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ABSTRACT Current benchtop x-ray fluorescence computed tomography (XFCT) devices, which use x-ray
tubes to stimulate x-ray fluorescence (XRF) photons, suffer from the contamination of Compton scatter back-
ground produced by the polychromatic incident beam. The conventional maximum-likelihood expectation-
maximization (ML-EM) algorithm only considers the noise model of the XRF signal, which results in high
statistical noise in reconstructed images caused by scattered photons. In this study, we proposed a scattering
noise model enhanced EM-TV algorithm for benchtop XFCT image reconstruction in order to reduce the
noise of scatter background and improve the sensitivity of XFCT images. The statistical noise of scattered
photons was considered in the likelihood function and the EM iteration step was modified correspondingly
to suppress the statistical noise caused by Compton scattered photons. The robustness of the EM iteration
was improved by applying the reweighted total variation (TV) norm as the penalty function. Numerical
simulations and imaging experiments of a PMMA phantom consisting of gadolinium (Gd) solutions were
performed to validate the proposed algorithm. The phantom was irradiated by a cone-beam polychromatic
source and the projection was recorded by a linear-array photon counting detector. For comparison, the
XFCT images of Gd were reconstructed using different algorithms. Results indicate that compared with the
conventional ML-EM algorithm, the proposed algorithm can obtain XFCT images with lower background
noise and higher contrast, which may further improve the sensitivity and image performance of current
benchtop XFCT systems.

INDEX TERMS Image reconstruction, X-ray scattering, X-ray fluorescence computed tomography.

I. INTRODUCTION
X-ray fluorescence computed tomography (XFCT) is an
element-specific imaging modality which has recently been
proposed for imaging of High-Z elements (e.g. iodine (I),
barium (Ba), gadolinium (Gd) and gold (Au)) in objects.
As the projection data of XFCT is acquired by detecting
the x-ray fluorescent (XRF) photons emitted from the target
element, background tissues will not produce XRF signal,
which results in high sensitivity and contrast of XFCT when
detecting fluorescence materials [1], [2]. Therefore, XFCT
has been considered as a promising approach to obtain the
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distribution of contrast probes (e.g. Gd/Au nanoparticles) in
vivo [3], [4].

XFCT was first performed using synchrotron as the x-ray
source [5], [6]. The synchrotron beam is monochromatic
and linear polarized, which produces XRF signal with high
intensity and low scatter background [7]. However, due to
the limited access of synchrotron, recent studies focus more
on the benchtop XFCT system using conventional x-ray
tubes [8]–[10]. Two main shortcomings of current benchtop
XFCT are the limited detection efficiency and the contami-
nation of XRF signal with Compton scatter background. It is
known that k-shell photoelectric cross section decreases with
the increase of photon energy, which means a conventional
polychromatic x-ray beam stimulates less XRF photons than
a monochromatic beamwith energy equal to the k-edge of the
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target element in same dose rate. In addition, the XRF projec-
tion data could be dominated by Compton scatter background
with continuous spectrum. Although the expectation of scat-
tered photons recorded by the detector can be well estimated,
the statistical noise caused by scatter background is difficult
to remove, which decreases the contrast and sensitivity of
XFCT images.

In addition to the research efforts which are underway to
decrease the scatter background utilizing the optimization of
current benchtop XFCT devices [11]–[13], several studies
are focused on image reconstruction algorithms [14]–[17] in
order to reduce the impact of scattered photons and increase
the image accuracy. Compared to other emission CT modal-
ities (e.g. SPECT), the projection data of XFCT suffers
more from the statistical noise caused by scattered photons.
Traditional maximum-likelihood expectation-maximization
(ML-EM) iterative algorithm [18] based only on noise model
of the target signal is unable to suppress this kind of back-
ground noise effectively. Therefore, a ML approach with
modeling of both XRF photons and scattered photons could
be more appropriate for XFCT reconstruction [17].

In this work, we presented a scattering noise model
enhanced EM-TV algorithm for XFCT image reconstruction
in order to further reduce the statistical noise caused by
Compton scatter background. The statistical noise of scat-
tered photons was considered in the likelihood function and
the systemmatrix was then expended correspondingly so that
the XRF image and the scatter image could be updated in
one iteration step. A reweighted total variation (TV) norm
was applied as the penalty function to enhance the robustness
of the EM iteration. Numerical simulations and phantom
experiments were performed to investigate the reconstruction
effect and accuracy of the proposed algorithm. Results show
that compared to traditional ML-EM algorithm, the proposed
method outperforms in robustness of iteration and suppres-
sion of the background noise caused by scattered photons,
which significantly increases the contrast and sensitivity of
current benchtop XFCT imaging.

II. MATERIALS AND METHODS
A. SYSTEM GEOMETRY
There are two main kinds of design for benchtop XFCT
system. One is based on a single-pixel spectrometer with
a pencil-beam source or a pencil-beam collimator [8], [9].
The other kind of design, which was discussed in this work
(Fig. 1(b)), uses a cone-beam source to stimulate XRF pho-
tons and an array detector with pinhole collimation [19], [20].
As the two design have similar imaging physics, the algo-
rithm presented in this work can be easily adjusted to the
former by just modifying the system matrix.

As shown in Fig. 1(a), the acquisition of XRF signal
consists of two steps. In the first step, the incident photons
enter the object from an arbitrary point A and then stimulate
XRF photons at point B. In the second step, XRF photons

FIGURE 1. (a) Particle transport process of XFCT and (b) geometry of the
benchtop XFCT system discussed in this work.

are recorded by the detector after exiting the object at
point C.
The number of XRF photons emitted from B and recorded

by pixel p is

N (XRF)B→p =

∫
Aug

N (XRF)B→Dd�

=

∫
Aug

∫
∞

0

[
I0 (E) e−

∫ B
A µ(E,l)dlωρ (B) µmpe

× (E,B) e−
∫ C2
B µ(Exrf ,l)dl

]
dEd� (1)

where Aug is the solid angle range covered by pixel p from
pointB, I0 is the intensity of the incident photons at energy E ,
µ is the linear attenuation coefficient along the path, µmpe
is the photoelectric mass absorption coefficient of the fluo-
rescence material, ω is the fluorescence yield and ρ is the
concentration of fluorescence material.

Similar to XRF photons, the number of Compton scattered
photons emitted from B and recorded by pixel p is

N (SC)B→p =

∫
Aug

N (SC)B→Dd�

=

∫
Aug

∫
∞

0

[
I0 (E) e−

∫ B
A µ(E,l)dlµco (E,B) fKN

× (E, θSC (�)) e−
∫ C2
B µ(Esc,l)dl

]
dEd� (2)

where θsc is the scattering angle, µco is the Compton cross
section and fKN is the Klein–Nishina formula:

fKN (E, θ) =
dσ
dθ

= πr20 sinθ
1+ cos2 θ

[1+ α (1− cosθ)]2

×

(
1+

α2 (1− cosθ)2(
1+ cos2 θ

)
[1+ α (1− cosθ)]

)
(3)

where r0 is the classical electron radius and α = E/(m0c2).
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B. SCATTERING NOISE MODEL
ENHANCED EM ALGORITHM
The goal of XFCT image reconstruction is to solve the fol-
lowing linear inverse problem:

P(XRF)i =

n∑
j=1

a(XRF)ij fj (4)

where a(XRF) denotes the system matrix of XRF photons
which is determined by (1), f is the XFCT image to be recon-
structed and P(XRF) is the XRF signal. As current benchtop
XFCT devices use x-ray tubes to stimulate XRF photons,
Compton scattered photons will also be produced by the
polychromatic incident beam, which may contaminate the
XRF signal. Therefore, the XRF signal needs to be extracted
from the raw projection data before image reconstruction.
The essence of the ‘‘scatter correction’’ method is to estimate
the expectation of scattered photons recorded by the target
energy bin. Then P(XRF) can be calculated as

P(XRF)i = P(T )i − P
(S)
i (5)

where P(T ) is the raw projection data collected by the target
energy bin andP(S) is the estimation of scattered photons in
the target bin. In practical applications, P(S) was always esti-
mated using fitted spectrum [8] or nearby energy bins [21].

As the number of XRF photons emitted from each image
pixel has Poisson probability distribution, the well-known
ML-EM iteration algorithm was applied to solve the problem
in most studies. We assume that xij is the count of XRF
photons emitted from image pixel j and recorded by detector
pixel i, then the likelihood function is

L (f , x) =
m∏
i=1

n∏
j=1

e−a
(XRF)
ij fj (xij)a(XRF)ij fj(

xij
)
!

(6)

Therefore, the iteration step of ML-EM algorithm [18] can
be expressed as

f (k+1)j =
f (k)j∑m

i=1 a
(XRF)
ij

m∑
i=1

P(XRF)i∑n
j′=1 a

(XRF)
ij′ f (k)j′

a(XRF)ij (7)

However, the statistical noise caused by scattered photons
is ignored in (6), which may result in more background noise.
According to (2), the particle transport process of Compton
scattered photons is similar to XRF photons, which means
that the scattered photons can be considered as another kind
of ‘‘signal’’. Therefore, we proposed an enhanced EM itera-
tion algorithm based on both XRF and scattered photons in
this work in order to reduce the statistical noise caused by
Compton scatter background.

For the projection data with scatter background, (4) should
be modified to

P(T )i =

n∑
j=1

a(XRF)ij fj +
n∑
j=1

a(SCA)ij sj

P(S)i =

n∑
j=1

a(SCA)ij sj

(8)

where a(SCA) denotes the system matrix of scattered photons
which is determined by (2), s is the distribution of scatter
background to be reconstructed.

We assume that
P(ALL)=

(
P(T )1 ,P(T )2 , · · ·,P(T )n ,P(S)1 ,P(S)2 , · · ·,P(S)n

)T
f (ALL)=(f1, f2, · · ·, fm, s1, s2, · · ·, sm)T

a(ALL)=

[
a(XRF) a(SCA)

0 a(SCA)

] (9)

Then (8) can be rewritten as

P(ALL)i =

2n∑
j=1

a(ALL)ij f (ALL)j (10)

Therefore, the EM step of f (ALL) is

f (ALL)(k+1)j =
f (ALL)(k)j∑2m
i=1 a

(ALL)
ij ij

2m∑
i=1

P(ALL)i∑2n
j′=1 a

(ALL)
ij′ f (ALL)(k)j′

a(ALL)ij

(11)

For XFCT image, the scattering noise model enhanced EM
iteration can be expressed as

f (k+1)j = f (ALL)(k+1)j
1≤j≤n

=
f (k)j∑m

i=1 a
(XRF)
ij ij

×

m∑
i=1

P(T )i∑n
j′=1

(
a(XRF)ij′ f (k)j′ + a

(SCA)
ij′ s(k)j′

)a(XRF)ij

(12)

C. REWEIGHTED TV NORM
Unfortunately, the performance of conventional ML-EM
algorithm in its practical application deteriorates when the
iteration number gets larger so that the iteration has to be
stopped before the ‘‘checkerboard effect’’ shows up [22].
Previous studies indicated that this problem can be overcome
by including a priori information [23]. In order to improve the
robustness of the iteration algorithm, a developed one-step-
late (OSL) method [24] was applied which modifies (12) as

f (k+1)j =

(
1− βU (k)

j

) f (k)j∑m
i=1 a

(XRF)
ij ij

×

m∑
i=1

P(T )i∑n
j′=1

(
a(XRF)ij′ f (k)j′ + a

(SCA)
ij′ s(k)j′

)a(XRF)ij

(13)

where U is the derivative of a penalty function V and β
is the control parameter. In this work, a reweighted TV
norm [25] was applied as the penalty function which can be
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expressed as

U (k)
i,j =

∂

(∑
i,j

√(
fi,j − fi,j+1

)2
+
(
fi,j − fi,+1j

)2)
/∂f (k)i,j√(

f (k)i,j − f
(k)
i,j+1

)2
+

(
f (k)i,j − f

(k)
i+1,j

)2
+ ε

(14)

where ε is a small value preventing the denominator to be
zero.

Finally, the scattering noise model enhanced EM-TV iter-
ation algorithm proposed in this work can be expressed as

f (k+1)j =

(
1− βU (k)

j

)
f (k)j∑m

i=1 a
(XRF)
ij ij

×

m∑
i=1

P(T )i∑n
j′=1

(
a(XRF)ij′ f (k)j′ + a

(SCA)
ij′ s(k)j′

)a(XRF)ij

s(k+1)j =
s(k)j∑m

i=1 a
(SCA)
ij ij

×

m∑
i=1

P(S)i∑n
j′=1 a

(SCA)
ij′ s(k)j′

a(SCA)ij

(15)

III. RESULTS
A set of numerical simulations and experiments performed
under similar conditions were demonstrated in this section.
As shown in Fig. 1(b), the benchtop XFCT device in this
work consists of a conventional x-ray tube to produce incident
x-rays and a linear array photon counting detector with pin-
hole collimation to record XRF signal. Gd (kα ≈ 42.5 keV)
was used as the fluorescence material and the threshold was
set at 35, 40, 45 and 50 keV. As the proportion of scattered
photons record by each energy bin depends on (2) and (3), the
expectation of scattered photons in the target bin (40-45 keV)
was estimated by the count in the nearby bins (35-40 keV
and 45-50 keV) [20]. The materials of the objects in this
work were assumed to be known and the attenuation coeffi-
cients were obtained from National Institute of Standards and
Technology (NIST). All theMATLABprograms about recon-
struction algorithms ran on a desktop computer with Intel(R)
Core(TM) i9-7940X CPU @ 3.10 GHz and 128 GB RAM.
The time cost per iteration was about 0.08 s for ML-EM,
0.17 s for enhanced EM and 0.17 s for enhanced EM-TV.

A. NUMERICAL SIMULATION
Numerical simulations were performed to evaluate the accu-
racy and robustness of the proposed reconstruction algo-
rithm. The phantom used in the simulations was a PMMA
cylinder with Gd insertions (Fig. 2(a)). The spectrum of the
incident beam (150 kVp filtered by 0.5 mm copper (Cu))
was simulated by SpekCalc (Fig. 2(b)) [26]. The XRF signal
was assumed to be acquired by a linear array detector with

FIGURE 2. (a) PMMA phantom inserted with Gd solutions; (b) spectrum
of the incident beam used in simulations. (c) raw projection recorded by
the target bin (40-45 keV); (d) estimation of scattered photons in raw
projection and (e) XRF signal extracted from raw projection by subtracting
the estimation of scatter background.

FIGURE 3. XFCT images reconstructed by different iteration algorithms.
The grayscale of each image is [0 0.7%].

256 pixels and 360 projections were obtained with the dose
of 10 mAs per projection.

For comparison, three iteration algorithms were used to
reconstruct the XFCT image: the conventional ML-EM algo-
rithm, the enhanced EM algorithm and the enhanced EM-TV
algorithm (β = 0.01). The reconstructed XFCT images
with different number of iterations are shown in Fig. 3. The
root mean squared error (RMSE) and contrast to noise ratio
(CNR) of each image are shown in Fig. 4. According to the
results, the conventionalML-EM algorithm tends to converge
faster, which is probably because the XRF signal has already
been extracted from the raw projection data before image
reconstruction (Fig. 2(e)). On the other hand, the statistical
noise caused by scattered photons has not been considered
or suppressed during the iteration, which resulted in more
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FIGURE 4. (a) RMSE of the reconstructed XFCT images using different
iteration algorithms and (b) CNR of XFCT images with the iteration
number of 10000.

FIGURE 5. (a) The experimental XFCT device and (b) the PMMA phantom
used in the experiments.

background noise. It can be seen that the noise caused by scat-
tered photons has been effectively reduced by the enhanced
EM algorithm. However, the image still got noisier with the
increasing of iteration number. This kind of noise caused
by the ill-posed inverse problem could be suppressed by
penalty function (reweighted TV norm in this work) so that
the enhanced EM-TV obtained the reconstructed image with
the lowest noise level and the highest accuracy.

B. PHANTOM EXPERIMENT
The phantom experiments were performed using our exper-
imental XFCT system (Fig. 5(a)) [21]. The phantom used
in the experiments (Fig. 5(b)) was a PMMA cylinder which
is 5 cm in diameter. The phantom was inserted with water
and Gd(NO3)3 solutions (0.1%, 0.2%, 0.3% and 0.4%). The
incident beam was produced by a micro-focus x-ray tube
(150 kV, 0.5 mA, L12161-07, Hamamatsu) and was filtered
with 0.4 mm Cu. The projection data was acquired by a
CdZnTe detector (eV-3500) which has 256 pixels with the
size of each pixel being 0.5 mm × 2 mm. The tungsten
collimator with a rectangular pinhole (0.5×2mm)was placed
between the rotation stage and the detector. 360 projections
were acquired with the scan time of 10 s per projection.

The XFCT images reconstructed by different algorithms
are shown in Fig. 6. The CNR of Gd in each recon-
structed image was calculated and listed in Table 1. It can
be seen that the comparison of reconstructed results was in
agreement with numerical simulations. When using conven-
tional ML-EM algorithm, the regions of Gd insertions were

FIGURE 6. XFCT images reconstructed by different iteration algorithms.
The grayscale of each image is [0 0.6%].

TABLE 1. CNR of Gd solutions using different reconstruction algorithms.

dominated by the statistical noise of the scattered photons
emitted from the whole PMMA phantom. The enhanced EM
algorithm effectively reduced the scatter noise so that eachGd
insertion was clearly visible in the reconstructed image. The
noise caused by the increasing iteration number was further
suppressed by reweighted TV norm and the distribution of
Gd solutions with low concentrations was more reliable in
the XFCT image reconstructed by the enhanced EM-TV
algorithm.

IV. DISCUSSION
As the number of scattered photons in XFCT projection
depends on the incident beam and the size of the whole object,
the XRF signal will be severely interfered by scattered pho-
tons especially at low concentrations of fluorescence probes.
Therefore, compared to the fluctuation of XRF photons,
the statistical noise of scatter background has greater impact
on XFCT images in most cases. The results demonstrated
in this work indicate that the enhanced EM algorithm can
effectively improve the sensitivity of benchtop XFCT system
by reducing the background noise caused by the scattered
photons.

A reweighted TV norm was applied as the penalty function
of the proposed iteration algorithm. According to Zeng’s
study [24], (13) can be rewritten as

f (k+1)j = f (k)j − λ1U
(k)
j − λ2

m∑
i=1

a(XRF)ij wi

×

[∑n

j′=1
a(XRF)ij′ f (k)j′ −

(
P(T )i

−

∑n

j′=1
a(SCA)ij′ s(k)j′

)]
(16)
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where

λ1 =
βf (k)j

m∑
i=1

a(XRF)ij

m∑
i=1

P(T )i a(XRF)ij∑n
j′=1 a

(XRF)
ij′ f (k)j′ +

∑n
j′=1 a

(SCA)
ij′ s(k)j′

λ2 =
f (k)j

m∑
i=1

a(XRF)ij

wi =
1∑n

j′=1 a
(XRF)
ij′ f (k)j′ +

∑n
j′=1 a

(SCA)
ij′ s(k)j′

(17)

Then (13) intends to minimize the following objective
function:

F = V +
1
2

∥∥∥W [
A(XRF)F −

(
P(T ) − S

)]∥∥∥2 (18)

Therefore, the reweighted TV norm in this work can be
considered as the regularization item. It is notice that this
‘‘reweighted norm’’ was usually used as a proxy for the
L0 minimization [27]. But in this work, the function of the
reweighted TV norm was to enhance the robustness of EM
iteration. As shown in Fig. 4(a), the error of the images recon-
structed by conventional EM iteration became larger with the
increase of the iteration number due to the ‘‘checkerboard’’
effect, while the image reconstructed by EM-TV iteration
had the lowest RMSE, which indicates that the accuracy
and robustness of the proposed algorithm was effectively
enhanced by the reweighted TV norm.

Compared to the ML-EM algorithm, the system matrix of
scattered photons a(SCA) was a new parameter added to the
enhanced EM and the ‘‘scatter image’’ was reconstructed and
updated synchronously during the iteration. As the spectrum
and cross section of Compton scattered photons are much
more complex than XRF photons, the calculation of a(SCA)

may not be much accurate. However, the error of the ‘‘scatter
image’’ only influences the scatter noise model and has no
impact on the accuracy of the XFCT image. According to (8),
the accuracy of the XFCT image still depends on the estima-
tion of the ‘‘scatter projection’’ P(S) so that the theoretical
error of the enhanced EM algorithm will not increase by
adding the new parameter a(SCA).
One of the main shortcomings of the proposed algorithm

is that the convergence rate of the enhanced EM iteration is
relatively slower than conventional algorithms. For ML-EM
algorithm, the expectation of scattered photons was already
removed in the projection data. On the other hand, the dis-
tribution of scatter background had to be calculated and
updated during the iteration when using the enhanced EM
algorithm, which may lead to a slower convergence rate.
Further approach to the acceleration of the current iteration
strategy will be investigated and discussed in our future
research.

V. CONCLUSION
A scattering noise model enhanced EM-TV algorithm was
presented in this work. The performance of the proposed
algorithm was validated by numerical simulations and phan-
tom experiments. As the scatter noise model was considered
in the likelihood function, the statistical noise caused by
Compton scattered photons was effectively suppressed. The
robustness of the EM iteration was improved by applying the
reweighted TV norm as the penalty function. Compared with
conventional ML-EM algorithm, the proposed algorithm can
obtain XFCT images with lower background noise and higher
contrast, whichmay further improve the sensitivity and image
performance of current benchtop XFCT systems.
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