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ABSTRACT The Generalized Adaptive Resonance Theory (GART) model is a supervised online learn-
ing neural network based on an integration of Adaptive Resonance Theory (ART) and the Generalized
Regression Neural Network (GRNN). It is capable of online learning, and is suitable for undertaking
both classification and regression problems. In this paper, we further enhance GART (EGART) with
four improvements to formulate a new EGART model. Three operating strategies for the EGART model
to undertake regression problems are suggested. The first operating strategy is a fully online learning
EGARTmodel. The second operating strategy involves Ordering Algorithm for determining the presentation
sequence of training samples during the initial training of EGART model. This strategy is considered as
offline learning because a set of data samples must be available for the Ordering Algorithm to compute the
best presentation sequence (hereinafter denoted as Ordered-EGART). The third operating strategy aims to
demonstrate online learning capability of EART model (the first operating strategy) can still be resumed
after training on the Ordered-EGART. It is most suitable for applications with a set of ready data samples
and their sequences are predetermined by Ordering Algorithm prior to training of EGART model in offline
mode, and triggers online learning when more new data samples become available (hereinafter denoted
as IO-EGART). A series of experiments with five benchmark data sets from various application domains
is conducted to assess and compare the effectiveness of the EGART model and three operating strategies
with those of other methods published in literature as well as two fire safety engineering problems, i.e.,
predicting the thermal interface height in a single compartment fire and evacuation times in the event of fire.
The results and comparisons with other approaches positively demonstrate the efficacy and applicability of
EGART model as a useful data regression model for tackling fire safety engineering problems.

INDEX TERMS Adaptive resonance theory, fire evacuation time, general regression neural network,
ordering algorithm, regression, thermal interface height.

I. INTRODUCTION
Regression is often used to analyze data in statistics or other
scientific research. It is used to examine whether there are
some relations between two or more objects. It is desir-
able to fit a series of influencing factors and results into
an equation that can be applied to other similar events
for prediction purposes. Several neural network models

The associate editor coordinating the review of this article and approving
it for publication was Vicente Alarcon-Aquino.

have been proposed to solve data regression and estima-
tion problems, i.e., the Recurrent Neural Network [1], Time
Delay Neural Network [1], Echo State Networks [1], Dual
Coordinate Descent Method [2], Successive Overrelaxation
Algorithm [2], Modified NewtonMethod [2], Support Vector
Regression [2], Genetic Adaptive Neural Network [3], and
Backpropagation Neural Network [3].

Over the past decades, there are two networks which
have consistently shown good accuracy in a variety of
regression and estimation tasks, they are the Multilayer
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Perceptron (MLP) [4], [5] and Radial Basis Function
(RBF) [4], [6] models. The MLP network handles regression
problems by exploiting its hidden neurons to build a nonlinear
transformation of combined sigmoid functions based on the
hidden neurons. On the other hand, the RBF network handles
regression problems using the method of combining nonlin-
ear semi-parametric functions. An example of such functions
is the Gaussian kernel function.

However, in a standard MLP or RBF network, learning
is based on a method that is known as the offline or batch
learning mode [7]. During the process of batch learning,
after receiving every single training sample, the network
runs an iteration and only after that the network weights
are updated [8]. Because batch learning typically involves
multiple iterations through a number of training samples, it is
usually a time consuming process of learning. A re-training
procedure is also necessarywhen a new sample is presented to
the network. During this re-training process, the new sample
and all past samples are required for learning. [7]. In addi-
tion, choosing the proper learning and network parameters
such as the number of nodes, number of learning epochs,
learning rate, and stopping criteria require a lot of fine-tuning
attempts [7]. Choosing of the network parameters is usually
conducted after a series of trial-and-error experiments, which
are time-consuming.

The batch learning approach is useful only when the data
environment is stationary, and provided that the training
samples are sufficiently representative. This is because dur-
ing learning, information provided by the training samples
collected from the environment is encoded by the adjust-
ment (learning) of the network weights. After validating
the network performance, the network is put into operation,
and no further weight adaptation (or learning) takes place.
When the network is presented with an unseen new sam-
ple, a built-in mechanism for the network to recognize the
novelty is not available. In order to learn new information,
the network needs to be re-trained using the new sample,
together with all previous samples. This is a major drawback
in most neural network models, and it arises from the so-
called stability-plasticity dilemma [8]. The dilemma under-
lies a series of questions, i.e., how a learning system is able
to remain plastic or adaptive in response to significant events,
and yet remain stable in response to irrelevant ones; how a
learning system is able to adapt to new information without
corrupting or forgetting previously learned information [8].

For solving stability-plastic dilemma, an Adaptive Res-
onance Theory (ART)-based neural network namely Fuzzy
ARTMAP (FAM) [9] has been proposed. The learning strat-
egy involve minimum operator of Fuzzy and weight of a
neuron (or commonly named as ‘‘category’’ in FAM) is a
hyper-rectangular. It is capable of online learning of new
data samples without disturbing the knowledge learned from
previous data samples. When a set of data samples are avail-
able before online learning, an Ordering Algorithm [10] is
proposed to arrange the presentation of data samples. This
ordering algorithm required a parameter, i.e., number cluster

centers that is number of class of the application plus one. The
use of Ordering Algorithm improves the performance (better
accuracy rate and smaller network size), however it is limited
to pattern classification problem and it is considered as batch
mode learning as all data samples must be available before a
fix order of presentation can be decided. From the learning
strategy of FAM or FAM with Ordering Algorithm, we can
conclude that those approaches are only applicable for pattern
classification problem. It is not feasible for data regression
task.

Hence, it serves as our motivation to propose an extended
ART-based model for online learning and capable of solving
data regression task, namely Enhanced Generalized Adaptive
Resonance Theory (i.e., EGART model). Unlike the stan-
dard ART-based neural networks, EGART model did not
use Fuzzy minimum operator (hence, weights of a neuron
will not be of a hyper rectangular shape), instead it uses
Gaussian distribution for learning and representation of its
weights. In addition, this paper presents three different oper-
ating strategies of the proposed EGARTmodel, i.e., (i) a fully
online learning EGART; (ii) When there is a set of data sam-
ples available, the proposed EGART model can be combined
with Ordering Algorithm (namely Ordered-EGART model)
for offline learning with better performance (smaller error for
regression, smaller network size which means lesser number
of category created) than the online EGART model; (iii) Ini-
tially EGART learned from a set data samples in offline
mode, and then capable to continue learning new knowledge
from newly available data (namely IO-EGART model).

Therefore, the objectives of this paper are four-fold that
derive solutions for the following scenario:

(i) To propose an extended ART-based model for solving
regression task.

(ii) To apply the Ordering Algorithm that originally
designed for FAM to an Extended ART-based model.

(iii) To propose a strategy that determine number of cluster
center of Ordering Algorithm for solving regression
task.

(iv) To demonstrate the extended ART-based model that
previously learned in batch mode (i.e., learning of a
set of data samples, and the data presentation is deter-
mined Ordering Algorithm), can continuing perform-
ing online learning for newly available data samples.

The proposed EGART model with three operating strate-
gies are tested with five UCI benchmark datasets and two
other applications of fire safety engineering and the results
are benchmarked against other approaches reported in the
literature. The results suggested that all three operating strate-
gies of EGART models achieve similar (if not superior) per-
formance as of other approaches.

The organization of this paper is as follows. Section 2
presents the background of this research. Section 3 presents
the detailed algorithms of the EGART model as well as the
three different operating strategies. The experimental studies
and results comparison are given in Section 4. A summary of
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this paper and suggestions for further work are presented in
Section 5.

II. BACKGROUND
Over the last two decades, neural networks and learning
systems have been developed for solving pattern classifi-
cation problems in various domains. In power engineering,
some successful applications using neural network and learn-
ing systems have been reported. These include in power
load or price forecasting [11], condition monitoring of cir-
culating water systems in power generation plant [12], [13],
and prediction of harmful gas emission in power genera-
tion plant [14]. In image processing and pattern recognition,
neural network and learning systems have been success-
fully implemented in real world applications such as deep
learning for face verification [15], multi-task learning for
blind source separation [16], patch-based low rank tensor
decomposition algorithm for hyperspectral image compres-
sion and reconstruction [17], unsupervised deep learning of
stacked convolutional denoising auto-encoder for feature
representation [18]. In high speed railway systems, success-
ful application of neural network and learning systems have
been reported. These include modelling and parallel con-
trol systems [19], descriptor estimator-based incipient fault
estimation [20], and deep neural network for mechanical fault
diagnosis [21].

In the literature, online or sequential learning is an appeal-
ing method to undertake the limitations associated with batch
learning. In a dynamic environment, the ability of a learning
system to operate in real time while being able to act and react
autonomously is important. It has to adjust its own controlling
parameters, and even its structure depending on the needs of
the dynamic environment. A number of networks with such
properties include the Resource Allocation Network (RAN)
[22] and its extensions, e.g. Resource Allocation Network
with Extended Kalman Filter (RANEKF) [23], Minimum
Resource Allocation Network (MRAN) [10], Growing and
Pruning RBF (GAPRBF) [24], and Generalized Growing,
Pruning RBF (GGAPRBF) [25] and single and two hidden
layer(s) Feedforward network [26]. In addition, the Online
Sequential Extreme Learning Machine (OSELM) [27] uses
the sequential least-squares method to minimize the error
function. OSELMworkswith both additive-sigmoid andRBF
hidden neurons. For the additive-sigmoid hidden neurons,
the weights and biases for the input are generated randomly
and they do not change while in the training phase; the
weights for the output are determined analytically. Similarly,
for OSELM with the RBF hidden neurons, the input weights,
which are centers and widths of the RBF functions, are
randomly generated, and the output weights are analytically
determined.

The incremental non-iterative learningmethod in [28] con-
stitutes an online and hyperparameter-free learning for the
one-layer feedforward neural network without the concept
of hidden layers. The principle is to use a square loss
function to measure the error, and it has good competency

in handling large scale real time learning problems [29].
Oscar et al. [30] presented an online learning algorithm for
a two-layer feedforward neural network. The algorithm con-
sists of a factor that puts the errors committed into numbers
for each data sample. Such a method is effective for use
both static and dynamic environments. A more recent work
in Wang et al. [31] suggested an online reliability time series
predictionmethod by combining a Convolutional Neural Net-
work (CNN) and the Long Short Term Memory (LSTM).
The proposed method was used to analyze the historical
response time series and throughput time series of the service-
oriented architecture services, and predict the reliability of
the service system operation in the near future. Another
interesting work on a new spiking neural network architecture
also has the online learning capability [32]. It uses multiple
learning strategies to learn by itself each input spike pattern.
The learning algorithm is able to add a neuron, update the
related network parameters, or delete a spike pattern. The
algorithm information in the network from both local and
global sources, and it performs better than batch-learning
methods.

On the other hand, a family of online learning neural net-
works based on the Adaptive Resonance Theory (ART) has
been developed for solving both clustering and classification
problems [9], [33], [34]. While ART models are generally
useful for solving classification tasks, there are some ART
variants that are capable of solving both classification and
regression problems [10], [35], [36], along with online learn-
ing capability. The following are the properties of online
learning as derived from [34]. Similar online learning prop-
erties are also given in [7], [34].
Property–1: At any time of the training cycle, only the

latest sample is needed for learning instead of all previous
training samples.
Property–2: During the training cycle, a training sample

is required to be presented only once for learning purposes.
No re-iteration through the training set is necessary.
Property–3: Ability to perform incremental learning of

new knowledge without corrupting the existing knowledge
base.
Property–4: Ability to make a prediction if a new, unla-

beled sample is arrived at any time during the training cycle.
Fuzzy ARTMAP (FAM) [35] is one of the most popular

ART-based models. It has been pointed out that the perfor-
mance of FAM is affected by the presentation sequence of
training samples [35]. One of the solutions is to train several
networks, each of which is given a different presentation
sequence of training data, and then to combine the prediction
results. However, such an approach demands an overly high
computational load. In [10], an ordering algorithm that is
based on the Max-Min clustering method to determine a
fixed presentation sequence of training data to FAM has been
proposed.

Later, GART [36] is developed that incorporates a modi-
fied Gaussian Adaptive Resonance Theory (GA) [34] which
is a learning model based on a hybrid Gaussian classifier and
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ART [33], [9], with the Generalized Regression Neural Net-
work (GRNN) [37] in which it is a memory-based supervised
learning neural network. GA learning aims to compress the
new training samples into one of the existing categories that
are based on PDFs and the Bayesian theorem. In the event
where every existing category is not able to accommodate
a new sample, a new category is created to encode the new
sample. On the other hand, the GRNN learning process is
conducted online. It only needs to perform a one-pass learn-
ing of the training data, and its learning process is instanta-
neous. Every hidden neuron in the GRNN function operates
as a kernel. Upon receiving a new input sample, the kernels
are used to calculate the probability density function (PDF).
In the event that a new input sample is one that needs to be
learned, the GRNN creates a new neuron to represent the
new sample. This hybrid model is an improved version of
GRNN, and at the same time preserves the online learning
properties of ART. It is capable of conducting unsupervised
clustering for the compression of the training data samples
into a few hidden categories (or hidden node). And then
decision function is constituted based on an enhanced Gener-
alized Regression Neural Network (GRNN) for prediction.
GART not only handles classification task, it manages to
perform regression problem with the capability of online
learning.

FIGURE 1. The GRNN structure.

Fig. 1 shows the GRNN structure. It consists of an input
layer, a pattern layer, a summation layer, and an output

FIGURE 2. The GA structure.

layer. All the training samples are stored in the pattern layer.
Fig. 2 shows the general GA structure. Category-j of GA
uses M -dimensional vectors µj and σ j to represent its cen-
ter (mean) and its standard deviation, respectively. A scalar
nj is used as its count of the number of training samples
categorized into category-j. During the training phase, anM -
dimension vector Ak (the k th-training sample) is presented to
GA for unsupervised learning.

In this paper, instead of using the ordering algorithm
with ART-based models for solving classification problems,
we propose a new Enhanced Generalized Adaptive Reso-
nance Theory (EGART)-basedmodel, based on a hybrid ART
and the General Regression Neural Network (GRNN) [37],
coupled a simplified ordering algorithm for tackling regres-
sion problems.

III. THE PROPOSED ENHANCED GENERALIZED ADAPTIVE
RESONANCE THEORY (EGART) AND THE THREE
OPERATING STRATEGIES
This section presents the detailed algorithms of the pro-
posed EGART model. Based on the foundation of GART
in [36], we further enhance it with four main improve-
ments to become EGART, in order to increase the robust-
ness of the resulting model in handling regression problems.
Firstly, the Laplacian loss function is used in place of the
ε-insensitive loss function. Secondly, instead of a general
exponential kernel function, a Laplacian likelihood function
(Equation 4) is instead adopted. Thirdly, a new definition
of the vigilance function during the competition of ART
is provided. Fourthly, after the ART competition, a match
tracking mechanism is added.

There are three operating strategies of the proposed model,
i.e., (A) Enhanced GART with online learning (hereafter
denoted as EGART); (B) EGART with data preprocessing by
ordering algorithm for the best order (hereafter denoted as
Ordered-EGART); (C) Initial training by chuck of data sam-
ples usingOrdered-EGART followed by handling of new data
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FIGURE 3. The Architecture of EGART neural network for training and prediction.

samples by online learning with EGART (hereafter denoted
as IO-EGART).

A. EGART
Fig. 3 shows the EGART structure for training and prediction,
while the core steps of the EGART learning algorithm are
described, as follows.
Training samples – Let the training samples presented to

ART-a and ART-b be {(A1, B1), (A2, B2), . . . , (Ak, Bk)},
where Ak ∈ RM and Bk ∈ R1 are the input vector and kernel
label of the k th training sample, respectively. In the following
discussion, the equations and variables are based on the ART-
a module with input sample Ak. The equations and variables
of ART-b with input kernel label Bk are the same, but with
subscript/superscript of ‘‘b’’ instead of ‘‘a’’.
Competition – The input sample is presented to ART-a,

with its kernel label to ART-b, for computation of the choice
and match functions. The choice and match functions are
defined based on the Bayesian theorem. The Bayesian poste-
rior probability for category-j of ART-a to input sample Ak is

P(j|Ak ) =
P(Ak |j)P(j)
P(Ak )

(1)

The prior probability is

P(j) =
naj∑N
i=1 n

a
i

(2)

and

P(Ak ) =
∑N

i=1
P(Ak |i)P(i) (3)

where P(Ak |j) is a Laplacian likelihood function that is
used to measure the degree of similarity between Ak and
category-j, and is defined as

P(Ak |j) =
1

2M
∏M

i=1 σ
a
ji

exp

(
−

∑M

i=1

1
σ aji

∣∣∣µaji−Aki∣∣∣
)

(4)

whereµa
j , σ

a
j , and n

a
j are the center, standard deviation, count

of category -j of ART-a, respectively. While GA [34] uses a
standard quadratic loss function, EGART uses the Laplacian
loss function. In the presence of noisy data, outliers have a
high chance of presence in the quadratic loss function, which
causes inaccurate recognition [38].

To find the ‘‘first round winner’’ of the competition, two
measures are needed, i.e., the choice function of ART-a as
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defined in (1) and the match function, as follows

V (Ak , j) =
(
2M

∏M

i=1
σ aji

)
P(Ak |j) (5)

The first-round winner of ART-a, which is noted as J ,
is selected based on the choice function with the highest
value. Its match function must be larger than or equal to the
vigilance parameter, i.e.,

J = argmax
j
(P(j|Ak )),

subject to V (Ak , J ) ≥ ρa (6)

where ρa is a pre-defined vigilance parameter between
0 and 1.
Match Tracking – The winner needs to be verified before

it can be declared as the ‘‘final winner’’, which is carried out
with the map-field vigilance test, i.e.,

V (Bk , J ) ≥ ρb (7)

where ρb is a pre-defined vigilance parameter between
0 and 1. If the conditions set in (7) is fulfilled, category-J is
declared as the final winner, and is ready for weight adapta-
tion, i.e., learning. If not, a search based on (6) from the exist-
ing categories for a better candidate for the first-round winner
is conducted, i.e., the match-tracking mechanism is triggered.
During match tracking, the initial first-round winner, which
has failed to fulfill (7), is deactivated temporarily by setting
its choice function to be a negative value, i.e.,P(j|Ak ) = −1,
and ρa is temporarily increased to ρa = V (Ak , J ).
Learning – Learning involves the adjustment of the center,

standard deviation, and counts of the final winner by using
the following equations.

naJ ← naJ + 1 (8a)

µaJ ←

(
1−

1
naJ

)
µa
J +

Ak

naJ
(8b)

σ aJ ←

(
1−

1
naJ

)
σ aJ +

1
naJ

∣∣µa
J − Ak

∣∣ (8c)

Addition of a new category– For the case where none of the
existing categories that fulfills (6) is able to pass themap-field
vigilance test (7), a new category is created to represent the
new sample, i.e.,

N ← N + 1 (9a)

µa
N = Ak (9b)

σ aN = γa (9c)

naN = 1 (9d)

where γa is a pre-defined initial standard deviation.
During the prediction cycle, a, new, unlabeled sample,

x, is firstly presented to ART-a. The prediction of EGART
is obtained by a distributed posterior probability estimation
based on the GRNN algorithm, as follows,

f (x) =

∑N
j=1

µbj

σ bj
P(j|x)∑N

j=1
1
σ bj
P(j|x)

(10)

B. ORDERED-EGART
The applicability and performance of ART-based neural net-
work has been reported [9], [33], [34]. As an online learning
algorithm, the performance maybe disturbed by the sequence
or the order of training data presentation [10]. For managing
this situation, an Ordering Algorithm for FAM has been
proposed [10]. Instead of random order in online learning,
ordering algorithm a preprocessing method to compute the
best order of training data presentation to the collected data
samples. However, such algorithm required a set of many
data samples to be collected and involved preprocessing. The
ordering algorithm is a type of min-max clustering algorithm
that is used to find the presentation order of training data
for FAM [10]. This algorithm requires a pre-defined number
of cluster centers, which poses an obstacle to satisfying the
online learning properties. One way to solve this problem is
to define this number to be equal to one larger than the num-
ber of classes [10]. Therefore, when FAM employs ordering
algorithm, it will become offline learning.

Instead of solving classification task using FAM with
ordering algorithm, this paper proposes a new EGARTmodel
with implementation of ordering algorithm -to solve data
regression problem. At the same time, we also propose a
new ordering strategy for regression, i.e., the ordering algo-
rithm is simplified to only one cluster center and applied
in data regression task since there is no class information
involved in regression. For training of EGART with ordering
algorithm (Ordered-EGART), as there is only one cluster
center hence the original three-stage procedure of the order-
ing algorithm [10] is now simplified to only two stages, as
follows:
Stage 1–Identify the cluster center (the first training sam-

ple in the sequence): For each of the M -dimension input
vectors,Ak , find the respective complement-coded [33] vec-
tor, Ik ∈ R2M i.e.,

Ik = (Ak ,Ac
k ) = (Ak , 1− Ak )

≡ (Ak,1, ..,Ak,M , 1− Ak,1, . . . , 1− Ak,M )

≡ (Ak,1, . . . ,Ak,M ,Ak,M+1, . . . ,Ak,2M ) (11)

The k th input vector that has the largest value according to
Equation (12) is selected as the first sample in the presenta-
tion sequence.

K = argmax
k

(∑M

i=1

∣∣Ak,M+i − Ak,i∣∣) (12)

Stage 2–The presentation sequence of the remaining input
vectors is determined based on the minimum Euclidean dis-
tance from the input vectors to the cluster center.

Once the order of presentation of data is decided by order-
ing algorithm, the ordered data is send to EGART for training.
Under this scheme, it is referred to as Ordered-EGART as
shown in Fig. 4.

C. IO-EGART
In most of the real world applications with nonstationary data
samples, a set of training input and respective targeted output
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FIGURE 4. Training of Ordered-EGART. The inputs of Ordered-GART are the training input and respective target output (A, B).
The outputs are weights of trained Ordered-EGART.

FIGURE 5. Training of IO-EGART. The inputs are the collected training input and respective target output (A, B) for
Ordered-EGART, and newly available inputs and respective target output (A’, B’) for EGART. The outputs are weights of trained
IO-EGART.

(A, B) may be available before training of a EGART. In this
scenario, ordering algorithm is applied to the set of available
training data samples before the training of EGART (i.e.,
Ordered-EGART) for best performance. As this is a nonsta-
tionary application, after the training of Ordered-EGART is
completed, more new training data (A’, B’) may be avail-
able since then. In order to ensure the trained EGART (by
Ordered-EGART) can continue to learn new training data,
the online learning algorithm can be applied to the trained
EGART that has been trained by Ordered-EGART strategy.
This operating strategy is thereby named as Initial-Ordered-
EGART (IO-EGART) as shown in Fig. 5.

IV. EXPERIMENTS
Three versions of EGART are evaluated in this paper.
Firstly, EGART is applied with no pre-collected training
data. In other words, EGART is expected to learn from the
very first training sample. Secondly, the simplified ordering
algorithm is combined with EGART (Ordered-EGART). For
this model, a collection of training samples is available,
and the problem undertaken is a stationary one. Note that

by using the simplified ordering algorithm to determine the
presentation sequence of training data, Ordered-EGART vio-
lates Property–1 of online learning. The advantage is that
Ordered-EGART is expected to exhibit a lower error rate and
a smaller network size in line with the theory advocated by
ordering algorithm [26] as compared with those of EGART.
Another advantage ensues by using the simplified ordering
algorithm is that the training of the Ordered-EGART will
become more straightforward, thus resulting in shorter train-
ing time. Thirdly, the concept of an ‘‘initial training’’ for
EGART with the simplified ordering algorithm is proposed
(IO-EGART). For this model, it is assumed that some data
samples are available for training, and the simplified ordering
algorithm is used to determine the presentation sequence of
these data samples. After the initial training, the trained IO-
EGART model is ready to perform online learning. This
means that the simplified ordering algorithm is not used
to process subsequent new data samples that are available
after the initial training. Note that Ordered-EGART can be
extended to be IO-EGART if the new data samples are pre-
sented one-by-one after the initial training without further
ordered.
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In this paper, all three EGART-based models (i.e., EGART,
Ordered-EGART, IO-EGART) are evaluated using five
regression data sets from various application domains. The
Ordered-EGART is expected to produce the best prediction
accuracy rates with the simplest network structures; but with-
out the properties of online learning. On the other hand,
EGART is a fully online learning model, but may perform
with lower prediction accuracy rates with more complex
network structures. Finally, IO-EGART is expected to be a
compromise between EGART and Ordered-EGART, which
preserves the online learning properties.

Seven regression data sets are used for evaluation, i.e., SinE
(artificial mapping data), Delta Ailerons (aircraft control),
Boston Housing (economy), Sante-Fe Series-E (Astrophys-
ical data), Abalone (Physical measurement), Thermal Inter-
face Location (fire safety engineering) and Fire Evacuation
Time (Building evacuation exercise). The same training data
samples are used for training the three EGART-based mod-
els, the difference lies in the training operating strategies,
in which EGART will handle all training samples online,
Ordered-EGART will consider all training samples offline
with ordering algorithm in place, and IO-EGART will take
half of the training samples for preprocessing with ordering
algorithm while the remaining half of the training samples
will be presented and learned one by one online. Besides that,
the test procedure is also based on the same set of test data
samples. The Root Mean Square Error (RMSE) is used as
the performance indicator. The training and test cycles are
repeated 50 times. The average number of categories (nodes)
created over 50 runs is reported. The final error rate is
obtained by using the bootstrap method [30], [31], i.e., the
bootstrap mean with 1,000 re-samplings.

Bootstrapping is a technique that roughly calculate the
change of a certain criterion statistically in certain situations
whereby the concealed sampling distribution of the criterion
is not known and/or rather demanding to estimate. It is handy
for computing the statistics of population parameters in situa-
tions with small or limited data samples [30]. The principles
of bootstrapping for the calculation of the mean of a set of
data samples is as following steps:

1. A data set is first acquired. Assuming that data set
X = x1, . . . , xn is acquired, and n is the sample size
that is examined from a totally undefined distribution
of probability F , ψ is the average of all the values
in the data set X and is the total number of times
bootstrapping is repeated.

2. Select a random sample of n data points with replace-
ments from the data set X. This new set of data, X∗,
is the bootstrap sample.

3. The mean of the bootstrap sampleX∗,ψ∗1 is calculated.
Re-sample the data by repeating steps 2 to 3 N times to
get the bootstrap estimates of ψ∗1 , ψ

∗

2 , ψ
∗

3 . . . , ψ
∗
N .

For all experiments, parameters ρa and γb were set to their
default values, i.e., 0 and 1, respectively. Parameter γa was
obtained after several trials, and parameter ρb was varied from

TABLE 1. RMSE and number of categories (in parentheses) for the sine
problem.

TABLE 2. Performance comparison of the sine problem [24], [36].

0.5 to 0.95 (while other parameters fixed) in order to evaluate
the effectiveness (network size and error rate) of the three
EGART-based models.

A. SINE
In this experiment, the three EGART-based models were used
to estimate a fast changing continuous function known as
‘‘SinE’’ [24], [36], i.e.,

y = 0.8 exp(−0.2x) sin(10x) (13)

A total of 50 runs were carried out in total, each of which
contained 3,000 training samples. The 3,000 training samples
were composed of randomly generated x values between
0 and 10, with their respective y values. The test samples
were produced by utilizing similar procedures, and a total
of 1,500 samples were created.

Table 1 shows the results of three EGART-basedmodels for
various values of ρb. Comparing with EGART, IO-EGART
and Ordered-EGART created smaller network sizes (from
2.52% to 24.98%, and 13.67% to 51.84%, for various values
of ρb) and smaller error rates (from 29.11% to 53.85%,
and 42.86% to 62.01% for various values of ρb). Table 2
shows the best results and standard deviations of the three
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TABLE 3. RMSE and number of categories (in parentheses) for the delta
ailerons problem.

EGART-based models, as well as the results of other meth-
ods in [24], [36]. All three EGART-based models achieved
smaller error rates as compared with those in [24], [36].
Their error rates reduced by 55.76 % (EGART), 70.63%
(IO-EGART), and 74.72% (Ordered-EGART) than that of
GAPRBF (the best in [24], [36]).

B. DELTA AILERONS
This set of data was concerned with the control of ailerons
on an F16 aircraft [39]. A total of 7,192 samples were avail-
able. Each pair of data sample consisted of five continuous
variables (roll rate, pitch rate, current pitch, current roll, and
difference of roll rate) and its respective label (control action).

According to [26], [39]–[41], 3,000 of the 7,192 samples
were used as the training set, and the remaining as the test
set. The input and output variables were set between 0 and 1,
while the RMSE was derived based on the same range.

Table 3 shows the results (RMSE and number of cate-
gories) of the three EGART-based models for various ρb.
Again, IO-EGART and Ordered-EGART established smaller
network sizes (from 1.88% to 12.88% and 10.62% to 38.66
% for various ρb) and produced slightly lower error rates than
those of EGART. Table 4 shows the best results and standard
deviations of three EGART-based models. All three EGART
models achieved lower error rates as compared with those
reported in [26], [39]–[41].

C. BOSTON HOUSING
This data set was concerned with predicting the housing
values in Boston. There were 506 samples. Each sample
consisted of 13 input attributes (12 of which are contin-
uous and one binary attribute), and one continuous target
output. According to [24], 481 of the samples were selected
randomly as the training set, and the remaining as the test
set. Again, all input and output variables were normalised

TABLE 4. Performance comparison of the delta ailerons problem [26],
[40]–[41].

TABLE 5. RMSE and number of categories (in parentheses) for the boston
housing problem.

between 0 and 1, while the RMSE was derived based on the
same range.

Table 5 below depicts the results (RMSE and number
of categories) of three EGART-based models for various
ρb. Comparing with EGART, the best improvements of
Ordered-EGART are 15.15% (network size) and 9.32% (pre-
diction error rate). Table 6 shows the best results and standard
deviations of three EGART-based models, and a comparison
with those of other methods in [24]. All three EGART-based
models achieved significantly better rates of errors, for exam-
ple, the rate of errors for Ordered-EGART was 26.77%
and 71.07% lower as compared with those of MRAN and
RAN [24], respectively.

D. SANTA-FE SERIES-E
This problem was concerned with the Sante-Fe Time Series
Competition, specifically the Series-E [43]. The astrophys-
ical data (univariate time series data with only one vari-
able) was noisy, discontinuous, and nonlinear. In accordance
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TABLE 6. Performance comparison of the boston housing problem.

TABLE 7. RMSE and number of categories (in parentheses) for the
Santa-Fe Series-E problem.

with [42], [44], a total of 2048 of the samples were taken
into account, each with five inputs and one output, i.e., xt =
f (xt−1, xt−2, xt−3, xt−4, xt−5), with xt being the intensity of
the star at time, t . The first 90% of the data samples were used
as the training set, and the remaining were used as the test set.

Table 7 shows the results (MSE and number of categories)
of three EGART-based models for various ρb. Comparing
with EGART, the best improvements of Ordered-EGART are
24.80 % (network size) and 1.86% (prediction error rate).
Table 8 shows the best results of three EGART-based models,
and a comparison with those of other methods in [42], [44].
The error rates of three EGART-basedmodels are slightly bet-
ter than that of GRNNFA [34], but better than those reported
in [44].

E. ABALONE
The abalone data set [26] consists of 4177 samples for pre-
dicting the age of abalone based on physical measurements.
Each samples comprises eight continuous input attributes
(physical measurements) and one integer output (age of
abalone). In each run, 2784 training samples and 1393 testing

TABLE 8. Performance comparison of the Santa-Fe Series-E problem.

TABLE 9. RMSE and number of categories (in parentheses) for the
abalone problem.

samples were randomly selected from the data set. Table 9
shows the results (RMSE and number of categories) of three
EGART-based models for various values of ρb. For this
data set, comparing with EGART, the best improvements of
Ordered-EGART have been improved by 20.35 % (network
size) and 2.60% (prediction error rate).

Table 10 shows the best results of three EGART-based
models, and a comparison with Support Vector Regression
(SVR), Least Square Support Vector Regression (LSSVR),
Extreme Learning Machine (ELM) and Online Sequential
Extreme Learning Machine (OSELM). The best model with
the smallest error is LSSVM, then all three EGART-based
model has smaller errors than SVM, ELM and OSELM.

F. THERMAL INTERFACE HEIGHT
The dividing line between cold air and hot gas layers of a
compartment fire is called the thermal interface. This height
of the interface is affected mainly by the mass of the air
that is entraining into the plume of fire. A set of full scale
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TABLE 10. Performance comparison of abalone problem.

steady-state experiments of flow induced in a single compart-
ment firewas reported in [46], and 55 samples were collected.
Each sample consisted of six attributes, i.e., size (height and
width) of the sill of the opening, location of the fire bed,
strength of the fire source, and ambient temperature, as well
as its respective label (i.e. thermal interface height).

In general, a thermal interface’s height can be approxi-
mated based on the profile of the room temperature along
the room height. The thermal interface’s height is defined
as the height of the profile with the largest change of room
temperature. However, due to the effects of mixing and dif-
fusion of fluids, the height of the thermal interface cannot
be stably measured. It is possible for the thermal interface
heights to be bound between an error envelope of ±8% to
±50% from the estimated height [46]. Therefore, for each
sample, an error value was included (in addition to the label)
to form the envelope of thermal interface height.

Since the set of data contained only 55 samples, the leave-
one-out (LOO) method was utilized. In each LOO run, 54 of
the 55 samples were used as the training set and the remain-
ing one was used as the testing set. Note that other than
RMSE and number of categories, the prediction accuracy
(sum of predictions within the acceptable envelope range)
was included.

Table 11 shows the results (RMSE, accuracy rate, and
number of categories) of the three EGART-based models for
various values of ρb. Fig. 4 shows the prediction of Ordered-
EGART as compared with the envelope range of thermal
interface heights.

Table 12 shows the best results of EGART and
Ordered-EGART as compared with those of [47], Extreme
Learning Machine (ELM) [40] and Online Sequential
Extreme Learning Machine [27]. The ELM is an offline
learning algorithm that similar to Ordered-EGART. On one
hand, OSELM is an extension of ELM that requires some
data samples for initial training before online learning which
can be deemed having the similar learning strategy as of
IO-EGART. The performances of the models (based on the
prediction within the range envelope and prediction fallen out
of range envelope) are recorded in terms of accuracy. The
results appear consistent, i.e., 94.55% for offline algorithms

TABLE 11. The record of RMSE, percentage of accuracy, and number of
categories for the thermal height problem.

TABLE 12. The performance comparison of the thermal interface height
problem.

that encompass Ordered-EGART, ELM and GRNNFA, while
89.09% when they are trained online that includes EGART,
IO-EGART, and OSELM) The result is rather close because
the size of data samples of this dataset is rather small and
Leave One Out (LOO) strategy is used.

Although Ordered-EGART and GRNNFA achieved the
same accuracy rate (94.55%), Ordered-EGARTused only one
LOO training cycle, since the simplified ordering algorithm
was used to ascertain the presentation sequence of training
samples. However, GRNNFA applied 20 LOO cycles [37]
with different presentation sequences of training samples
before obtaining the final average results, as in Table 10.
Therefore, Ordered-EGART has the advantage of simplicity
and of a faster processing time (with only one LOO cycle).

G. FIRE EVACUATION TIME
In this experiment, the EGARTmodels were applied to build-
ing evacuation. The study focused on predicting the time
taken for people to evacuate in the event of fire emergency in
a typical karaoke center in Hong Kong. The evacuation time
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FIGURE 6. Prediction of Ordered-EGART, IO-EGART and EGART for the thermal interface height problem (sorted ascending). For
results of Ordered-EGART, out of 55 samples, 52 (or 94.55%) have been successfully predicted to be within the envelope.

FIGURE 7. Typical layout of a Karaoke center in Hong Kong.

is distinctly linked to normal human behaviors like the route
choice and human behavioral responses to the fire alarm.
Fig.7 depicts a common floor plan or layout of a typical
karaoke center in Hong Kong.

In a standard karaoke center in Hong Kong, a straight cor-
ridor to which the rooms are connected is directly connected
to a lobby area with a clear exit. It is intriguing to perform
investigations on the relationship between the variables of the
layout of the karaoke center, and the evacuation time. The
evacuation time is defined as the time taken for everyone

to evacuate the center starting from the time the fire alarm
sounds.

For this case study, there were three layout parameters
or variables, i.e., the number of rooms (ranging from 4 to
22 rooms), width of the corridor (ranging from 1.05 meters
to 1.4 meters), and the area of the lobby (ranging from 15
square-meters to 35 square-meters). The variables were var-
ied in order to examine their effects on the evacuation time.
This evacuation time was determined by using the Spatial
Grid Evacuation Model [48]. There were a total of 750 data
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TABLE 13. RMSE and number of categories (in parentheses) for the fire
evacuation time problem.

TABLE 14. The performance comparison for the fire evacuation time
problem.

samples for experimentation, with 550 training samples and
200 test samples.

Table 13 shows the results (RMSE and number of cat-
egories) of three EGART-based models for various values
of ρb. Comparing with EGART, the best improvements of
Ordered-EGART are 18.30 % (network size) and 3.27%
(prediction error rate). Table 14 depicts the best results of
three EGART-based models, and a comparison with ELM,
OSELM, and GRNN. The Ordered-EGART achieved small-
est error rates as compared with other models.

V. SUMMARY
In this paper, an enhanced GART neural network, known as
EGART,with a simplified ordering algorithm for determining
the presentation sequence of training data has been pro-
posed. Three operating strategies of EGART, i.e. fully online
(EGART), semi-online (IO-EGART), and off-line (Ordered
EGART) operations, have been suggested. The effectiveness
of the three EGART-based models in tackling regression
problems have been demonstrated using four benchmark
problems (SinE, Delta Ailerons, Boston Housing, and Sante-
Fe Series-E). In additional, the three EGART-based models
have been applied to fire safety engineering, i.e., to prediction
of the thermal interface height in single compartment fire and

fire evacuation times. All the experimental results have been
quantified by the bootstrap technique. The results positively
demonstrate that EGART, IO-EGART, and Ordered-EGART
perform better than other machine learning methods in tack-
ling regression problems.

Further research is focused on improving the EGART-based
models. A pruning algorithm for the EGART-based models is
needed to reduce the network complexity in the case when too
many redundant categories are generated during the training
cycle. On the other hand, Ordered-EGART can be used
for designing an ensemble of neural networks for handling
regression problems. The training samples can be divided
into several blocks, and the simplified ordering algorithm is
applied before presenting the samples to Ordered-EGART for
learning. A cooperative multiple Ordered-EGART regression
model can also be investigated to provide better solutions
when a single estimator fails to solve the underlying problem.
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