the quantity

∥∥(Bkp −∇2f (x∗))skp
∥∥ /∥∥skp∥∥ is small for

some kp. It should be noted that the quantity has the same
form with the well-known Dennis-Moré condition [4], [6],
which is closely related to superlinear convergence. However,
we observe from (57) that due to the existence of the shift c1
caused by the cubic regularization parameter, such quantity
is bounded above. Hence, we need reasonable condition to
restrict Mk .
Lemma 3. Suppose the conditions in Lemma 1 are satisfied

for the sequence {xk} and {Bk} generated by Algorithm 1.
Assume further that there is a positive constant cM > 0 such
that Mk < cM . Moreover, the sequence {xk} converges to a
first-order critical point x∗. Then there exists an integer k0
and an index kp such that it satisfies:∥∥[Bkp −∇2f (x∗)]skp

∥∥∥∥skp∥∥ < 2
√
dc3ε

1−(d−1)κ
ψ + c4εκψ , (71)

for any set of d + 1 steps ψ := {ski : k0 ≤ k1 ≤ · · · ≤ kd+1}
and p ∈ {2, · · · , d + 1}, where c4 = 2(m−1 +

∥∥∇2f (x∗)
∥∥).

In particular, set κ = 1/d , the following inequality
holds: ∥∥[Bkp −∇2f (x∗)]skp

∥∥∥∥skp∥∥ < c5ε
1/d
ψ , (72)

where c5 = 2(
√
dc3 + m−1 +

∥∥∇2f (x∗)
∥∥).

Proof:We first show that the proof technique in Lemma 1
can be applied to obtain the following result:∥∥yj − Bisj∥∥ ≤ (cM + 2L ′′)ηi,j

2ε

(
2
ε
+ 1

)i−j−2 ∥∥sj∥∥ , (73)

with i ≥ j + 1. Suppose it is satisfied for i = k . Now, let us
consider i = k + 1. Note from (45) and sk ≤ ηk,j that

|[yk +
Mk
2 ‖sk‖ sk − Bksk ]

T sj|

ε ‖sk‖

≤
|yTk sj − s

T
k Bksj|

ε ‖sk‖
+
cMηk,j

∥∥sj∥∥
2ε

≤
1
ε

∥∥yj − Bksj∥∥+ (cM + 2L ′′)ηk+1,j
2ε

∥∥sj∥∥ . (74)

Hence, it follows:∥∥yj − Bk+1sj∥∥
≤

(
1+

1
ε

)∥∥yj − Bksj∥∥
+
(cM + 2L ′′)ηk+1,j

2ε

∥∥sj∥∥ . (75)

Following the technique in Lemma 1, we can obtain the
desired result in (73). Now, we focus on (71). First, we note
that

ηki,j = max{‖xs − xl‖ : s, l ∈ [j, ki]}

≤ max{
∥∥xs − x∗∥∥+ ∥∥xl − x∗∥∥ : s, l ∈ [j, ki]}

≤ 2 ·max{
∥∥xkl − x∗∥∥ : l = 0, · · · , d + 1}. (76)

Hence, by substituting (76) into (73), we get∥∥yj − Bkisj∥∥≤ (cM + 2L ′′)ηki,j
2ε

(
2
ε
+1
)ki−j−2 ∥∥sj∥∥

≤
(cM+2L ′′)εψ

ε

(
2
ε
+1
)kd+1−k1−2 ∥∥sj∥∥ , (77)

where we set i in (73) to ki, and the subscript i can take values
in {2, · · · , d+1}. In addition, by using (54) and (76), we can
obtain: ∥∥∥yj −∇2f (x∗)sj

∥∥∥ ≤ L ′′εψ ∥∥sj∥∥ , (78)

where the mean value theorem and the fact that the
Hessian of f is Lipschitz continuous are used. Sub-
sequently, the triangle inequality is further applied to

VOLUME 7, 2019 114051



H. Chen et al.: On the Convergence Analysis of Cubic Regularized Symmetric Rank-1 Quasi-Newton Method

obtain∥∥∥∥∥(Bki −∇2f (x∗))
sj∥∥sj∥∥
∥∥∥∥∥ ≤

∥∥∥∥∥yj − Bki sj∥∥sj∥∥
∥∥∥∥∥

+

∥∥∥∥∥yj −∇2f (x∗)
sj∥∥sj∥∥
∥∥∥∥∥

≤ c3εψ , (79)

where the constants c3 is given by:

c3 =
cM + 2L ′′

ε

(
2
ε
+ 1

)kd+1−k1−2
+ L ′′. (80)

We proceed to complete the proof by using the results in
Lemma 2. By setting i = p, it follows from (62) and (79)
that ∥∥∥(Bkp −∇2f (x∗))Sp−1

∥∥∥ ≤ √dc3εψ . (81)

Combining (81) and Lemma 2 that
skp∥∥∥skp∥∥∥ = Sp−1u + ν,

we have∥∥(Bkp −∇2f (x∗))skp
∥∥∥∥skp∥∥

=

∥∥∥(Bkp −∇2f (x∗))(Sp−1u+ ν)
∥∥∥

≤

∥∥∥(Bkp −∇2f (x∗))Sp−1
∥∥∥ ‖u‖ + (

∥∥Bkp∥∥+ ∥∥∥∇2f (x∗)
∥∥∥) ‖ν‖

<
√
dc3εψ

2

ε
(d−1)κ
ψ

+ 2(m−1 +
∥∥∥∇2f (x∗)

∥∥∥)εκψ
= 2
√
dc3ε

1−(d−1)κ
ψ + 2(m−1 +

∥∥∥∇2f (x∗)
∥∥∥)εκψ , (82)

where we obtain the desired result in (71). Furthermore,
by setting κ = 1/d , it subsequently leads to (72).
Note that the quantity

∥∥(Bkp −∇2f (x∗))skp
∥∥ /∥∥skp∥∥ is not

necessarily small if we choose κ > 1/(d − 1). Therefore,
to derive the convergence rate, we set κ > 1/(d − 1).
Moreover, provided the generated Bk at each step is positive
definite, we show that for every q iterations, Algorithm 1
generates at least q− d superlinear steps.
Theorem 3. Suppose Assumptions 1-3,5 are satisfied and

the condition (41) holds at each iteration. Set κ > 1/(d − 1).
In addition, the conditions in Lemma 1 are required. Then,
there exits an integer k0 such that for each k > k0 and q ≥
d + 1, the following inequality holds:∥∥xk+q − x∗∥∥ ≤ αk ∥∥xk − x∗∥∥ , (83)

where the sequence {αk} satisfies lim
k→∞

αk = 0.

Proof: For convenience, let us denote ek := ‖xk − x∗‖.
Note that Assumption 2 is equivalent to ∇2f (x∗) � L ′I .
Combining ∇2f (x∗) � δI and f (xk ) − f (x∗) = 1

2 (xk −
x∗)T∇2f (x̃)(xk − x∗), where x̃ = x∗ + t(xk − x∗), it follows
that

1
2
δe2k ≤ f (xk )− f (x

∗) ≤
1
2
L ′e2k . (84)

Hence, since the algorithm results in descent step at each
iteration, we have for l > k > k0 that

el ≤

√
L ′

δ
ek . (85)

Consider the set of d + 1 steps {si : i = k, · · · , k + d},
by applying Lemma 3, there exits l1 ∈ {k + 1, · · · , k + d}
such that∥∥(Bl1 −∇2f (x∗))sl1

∥∥∥∥sl1∥∥
< 2
√
dc3ε

1−(d−1)κ
ψ + c4εκψ

< 2

√
L ′d
δ
c3e

1−(d−1)κ
k +

√
L ′

δ
c4eκk (86)

where we have used (85) that εψ ≤
√

L ′
δ
ek . Additionally, for

sufficient large k > k0, we have from (86) that there exits a
positive constant c6 such that:∥∥(Bl1 −∇2f (x∗))sl1

∥∥∥∥sl1∥∥ < c6eκ̃k , (87)

where κ̃ = max{1− (d − 1)κ, κ}. Note that the inequality in
Lemma 3.3 [3] can be applied in our case, and since κ̃ < 1,
we have

el1+1 ≤
∥∥∥∇2f (x∗)−1

∥∥∥[2∥∥(Bl1 −∇2f (x∗))sl1
∥∥∥∥sl1∥∥ el1 +

L ′′

2
e2l1

]
< 4

∥∥∥∇2f (x∗)−1
∥∥∥ c6eκ̃k el1 . (88)

The above results are based on the fact that for sufficiently
large k > k0, ek are small. Next, we apply the same method
to the set {sk , · · · , sk+d , sk+d+1} − sl1 , then we can obtain l2
such that

el2+1 < 4
∥∥∥∇2f (x∗)−1

∥∥∥ c6eκ̃k el2 . (89)

Hence, by repeating the procedure, we obtain the following
inequalities with respect to the indices l1 ≤ l2 ≤ · · · ≤ lq−d

eli+1 < 4
∥∥∥∇2f (x∗)−1

∥∥∥ c6eκ̃k eli (90)

for i ∈ {1, · · · , q − d}. Define 1fk := f (xk ) − f (x∗), note
that each step results in a reduction in f , i.e., 1fk+1 < 1fk .
Moreover, from (84) we have:

1fli+1 ≤
1
2
L ′e2li+1 < 8

∥∥∥∇2f (x∗)−1
∥∥∥2 L ′c26e2κ̃k e2li

<
8L ′c26
δ

∥∥∥∇2f (x∗)−1
∥∥∥2 e2κ̃k 1fli . (91)

Subsequently, it leads to

1fk+q <

{
8L ′c26
δ

∥∥∥∇2f (x∗)−1
∥∥∥2 e2κ̃k

}q−d
1fk . (92)

By applying (84), it yields

ek+q <

√
L ′

δ

{√
8L ′

δ

∥∥∥∇2f (x∗)−1
∥∥∥ c6eκ̃k

}q−d
ek . (93)
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For convenience, let us denote

c7 =

√
L ′

δ

{√
8L ′

δ

∥∥∥∇2f (x∗)−1
∥∥∥ c6}q−d , (94)

it leads to ek+q < c7e
κ̃(q−d)
k ek . Hence we obtain the desired

result in (83). In addition, it indicates that the sequence {ek}
exhibits q step superlinear convergence rate.

IV. INCREMENTAL CUREG-SR1
As mentioned above, massive data may result in expen-
sive computation for traditional algorithms in the big data
era. Therefore, direct application of the algorithms to
problems with large samples is rather inefficient. In this
section we propose a novel and efficient method based on
CuREG-SR1 and SR1 to solve large scale problems. Specif-
ically, our proposed algorithm aims to solve a class of prob-
lems which can be written as the sum of functions. This
kind of problems widely exist in different areas such as
source localization in sensor networks [27], [28], machine
learning problems [29], [30], [32], [33], [35], computational
biology [18], [19] and robotics [26].

Now let us consider the problem mentioned above, which
has the form:

x∗ = argminx∈Rd f (x) :=
1
N

N∑
i=1

fi(x), (95)

where N is the sample size and there are N individual
functions fi. Obviously, when naively applying traditional
quasi-Newton method, we are required to evaluate the gradi-
ent N times and compute the large sample summation, which
are computationally expensive. Stochastic scheme has been
widely adopted to alleviate such complexity [20], [38]–[40]
by sampling a mini batch of the large samples to estimate
the gradient, which is used in lieu of the exact gradient [36].
This idea has substantially reduced the computational cost
and extended to stochastic quasi-Newton method based on
BFGS [13], [15]. In this section, we propose an efficient
algorithm based on SR1 and CuREG-SR1 by incorporating
the incremental method.

Specifically, we approximate each individual function fi
by second-order Taylor expansion around its current iter-
ate zki . Subsequently, we obtain an approximation to the
function f :

f (x) ≈
1
N

N∑
i=1

{fi(zki )+∇f (z
k
i )
T (x − zki )

+
1
2
(x − zki )

TBki (x − z
k
i )}, (96)

where the matrix Bki is the local Hessian approximation to
∇

2fi(zki ). Furthermore, we refer to {zki ,∇f (z
k
i ),B

k
i } as the

information corresponds to the individual function fi. Using
the same strategy with quasi-Newton methods to obtain the
step direction for next iteration, weminimize the RHS in (96).

It subsequently yields:

xk+1 = (B̃k )
−1

(z̃k − g̃k ) (97)

where B̃k :=
∑N

i=1 B
k
i , z̃

k
=

∑N
i=1 B

k
i z
k
i and g̃k :=∑N

i=1 ∇f (z
k
i ). In this paper, we consider update the Hessian

approximation matrix by using SR1 and CuREG-SR1.
It can be seen from (97) that it involves matrix inversion

and summation arsing from large samples, which is com-
putationally expensive. To simplify computation, we only
update the information associated with one chosen individ-
ual function at each iteration, while the information cor-
responding to other individual functions is left intact. The
function is selected by cyclically iterating through N indi-
vidual functions. Without loss of generality, we start to
select the first individual function f1, then at iteration k ,
we update the information of ik -th individual function, where
ik = (k mod N )+ 1. Specifically, we have

zk+1ik = xk+1, zk+1i = zki for i 6= ik . (98)

Hence, with these settings, while the information of the
selected function fik is updated, the other terms are kept the
same with their previous value. Moreover, it follows that

∇fik (z
k+1
ik ) = ∇fik (xk+1), (99)

∇fi(z
k+1
i ) = ∇fi(zki ) for i 6= ik . (100)

According to (98)-(100), we can derive the following for
Hessian approximation update:

Bk+1i = Bki +
(yki − B

k
i s
k
i )(y

k
i − B

k
i s
k
i )
T

(yki − B
k
i s
k
i )
T ski

, (101)

for i = ik and B
k+1
i = Bki for i 6= ik , where yki = ∇f (z

k+1
i )−

∇f (zki ) and s
k
i = zk+1i − zki . Obviously, for i 6= ik , it indicates

yki = 0 and ski = 0. This leads to our efficient computation of
{B̃k , z̃k , g̃k} in (97). To be specific, {B̃k , z̃k , g̃k} can be updated
as follows:

B̃k+1 = B̃k − Bkik + B
k+1
ik , (102)

z̃k+1 = z̃k − Bkik z
k
ik + B

k+1
ik zk+1ik , (103)

g̃k+1 = g̃k −∇f (zkik )+∇f (z
k+1
ik ). (104)

Therefore, we avoid the computation of the large sample
summation to update {B̃k , z̃k , g̃k}. Moreover, since updating
the iterate in (97) requires matrix inverse operation, it is
desirable to update its inverse to avoid direct matrix inversion.
Substituting (101) into (102) leads to:

B̃k+1 = B̃k +
(ykik − B

k
ik s

k
ik )(y

k
ik − B

k
ik s

k
ik )

T

(ykik − B
k
ik s

k
ik )

T skik
. (105)

By applying the Sherman-Morrison formula to (105),
we obtain the following update of the inverse of the approxi-
mated Hessian:

H̃ k+1
= H̃ k

−
H̃ k (ykik − B

k
ik s

k
ik )(y

k
ik − B

k
ik s

k
ik )

T H̃ k

(ykik − B
k
ik s

k
ik )

T skik
(106)

VOLUME 7, 2019 114053



H. Chen et al.: On the Convergence Analysis of Cubic Regularized Symmetric Rank-1 Quasi-Newton Method

Algorithm 2 ICuREG-SR1

Input: set z0i = x0 for randomly generated x0 from uniform
distribution [−1, 1]d , B0i = I for i = 1, · · · ,N , the
desired iteration number KN .

Output: zKNN = xKN .
1: for k = 0, 1, . . . ,KN − 1 do
2: Calculate xk+1: xk+1 = (B̃k )

−1
(z̃k − g̃k ).

3: Set ik = (k mod N )+ 1.
4: Compute ykik and s

k
ik according to (98)-(100).

5: Set H̃k+1 = H̃k ,
6: if |(ykik − B

k
ik s

k
ik )

T skik | > ε

∥∥∥ykik − Bkik skik∥∥∥ ∥∥∥skik∥∥∥ then
7: if (ykik − B

k
ik s

k
ik )

T skik > 0 then
8: Calculate H̃k+1 via (106),
9: else
10: Compute a, b and c according (28)(29) and (30)

respectively,
11: if b2 − 4ac > 0 and b < 0 then
12: Set M k

ik = −
b
2a and calculate H̃k+1 by substi-

tuting ỹkik := ykik +
Mk
ik
2

∥∥∥skik∥∥∥ skik into (106) in

lieu of ykik ,
13: end if
14: end if
15: end if
16: Compute z̃k+1 and g̃k+1 according to (103) and (104)

respectively.
17: end for

where for simplicity we define H̃ k
:= (B̃k )−1. The computa-

tional complexity of (106) is O(d2) while the cost of direct
matrix inversion is O(d3), thus substantially reducing the
computational complexity. Furthermore, to ensure that each
update of theHessian approximationBk+1ik is positive definite,
we can apply CuREG-SR1 in (25) to the resulting update.
To be specific, if (ykik − B

k
ik s

k
ik )

T skik < 0 and Case II happens,
we choose M k

ik = −b/2a where a and b are calculated
with (28) and (29) respectively. For other cases, we skip the
update. In this way, −Bkik + Bk+1ik is positive definite, and
thus B̃k+1 � 0 in (102). We summarize the ICuREG-SR1
algorithm in Algorithm 2.
Remark. In steps 8 and 12, it should be noted from (105)

that if the resultant Hessian approximation matrix B̃k+1 is
ill-conditioned, an effective regularization technique can be
applied. Specifically, we have

H̃ k+1
← (B̃k+1 + rI )−1, (107)

with r := ρTr(B̃k+1)
d , typical values of ρ are 10−2 and 10−3

etc.
For N samples with feature dimension d , if each iteration

only updates one sample, there will be N Hessian approxi-
mation matrices for the corresponding individual functions.
Without loss of generality, suppose that the incremental algo-
rithm starts by using the first sample (corresponding to first

individual function). The memory cost for this scenario will
be O(Nd2 + Nd). Hence, for large scale problems, the incre-
mental method suffers from the problem of large memory
cost. However, by grouping L individual functions into a new
individual function, the memory cost can be substantially
reduced to O(Nd

2
+Nd
L ). Now we illustrate the existing tech-

nique for further reducing the memory cost. At the (KN + 1),
the first variable denoted as zKN1 has been updated K times.
Consider limitedmemory SR1 (chapter 9.16 in [23]), it stores
the correction pairs (sk1, y

k
1) with respect to the first variable

zk1 for k = (K − m) · N + 1, . . . , (K − 1) · N + 1.
Similarly, for all components zki , i = 1 . . .N , the memory
cost will be O(2dmN ). Moreover, if one groups L individ-
ual functions as one new individual function, the memory
cost will be further reduced to O(2dmN/L). Here, our main
purpose is to propose a framework of incremental method.
It can be a future work to further refine the implementa-
tion of the above limited memory version of our proposed
ICuREG-SR1.

V. NUMERICAL RESULTS
In this section, we conduct numerical tests on our pro-
posed ICuREG-SR1 algorithm. We will apply the algo-
rithm to logistic regression and Bayesian logistic regression.
For the latter, we adopt Laplace method [32]. We also
implement the conventional SGD, SdLBFGS [13] and
Sd-REG-LBFGS [42] algorithms as comparison for the
above problems. Note that the latter two optimization
schemes are based on limited memory BFGS scheme
(LBFGS). The performance evaluation will be based on the
norm of the gradient at each iteration. Furthermore, we use
three datasets for the tests, namely the synthetic dataset ran-
domly generated, the scene dataset and theCIFAR-10 dataset.
For fair comparison, the parameters have been tuned to yield
the best performance of each stochastic algorithm in the
numerical experiments.

A. LOGISTIC REGRESSION
We first consider the logistic regression for binary
classification [32]. Suppose two classes denoted as zn = 0
and zn = 1 are to be recognized respectively. Logistic
regression models the problem as p(zn|θ ) = σ (θT xn)zn · (1−
σ (θT xn))1−zn , where θ is the parameter to be identified, xn
is the feature vector and σ (·) is the sigmoid function given
by σ (x) = 1/(1 + exp(−x)). Given the training data {zn, xn}
with xn ∈ Rd and n = 1, · · · ,N , the likelihood function to
be maximized is p(z1:N |θ ) =

∏N
n=1 p(zn|θ ). One can max-

imize the log-likelihood function or equivalently minimize
the objective function: f (θ ) = − 1

N

∑N
n=1 znlog σ (θ

T xn) +
(1 − zn)log σ (−θT xn). Moreover, we use the norm of gradi-
ent (NOG) for performance evaluation. The NOG for logistic
regression is defined as follows:

NOGLR =

∥∥∥∥∥ 1N
N∑
n=1

[zn − σ (θT xn)]xn

∥∥∥∥∥ . (108)
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B. LAPLACE METHOD FOR BAYESIAN
LOGISTIC REGRESSION
Bayesian treatment of logistic regression can be effected by
introducing a prior distribution to the parameter θ , say with
a Gaussian prior p(θ ) = N (m0, S0), to obtain the poste-
rior distribution [32]. The Laplace method aims to approx-
imate a posteriori distribution at a local maximum of the
likelihood by using Taylor expansion. Consider the a pos-
teriori distribution p(θ |x1:N , z1:N ) and prior p(θ ), it satisfies
p(θ |x1:N , z1:N ) ∝ exp{log p(θ ) +

∑N
n=1 log p(zn|θ )}. Let

us define k(θ ) := log p(θ ) +
∑N

n=1 log p(zn|θ ). By using
second-order Taylor expansion at its maximum point θ̂ ,
we have p(θ |x, z) ∝ exp{k(θ )} ≈ exp{ 12 (θ − θ̂ )

T
∇

2k(θ̂ )(θ −
θ̂ )}, as θ̂ is the maximum point with ∇k(θ̂ ) = 0. Note
that θ̂ is also the maximum a posteriori (MAP) estimator
of the global variable. Subsequently, it yields p(θ |x, z) ≈
N (θ̂ ,−∇2k(θ̂ )). Therefore, the Laplace method converts the
inference problems into a MAP estimation problem θ̂ =

argmax
θ̂
k(θ ). A key step for finding the MAP estimator

is the optimization process involving the determination of
the gradient for search direction. However, since k(θ ) con-
tains the sum of log-likelihood of the samples, the evalu-
ation of the exact gradient requires excessive computation
especially for large number of samples. Here, we adopt the
proposed ICuREG-SR1 for solving the MAP estimate, which
amounts to solving θ̂ = argminθ∈Rd −

1
N k(θ ). Furthermore,

the NOG for Bayesian logistic regression can be calculated as
follows:

NOGBLR =

∥∥∥∥∥ 1N {
N∑
n=1

[zn − σ (θT xn)]xn + S
−1
0 (θ − m0)}

∥∥∥∥∥ .
(109)

C. EXPERIMENTS WITH SYNTHETIC DATASET
We first study a synthetic dataset with dimension d = 150.
For the two classification problems, we set the same ini-
tial optimization variable to be θ0, which is generated from
Gaussian distribution N (0, I ). We generate 1, 000 synthetic
training data points in the following manner. First, generate
the feature vectors xn, i = 1, . . . ,N using the uniform
distribution [0, 1]d . Next, use a specified vector θ̄ generated
from the uniform distribution [−1, 1]d to generate the corre-
sponding label zn = I(θ̄T xn > 0).

The Sd-REG-LBFGS [42], SdLBFGS [13] and SGD algo-
rithms are implemented as comparison. The basic idea of
Sd-REG-LBFGS is to add a regularization parameter γ to
avoid singular matrix [42]. Moreover, it requires another
parameter δ to satisfy δ > 1.25γ to ensure positive definite-
ness. The parameters γ = 10−4 and δ = 1.25γ + 0.01 are
employed. Additionally, the parameter β which is used for
initializing the LBFGS method is set to β = 0.1. Sd-REG-
LBFGS also performs average of the iterate every L itera-
tions, L is set to L = 10 as a trade off between performance
and complexity. In the LBFGS process, the memory is set
to M = 10. For SdLBFGS, the same values for β and M

FIGURE 1. The NOG performance of different algorithms applied in
solving logistic regression using synthetic dataset.

are used. Furthermore, the stepsize for SGD, SdLBFGS and
Sd-REG-LBFGS is set to be ηk = 7/k . The parameters are
tuned to exhibit as best performance of the three optimization
scheme as possible.

1) LOGISTIC REGRESSION
Numerical experiments were performed on the generated
synthetic dataset using classical logistic regression. Figure 1
shows the numerical results of the performance evaluation
in terms of gradient magnitude, i.e., NOG. According to
Algorithm 2, our proposed method updates one individual
function at each iteration, which also corresponds to one
specific data point. This indicates that our proposed method
will update all the individual functions over the whole dataset
every 1,000 iterations as there are 1,000 data points. More-
over, these 1,000 iterations are called local iterations for
convenience. It can be seen from Figure 1 that our proposed
method outperforms SGD after 50 passes through the whole
dataset, which has a gradient magnitude of 0.065. Further-
more, ICuREG-SR1 started to outperform Sd-REG-LBFGS
at the 120th pass. Additionally, it takes 370 passes for our
proposed method to have better performance than SdLBFGS
and the corresponding NOG is 0.01. ICuREG-SR1 continues
to descend afterwards. After a total of 600 passes over the
whole dataset, the magnitude of its gradient is as small as
0.006. A subplot is used to observe the detail in the local
iterations of one pass. Specifically, the 500 ∼ 501 pass is
depicted. The NOG first decreases and then increases again
but overall, the NOG value decreases as the number of itera-
tions increases.

2) BAYESIAN LOGISTIC REGRESSION
Figure 2 presents the performance of various algorithms in
terms of gradient magnitude for solving Bayesian logistic
regression with the synthetic dataset. It can be seen that SGD
and SdLBFGS exhibit similar performance. They both reach
a gradient magnitude of 0.075 at convergence. Meanwhile,
Sd-REG-LBFGS scheme has better performance than the
above two methods. The NOG value is 0.038 at convergence,
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FIGURE 2. The NOG performance of different algorithms applied in
solving Bayesian logistic regression using synthetic dataset.

which is reduced by 49.3% compared with the two methods.
For our proposed method, it performs the best as it shows
the smallest NOG value for the specific iteration number.
Similar to the scenario of logistic regression with synthetic
dataset in Figure 1, the learning curve of our proposedmethod
started to outperform both SGD and SdLBFGS at 60 passes
over the whole synthetic dataset, and then has better NOG
performance than Sd-REG-LBFGS after 115 passes. The
subplot also shows the similar result to Figure 2 that the NOG
first decreases and then increases within one pass.

D. NUMERICAL RESULTS WITH SCENE Dataset
In this subsection, we compare Sd-REG-LBFGS with
SdLBFGS and SGD for a practical dataset called the scene
dataset [51]. It contains 1,211 images in the training set
and 1,196 in the testing set. Each image has 294 features
and up to 6 scene labels: beach, sunset, fall-foliage, field,
mountain and urban. To form the binary classification prob-
lem, we simply group beach, sunset and fall-foliage as a
new category with label z = 1. The remain classes are
grouped with label z = 0. The binary classification problem
is to predict whether an image in the testing set is in the
new category [31]. The parameters of various optimization
schemes are the same as the numerical experiments for the
synthetic dataset.

1) LOGISTIC REGRESSION
Figure 3 shows the performance comparison of the four
algorithms in terms of the NOG. The result shows that
our method generally outperforms the other methods as
our method has the smallest NOG value, which indi-
cates that our method is the closest to the critical point.
Additionally, our proposed method exhibits a tendency
of continuing to reduce the gradient magnitude while
the other methods have converged. From the subplot,
we can draw a similar conclusion that our proposed method
exhibits an initial decreased gradient magnitude and then
increased NOG value within one pass over the whole scene
dataset.

FIGURE 3. The NOG performance of different algorithms applied in
solving logistic regression using scene dataset.

FIGURE 4. The NOG performance of different algorithms applied in
solving Bayesian logistic regression using scene dataset.

2) BAYESIAN LOGISTIC REGRESSION
Figure 4 compares the performance of different meth-
ods when applying the Laplace scheme to Bayesian logis-
tic regression. The scene dataset is used. Figure 4 generally
shows that our proposed method performs the best in terms
of the NOG. Similar to Figure 3, ICuREG-SR1 continues
to decrease the NOG value while the other methods have
converged. Furthermore, our proposed method has improved
the performance by more than 33.3% compared to Sd-REG-
LBFGS in terms of gradient magnitude. In addition, within
one pass over the whole dataset, the subplot shows that the
NOG values exhibit certain variations with the iterations, but
the NOG value is decreased as a whole as the number of
iterations increases.

E. NUMERICAL RESULTS WITH CIFAR-10 Dataset
In this subsection, we compare the proposed algorithm with
the Sd-SEG-LBFGS, SdLBFGS and SGD algorithms with
a large practical dataset: CIFAR-10 dataset [50]. We ran-
domly choose 10,000 data points from the CIFAR-10 dataset,
where each feature vector has dimension 3072 and its label
ranges from 0 to 9. In the paper, we consider our proposed
method in the optimization of binary classification problems.
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FIGURE 5. The NOG performance of different algorithms applied in
solving logistic regression using CIFAR-10 dataset.

Thus, we regroup the data points into two classes: if the label
is less equal than 4, we set its new label to 0, i.e., zn = 0; for
other cases, zn = 1.Moreover, as the dataset is large, updating
a single function at each iteration is inefficient in terms of
arithmetic complexity and memory cost. Hence, we group
100 single functions as a new individual function. For the
regrouped objective function, there are 100 individual func-
tions now. We set the iteration number to terminate the algo-
rithm as 300 times of the number of individual functions.
This has saved much memory and substantially reduced the
iteration number required to reach a desired point, which is
sufficiently close to the critical point.Moreover, we have used
the effective regularization technique in (107) for numerical
stability.

1) LOGISTIC REGRESSION
Figure 5 shows the performance of various approaches
for solving the logistic regression using the CIFAR-10
dataset. Our proposed method generally exibits a stable
learning curve and the NOG gradually descends. However,
it also oscillates within local iterations. Since there are 100
individual functions, the number of local iterationswithin one
pass is 100. It can be seen that NOG generally decreases
for one pass over the individual functions. Moreover, it has
shown that our proposed method has the lowest gradient
magnitude, and continues to descend while other methods
have reached convergence.

2) BAYESIAN LOGISTIC REGRESSION
Figure 6 shows the performance of various methods for
solving the Bayesian logistic regression using the CIFAR-10
dataset. It shows that our proposed method has the best
performance in terms of NOG, which also means that the
solution of our proposed method is closer to the critical point.
Similarly, the NOG curve generally decreases in each pass
over the individual functions.

FIGURE 6. The NOG performance of different algorithms applied in
solving Bayesian logistic regression using CIFAR-10 dataset.

VI. CONCLUSION
We have extensively studied the convergence properties of
CuREG-SR1 and derived novel results. It should be noted
that direct applying classical methods that analyze conver-
gence properties of SR1 can be problematic. For exam-
ple, in Theorem 2, the difference between the approximated
Hessian and true Hessian is bounded. However for SR1,
the approximated Hessian converges to the true Hessian. This
is due to the reason that incorporating cubic regularized tech-
nique introduces the shift. Hence, we restric the regularized
parameter, under which, for sufficiently large iteration num-
bers, we have proofed that there are q − d superlinear steps
in every q ≥ d + 1 steps. Furthermore, we proposed a novel
incremental optimization method based on SR1 and CuREG-
SR1 and its efficient implementation to solve large scale
problems. In the numerical experiments, we apply ICuREG-
SR1 to logistic regression and its Bayesian treatment using
artificial dataset and real world dataset respectively. It has
shown that our proposed method is powerful and superior
in terms of the gradient magnitude, compared to other three
schemes.
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