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ABSTRACT Tensor-based dimensionality reduction (DR) of hyperspectral images is a promising research
topic. However, patch-based tensorization usually adopts a squared neighborhood with fixed window size,
which may be inaccurate in modeling the local spatial information in a hyperspectral image scene. In this
work, we propose a novel shape-adaptive tensor factorization (SATF) model for dimensionality reduction
and classification of hyperspectral images. Firstly, shape-adaptive patch features are extracted to build
fourth-order tensors. Secondly, multilinear singular value decomposition (MLSVD) is adopted for tensor
factorization and latent features are extracted via mode-i tensor-matrix product. Finally, classification is
conducted by using a sparse multinomial logistic regression (SMLR) model. Experimental results, conducted
with two popular hyperspectral data sets collected over the Indian Pines and the University of Pavia,
respectively, indicate that the proposed method outperforms the other traditional and tensor-based DR
methods.

INDEX TERMS Dimensionality reduction (DR), hyperspectral image (HSI), multilinear singular value

decomposition (MLSVD), shape-adaptive (SA), tensor.

I. INTRODUCTION

Hyperspectral remote sensing sensors are capable of pro-
viding land cover images with unified spectral-spatial infor-
mation, which has been motivating rapid developments for
hyperspectral image (HSI) processing techniques [1], [2].
Among many processing tasks, HSI classification has
attracted plenty of attention in the last decades [3]-[9]. The
curse of dimensionality has posed great challenges for HSI
classification since there is a high correlation between adja-
cent bands and the dimension of spectral features may be too
high for classification purpose [10]. Dimensionality reduc-
tion (DR) methods have been commonly used to address this
issue, and various DR approaches have been proposed in the
literature [11]-[13].

DR aims at finding the intrinsic (or representative) low-
dimensional features (or bands) spanning in the spectral
domain. Traditional popular DR methods are matrix-based,
including principal component analysis (PCA) [14], local
linear embedding (LLE) [15], isometric feature mapping
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(ISOMAP) [16], locality preserving projections (LPP) [17],
linear graph embedding (LGE) [18], linear discriminant anal-
ysis (LDA) and its variants [19], nearest feature line embed-
ding (NFLE) [20], sparse graph embedding (SGE) and its
variants [21], [22], ensemble discriminative local metric
learning (EDLML) [23], spatial-spectral hypergraph discrim-
inant analysis (SSHGDA) [24], simultaneous spectral-spatial
feature selection and extraction algorithm [25], ensemble
manifold regularized sparse low-rank approximation (EMR-
SLRA) algorithm [26], etc. However, vector- or matrix-based
representation destroys the inherent spatial and spectral struc-
ture of HSI which can offer a physical interpretation of how
spatial information and spectral bands contribute to the clas-
sification outcome [27].

Recently, tensor-based representation models are promis-
ing alternatives for dimensionality reduction of HSI [28]-[43].
Those methods can be roughly divided according to their
mathematical formulations as follows.

1) Lower rank tensor approximation, a high-order exten-
sion of PCA, utilizes the global spectral and spa-
tial correlation, respectively, to project HSI into a
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low-rank space. For example, Renard et al. [28], [29]
proposed a lower rank tensor approximation (LRTA)
model which treats HSI as a third-order tensor with
one spectral mode and two spatial modes, and performs
a DR of the spectral mode and a projection onto a
lower-dimensional subspace of the two spatial modes.
Focusing on improving DR performance via spatial
denosing, Bourennane et al. [30] proposed an adaptive
multidimensional Wiener filtering for jointly perform-
ing spatial filtering for denoising and conducting LRTA
for spectral DR. Considering the nonlocal spatial cor-
relation of HSI, An et al. [35] proposed a group-based
tensor model which segments the original 3-D HSI into
blocks, then groups the blocks into clusters, and finally
projects the clusters into low-rank space using LRTA
to obtain a low-dimensionality feature space. Later,
Velasco-Forero and Angulo [32] adopts additive mor-
phological decomposition to build a fourth-order tensor
and applied tensor PCA (TPCA) for DR. Similarly, Ren
et al. [37] extended the traditional PCA to TPCA for
HSI spectral-spatial feature extraction.

2) Patch alignment, represents the spatial information
between local tensor samples and achieves global
optimum. For example, Zhang et al. [31] proposed
a tensor discriminative locality alignment (TDLA)
for HSI spectral-spatial feature extraction and DR.
Gao et al. [34] built a class-aware tensor neighbor-
hood graph and adopted patch alignment for DR.
Liu et al. [38] used the Gabor filter banks to extract
spectral-spatial features and further introducing ¢; and
£> norms into TDLA for DR.

3) Local tensor discriminant analysis, a tensor exten-
sion of local discriminant analysis. For example,
Zhong et al. [33] applied spectral-spatial feature extrac-
tion methods to build third-order tensors and adopted a
local tensor discriminant analysis for DR.

4) Tensor sparse and low-rank graph-based discriminant
analysis, where the information from three perspec-
tives (tensor representation, sparse and low-rank rep-
resentation, and graph theory) is exploited to present
the data structure for HSI. By regarding the hyperspec-
tral data cube as a third-order tensor, Pan et al. [36]
proposed tensor sparse and low-rank graph-based dis-
criminant analysis framework which extracts small
local patches centered at the training samples to main-
tain the structural information, resulting in a more
discriminative graph. Further, considering the limited
labeled samples in real application, An et al. [40] pro-
posed a patch tensor-based sparse and low-rank graph
method where the sparsity and low-rankness proper-
ties are jointly considered to capture the local and
global intrinsic structures. For the objective of jointly
exploiting intrinsic structure information and enhanc-
ing the discriminant ability, An et al. [41] also proposed
a novel tensor-based low-rank graph with multi-
manifold regularization method, where a low-rank
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constraint is employed to preserve the global data
structure while multimanifold information is utilized
to enhance the discriminant ability, and tensor repre-
sentation is used to preserve the spatial neighborhood
information. To exploit the spatial correlations between
pixels in different patches, Deng et al. [42] established a
tensor low-rank discriminant embedding model which
employs the tensor representation to preserve the intrin-
sic geometrical structure, uses low-rank reconstruction
to uncover the potential relationship among the data
points, and combines label information to enhance the
discriminability of features. To better handle the gross
errors (i.e., outliers), Sun et al. [43] proposed a lateral-
slice sparse tensor robust PCA method which assumes
that a third-order hyperspectral tensor has a low-rank
structure, and gross errors or outliers are sparsely scat-
tered in a 2-D space (i.e., lateral-slice) of the tensor,
and DR is performed by formulating a low-rank and
sparse tensor decomposition problem. Zhang et al. [44]
proposed a unified low-rank matrix factorization to
jointly perform the dimensionality reduction and data
clustering for unsupervised HSI classification.

5) Tensor locality preserving projection, a tensor exten-
sion of LPP. For example, Deng et al. [39] used region
covariance descriptor to build third-order tensors and
adopted a tensor locality preserving projection (TLPP)
for DR.

In summary, LRTA model paved the way for tensor-based
DR in this community. Integrating advanced spectral-spatial
feature extraction with LRTA model is the future research
trend. Patch alignment, local tensor discriminant analysis,
and tensor locality preserving projection obtain little attention
recently. However, tensor sparse and low-rank graph-based
DR attracted a lot of attention with the recent great progress
in sparse representation, low-rank representation, and graph
embedding. Although elegant dimensionality reduction and
classification performances have been observed, most of
those methods adopted squared-neighborhood with fixed size
to generate the patch features when building high-order ten-
sors for HSI. Traditional squared-neighborhood with fixed
size can not accurately model the local spatial relationships
among various objects characterized with different size and
shape in real HSI scene.

In this work, for the first time, we propose a novel shape-
adaptive tensor factorization (SATF) model for dimension-
ality reduction and classification of hyperspectral images.
In the method, shape-adaptive patch features are extracted
to build a fourth-order tensor which may be more suitable
for modeling the complex spectral-spatial data structure of
HSI compared to third-order or matrix. Tensor decomposition
is performed via a multilinear singular value decomposi-
tion (MLSVD) model. The low-dimensional latent features
are extracted inspired from the LRTA model by mode-i
tensor-matrix product. A sparse multinomial logistic regres-
sion (SMLR) model is used for the subsequent classifica-
tion. Experimental results demonstrate the good performance
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FIGURE 1. Flowchart of the proposed shape-adaptive tensor factorization
model for dimensionality reduction and classification of hyperspectral
images.

of the proposed method compared to other traditional and
tensor-based dimensionality reduction methods. Note that
our previous study has validated the good performance of
using shape-adaptive-based neighborhood modeling method
for sparse graph embedding based DR of HSI[22]. To the best
of our knowledge, none of previous studies exploited shape-
adaptive window for modeling neighborhood information in
tensor-based DR methods for HSI.

Il. PROPOSED METHOD

Let X = [x1,...,xy] € RV*HxB be a hyperspectral image
data cube with a B-dimensional signal for each pixel x; =
xt,...,xg]%, i € 1,...,N(N = W x H). Let T ¢
ROXDLXxIn be a m-order tensor. Let Y = [y,..., ] €
REXN (K« B) be the latent features extracted from X
with reduced dimension. The proposed method consists of
three major steps: 1) shape-adaptive patch feature extraction
and fourth-order tensorization; 2) multilinear singular value
decomposition for tensor factorization and latent feature
extraction via mode-i tensor-matrix product; 3) classification
by using SMLR. A graphical illustration of the proposed
method is shown in Fig. 1.

A. SHAPE-ADAPTIVE TENSORIZATION

In shape-adaptive method, an anisotropic local polynomial
approximation (LPA)-intersection of confidence intervals
(ICI), termed Anisotropic LPA-ICI, is used to provide mul-
tidirectional sectorial-neighborhood with adaptive size for
each sector surrounding the central pixel [45]. A graphical
illustration of the Anisotropic LPA-ICI method used to build
the shape-adaptive neighborhoods (£2) can be found in the top
of Fig. 1.

A fast implementation of the Anisotropic LPA-ICI method
was adopted with a set of candidate scales H (e.g., {1, 2,
3,4,5,6,7}) for eight directions 6 (45° interval and k =
1,2, ..., 8). First, a set of directional varying-scale estimates
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are obtained by applying directional-LPA convolution kernels
({gn.6, Yner) to a single-band image (i.e., the PCy of HSI),
which is shown as follows

Xpo =X @ gng,. (1)
Then, these estimates are compared according to the ICI rule.
As a result, an adaptive scale h+(Xp, 0r) € H is defined for
each image patch X, (an initial squared window with length
2Hpmax — 1), and the adaptive neighborhood U;(; is finally
obtained as

K
U}: = U SUPPEA+(X,.00).6% - 2

k=1
The shape-adaptive patch features can then be extracted
based on the neighborhood U ;(; built for each pixel. We model
the extracted shape-adaptive patch features as fourth-order
tensors, ie., T € RY*BXN where w x h is the ini-
tial window size of SA. Usually, the initial window size is
(2Hmax — 1) X (2Hmax — 1), and those missing pixels for each
tensor after SA are padded with zeros to uniform the shapes

between different tensors.

B. TENSOR FACTORIZATION AND LATENT

FEATURE EXTRACTION

In the factorization step, only the training samples (a total
of N©) were used to build shape-adaptive tensor 7@ ¢
RWxhxBXN® "and it can be factorized by using multilinear
singular value decomposition (MLSVD) [46] which factor-
izes the tensor as the multilinear tensor-matrix product of a
core tensor S with four factors U

TO 8 x; UD x, UD x3 U x4 UP, 3)

where § € RRIxRaxRsxRy 17() ¢ RIXRi [, ¢ {w h B, N},
and i € {l1,2,3,4}. The symbol “x;” denotes the i-mode
product of tensor T with a matrix U along the mode-i.
Equation (3) is transformed into a nonlinear non-convex
£5-optimization problem which is iteratively solved by trun-
cated higher-order singular value decomposition.

In the feature projection step, the latent features can be
obtained by mode-i tensor-matrix product of test tensor T®) €
RWxAxBXN® ith the four factors U® calculated from (3)

Y =T x; (U 3 (U x5 (U, 4

where ¥ € RRIxR2xR3xN®

The extracted latent features Y are rearranged back into
matrix representations with dimension of K x N ® where
K = R; x Ry x R3. For the objective of dimensionality
reduction, the rank-one term [R; R, R3] is set to [1 1 K].
In this setting, the first two ranks representing the spatial
neighborhood domain are shrunk to one dimension for aggre-
gating the neighborhood information, whereas the third rank
representing the spectral domain is set to K for maintaining
the spectral information. Here, K determines the reduced
dimension.
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C. CLASSIFICATION

In the last stage, the latent features are then embedded into
a sparse multinomial logistic regression (SMLR) [47] model
for training and prediction. We adopt the multinomial logistic
regression via a variable splitting and augmented Lagrangian
(LORSAL) [48] algorithm to optimize the model since it
has yielded efficient and powerful performances for HSI
classification in recent years [22], [49]-[53]. Algorithm 1
summarizes the proposed shape-adaptive tensor factorization
(SATF) model for dimensionality reduction and classification
of hyperspectral images.

Algorithm 1 Shape-adaptive tensor factorization model for
hyperspectral image classification.

1: Input: Training set X © test set X, K, window size
(w x h)

: Output: Y and classification map (CMap)

: Shape-adaptive patch features extraction using (1)-(2).

. Tensorization: 7 and T®.

: Multilinear singular value decomposition using (3).

: Latent feature extraction using (4).

: Classification using SMLR optimized by LORSAL
based on the features Y: CMap = LORSAL(Y)

N N R WN

Ill. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the proposed method by using two
popular hyperspectral data sets ! collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) and the
Reflective Optics Spectrographic Imaging System (ROSIS)
instruments.

A. HYPERSPECTRAL DATA SETS

1) The first hyperspectral image was acquired by the
AVIRIS sensor over the Indian Pines region in North-
western Indiana in 1992. The image size in pixel is
145 x 145, with moderate spatial resolution of 20 m.
The number of data channels in the acquired image
is 220 (with spectral range from 0.4 to 2.5 um).
A total of 200 radiance channels are used in the exper-
iments by removing several noisy and water absorbed
bands. A three-band false color composite image and
the ground-truth map are shown in Fig. 2. A total
of 10366 samples containing 16 classes are available.

2) The second hyperspectral image was acquired by the
ROSIS sensor over the urban area of the University of
Pavia, Italy. The image size in pixel is 610 x 340, with
very high spatial resolution of 1.3 m. The number of
data channels in the acquired image is 103 (with spec-
tral range from 0.43 to 0.86 um). A three-band false
color composite image and the ground-truth map are

1Hyperspectral Remote Sensing Scenes: http://www.ehu.eus/
ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes
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(2) (b)
B Alfalfa [ Grass/Pasture [ Oats 1 Wheat
mm Corn-notill ym Grass/Trees [ Soybeans-notill g Woods
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—1Corn mm Hay-windrowed 1 Soybeans-clean [ Stone-steel towers

FIGURE 2. AVIRIS indian pines data set. (a) False color composite image
(R: 50, G: 27, B: 17). (b) Ground-truth map containing 16 mutually
exclusive land-cover classes.

(a) (b)

B Asphalt [ Trees [ Bitumen
[ Meadows [ | Painted metal sheets [Jjll Self-Blocking Bricks

Gravel Bare soil Il Shadows

FIGURE 3. ROSIS university of pavia data set. (a) False color composite
image (R: 102, G: 56, B: 31). (b) Ground-truth map containing 9 mutually
exclusive land-cover classes.

shown in Fig. 3. A total of 42776 samples containing
9 classes are available.

B. EXPERIMENTAL SETTINGS
The corresponding parameter settings and notations adopted
in our experiments are:

o For SATF, the candidate scales H range from {1, 2},
{1,...,3}, ..., {1,..., 7}, leading to different window

sizeof 3 x 3,5 x5, ..., 13 x 13, and the rank-one term
is setto [1 1 K] where K denotes the reduced number of
dimension.

o For other DR methods, we include principal compo-
nent analysis (PCA) [14], locality preserving projec-
tions (LPP) [17], linear graph embedding (LGE) [18],
multilinear principal component analysis (MPCA) [54],
tensor locality preserving projections (TLPP) [55], and
tensor linear graph embedding (TLGE) [56]. Different
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FIGURE 4. The impact of initial window size on classification accuracy obtained by the proposed method (SATF)
for (a) AVIRIS Indian Pines and (b) ROSIS University of Pavia data sets. Different curves illustrate the overall
accuracies as a function of the number of dimensions under different window size.
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FIGURE 5. The comparison of shape-adaptive and fixed window on classification accuracy obtained by the
proposed method for (a) AVIRIS Indian Pines and (b) ROSIS University of Pavia data sets. Different curves
illustrate the overall accuracies as a function of the number of dimensions under the same window size of

13 x 13.

DR methods have produced the best performance by
carefully optimizing the associate parameters.

o For LORSAL, the regularization parameter is set to
0.001 and the number of iterations is set to 100. The
classification results are quantitatively evaluated by
measuring the overall accuracy (OA), the average accu-
racy (AA), the individual class accuracy, and the Kappa
statistic («). In addition, we also included k-nearest
neighbor (k-NN) [57] and support vector machine
(SVM) [58] for comparison.

« Finally, it should be noted that all the implementations
were carried out using Matlab R2017b in a desktop PC
equipped with an Intel Xeon E3 CPU (at 3.4GHz) and
32 GB of RAM.

C. INFLUENCE OF WINDOW SIZE PARAMETER

In the first experiment, we evaluate the impacts of initial
window size on classification accuracy obtained by the pro-
posed method. Note that the initial window size is set the
same to fixed window size to ensure a fair comparison.
As shown in Fig. 4, the classification accuracy increases as
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the window size also increases in different cases. This is
due to the fact that a larger window size can model more
detailed information to represent the central pixel. The OAs
become stable when the window size is larger than 11 x 11.
Considering the balance between classification accuracy and
computational complexity, we experimentally set the window
size to 13 x 13. Another observation is that the OAs increase
as the dimensions also increase, and the peak values occur
when K > 35 for Indian Pines and K > 45 for University of
Pavia data sets.

D. THE COMPARISON OF SHAPE-ADAPTIVE

WITH FIXED WINDOW

In the second experiment, we evaluate the performance
improvement of SATF by using shape-adaptive method to
generate the patch features. To this end, we compare shape-
adaptive window with fixed window. As exhibited in Fig. 5,
shape-adaptive-based method significantly improves the clas-
sification accuracy obtained by using fixed window, with
the increases of OAs are ~2% for Indian Pines and ~1%
for University of Pavia data sets. This observation can be
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FIGURE 7. The comparison of different DR methods for (a) AVIRIS Indian Pines and (b) ROSIS University of Pavia
data sets. Different curves illustrate the overall accuracies as a function of the number of dimensions under the

same window size of 13 x 13.

explained that shape-adaptive method can accurately model
the spatial information by adaptively adjust the window
shape and size, yielding much purer patch features.

E. THE COMPARISON OF DIFFERENT CLASSIFIERS

In this experiment, we evaluate the classification performance
of different classifiers based on the extracted latent features.
As shown in Fig. 6, SVM produces the best classification
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accuracies in different cases for the two data sets, and SMLR
is better than k-NN. However, the computational times of
SVM and k-NN are significantly high than SMLR. It’s worth
noting that the computational complexities of SVM and k-NN
are exponentially increased with the increase of dimensions,
whereas the complexity of SMLR is very low and insensitive
to dimension. This observation demonstrates the powerful
performance of SMLR.
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TABLE 1. Overall (OA), average (AA) and individual class accuracies (%), kappa statistic («), standard deviation, and computational time obtained by

different methods for the AVIRIS Indian Pines data sets (10% labeled samples used for training, K = 35).

Class #Samples Methods
> Train | Test Origin PCA LPP LGE MPCA TLPP TLGE SATF

Alfalfa 5 41 15.61£9.84 | 27.07+16.80 | 22.44410.34 | 28.54+14.41 83.60+7.63 | 79.02£10.42 | 80.24£12.03 | 96.10+1.26
Corn-notill 143 1285 | 74.884+2.05 65.341+2.44 65.271+3.44 66.401+3.37 90.194£1.90 85.3443.51 85.904+3.32 93.35+2.35
Corn-mintill 83 747 53.131+4.28 44.79+£3.55 50.124+2.09 51.4643.22 89.29+2.11 84.87+4.95 89.2942.63 94.191+1.39
Corn 24 213 28.6443.84 26.29+3.31 28.3646.40 34.46+7.84 88.64+6.36 85.734+6.12 86.20+7.59 94.46+2.24
Grass-pasture 48 435 83.98+3.25 70.23+3.02 75.15+£3.87 74.87+5.18 92.90+2.42 93.01+£3.43 93.174+5.28 93.49+3.04
Grass-trees 73 657 94.6613.09 95.1942.51 94.38+1.64 93.29+1.01 97.20+1.07 99.30+0.57 97.324+1.66 99.47+0.39
Grass-pasture-mowed 3 25 24.40+15.37 | 32.80+16.95 | 37.20+12.66 | 30.80+16.66 | 95.60+£9.13 | 72.80+11.12 | 81.60+18.20 | 75.20+15.64
Hay-windrowed 48 430 96.09+1.74 98.07+£1.55 98.09+1.81 97.53+1.97 98.00+£1.50 98.98+2.04 99.30+1.07 99.95+0.15
Oats 2 18 5.56+5.86 12.224+5.74 8.891+8.76 11.674+8.86 | 59.44+16.37 | 15.00£13.37 | 48.33+15.28 | 51.67+17.58
Soybeans-notill 97 875 60.6743.51 47.21£5.36 47.71£3.74 47.57£3.69 89.86+2.16 78.42+5.00 83.0742.10 92.10+1.71
Soybeans-mintill 246 | 2209 | 75.95+1.64 75.79+1.62 76.71+1.04 76.1241.32 96.3510.87 93.37+2.47 91.44+1.67 97.35+0.53
Soybean-clean 59 534 57.23+4.99 39.0443.58 37.51+4.52 37.024+6.90 89.98+2.54 83.8445.94 83.3043.92 94.61+1.95
Wheat 21 184 94.4613.62 93.324+2.98 89.6245.13 94.5143.86 98.15+2.21 97.17+1.11 96.03+7.64 98.64+1.21
Woods 127 1138 | 92.89+1.93 91.49+1.95 92.93+1.25 92.10+1.31 99.31+0.47 98.51+0.95 98.2040.98 99.74+0.17
Bldg-grass-tree-drives 39 347 56.7716.46 44.99+3.72 44.5243.62 45.71£7.07 97.03+1.90 96.69+3.03 94.5543.66 98.33+0.91
Stone-steel-towers 9 84 62.26+11.64 | 80.71£3.01 83.934+3.90 82.3842.62 86.67+5.61 | 47.02£24.25 | 59.40£20.36 | 92.02+2.10
Overall accuracy - - 74.0540.66 68.72+1.10 69.64+0.62 69.7910.86 93.94+0.41 90.2242.07 90.57+1.32 96.06+0.42
Average accuracy - 61.07+1.49 59.04+1.93 59.55+1.26 60.28+1.44 90.77+1.31 81.824+3.12 85.4613.50 91.92+1.65
K statistic - 0.702+0.01 0.63940.01 0.650£0.01 0.652+0.01 0.93140.00 0.888+0.02 0.89240.02 0.955+0.00
Time (Seconds) - 0.27+0.04 1.43+0.38 1.33+0.24 1.414+0.28 22.944+5.17 | 95.32431.09 | 84.52430.98 8.70+0.35

()

oA

— i

(h)

FIGURE 8. Classification maps obtained by different methods for the AVIRIS Indian Pines data sets (10% labeled
samples used for training, K = 35). (a) Origin (OA = 74.05%), (b) PCA (OA = 68.72%), (c) LPP (OA = 69.64%), (d) LGE
(OA = 69.79%), (e) MPCA (OA = 93.94%), (f) TLPP (OA = 90.22%), (g) TLGE (OA = 90.57%), (h) SATF (OA = 96.06%).

F. THE COMPARISON OF SATF WITH OTHER DR METHODS
In this experiment, we compare the proposed method with
other traditional and tensor-based DR methods. Fig. 7 plots
the evolution of classification accuracies obtained by differ-
ent DR methods as a function of the number of dimensions
under the same window size of 13 x 13. The proposed method
significantly outperforms the other counterparts in different
cases, and the obtained OAs are higher than 95% when K >
30 for the two data sets, which demonstrates that the proposed
method can produce more latent and compact features for
classification. In addition, MPCA provides competitive per-
formance followed by TLPP and TLGE. Another observation
is that tensor-based DR methods are better than the traditional
methods, i.e., PCA, LPP, LGE. Generally, the above results
validate the superiority of SATF compared to other related
DR methods.
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G. CLASSIFICATION RESULTS

1) AVIRIS INDIAN PINES DATA SETS

The OAs, AAs, individual class accuracies, « statistic, stan-
dard deviations, and computational time obtained by differ-
ent methods are reported in Table 1 for the Indian Pines
data sets. The proposed method significantly outperforms the
other tensor-based methods. SATF obtains an OA of 96.06%,
which is 2.12%-5.84% higher than others. As for AA and «,
SATF respectively yields 91.92% and 0.955, which are
1.15%-10.10% and 0.024-0.067 higher compared to others.
As for the individual class accuracy, SATF also obtains the
highest accuracies for most of the classes (14 of 16 classes).
As for computational time, our method only cost 8.7s,
which is shorter than the other three tensor-based methods.
In addition, tensor-based methods including MPCA, TLPP,
TLGE, and SATF obtained higher accuracies than matrix-
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TABLE 2. Overall (OA), average (AA) and individual class accuracies (%), kappa statistic («), standard deviation, and computational time obtained by

different methods for the ROSIS University of Pavia data sets (5% labeled samples used for training, K = 45).

Class #Samples Methods
Train Test Origin PCA LPP LGE MPCA TLPP TLGE SATF

Asphalt 332 6299 | 79.22+1.67 | 82.63£0.82 | 83.08+0.70 | 82.64*+1.14 95.15+0.85 94.481+0.64 87.241+2.56 95.96+0.71
Meadows 932 17717 | 92.9240.55 | 93.2840.76 | 93.47+0.72 | 92.93+1.03 99.62+0.12 96.77+1.20 97.11+0.65 99.85+0.08
Gravel 105 1994 | 62.65+2.41 | 65.57£1.33 | 63.80+1.97 | 64.73+£2.20 92.53+2.27 87.00£2.15 75.954+2.00 94.37+1.80
Trees 153 2911 | 87.49+2.29 | 89.23+£0.86 | 87.994+0.58 | 88.90+1.34 91.07+1.10 95.67+0.89 95.78+1.09 96.26+0.96
Painted metal sheets 67 1278 | 99.68+0.12 | 99.7740.09 | 99.69+0.10 | 99.92+0.09 99.98+0.03 98.79+1.32 96.57+1.75 99.83+0.14
Bare soil 251 4778 | 58.5942.12 | 58.4442.75 | 58.85+1.74 | 58.87+2.21 98.47+0.34 68.83+4.46 81.1942.55 97.28+0.79
Bitumen 67 1263 | 37.67+3.48 | 39.87£3.93 | 36.714+3.58 | 40.02+5.32 99.09+0.98 90.85+3.01 82.34+4.12 99.55+0.37
Self-Blocking Bricks 184 3498 | 68.38+2.02 | 72.00£2.25 | 69.81+1.70 | 72.07+2.73 87.46+1.42 87.84+2.35 75.59+3.05 91.88+1.77
Shadows 47 900 63.941+6.42 | 78.48+4.08 | 77.63+4.60 | 80.28+5.31 85.014+2.00 92.34+1.89 92.64+1.40 85.08+5.08
Overall accuracy - - 80.63+0.45 | 82.27+0.42 | 81.994+0.35 | 82.16+0.46 96.46+0.28 91.58+0.89 90.15+0.94 97.39+0.24
Average accuracy - - 72.28+1.01 | 75.48+0.56 | 74.56+0.63 | 75.60£1.18 94.261+0.43 90.2940.63 87.16+1.18 95.561+0.67
K statistic - - 0.740+0.01 | 0.762+0.01 | 0.7584+0.00 | 0.761+0.01 0.953+0.00 0.887+0.01 0.869+0.01 0.965+0.00
Time (Seconds) - - 0.81+0.07 6.01+£0.45 6.34+0.75 6.174£0.33 | 197.484+32.26 | 342.86+68.86 | 442.85£141.13 | 36.54+1.02

FIGURE 9. Classification maps obtained by different methods for the ROSIS University of Pavia data sets (5%
labeled samples used for training, K = 45). (a) Origin (OA = 80.63%), (b) PCA (OA = 82.27%), (c) LPP (OA =

81.99%), (d) LGE (OA = 82.16%), (e) MPCA (OA = 96.46%), (f) TLPP (OA = 91.58%), (g) TLGE (OA = 90.15%), (h)
SATF (OA = 97.39%).

based methods, which validates the effectiveness of ten-
sor factorization for hyperspectral image feature extraction
and classification. The classification maps can be visually
inspected from Fig. 8, where the tensor-based methods pro-
duce more smooth and accurate results. Whereas, the tradi-
tional matrix-based methods obtain noisy results. This is due
to the fact that we use patch features to represent tensors.
This tensorization technique considers each pixel as a third-
order tensor where the spectral and spatial information are
jointly exploited by using tensor factorization for feature
extraction. Therefore, the within-class regions are smooth
while the between-class regions have clear boundaries.
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2) ROSIS UNIVERSITY OF PAVIA DATA SETS

Table 2 reports the details of classification accuracies
obtained by different methods for the University of Pavia
data sets. Again, the proposed method significantly outper-
forms the other tensor-based methods in this scene with
the highest OA of 97.39%, which is 0.93%-7.24% higher
than other tensor-based methods. In addition, SATF obtains
95.56% and 0.965 respectively for AA and «, which are
1.30%-8.40% and 0.012-0.096 higher than others. As for
the individual class accuracy, SATF also obtains the highest
accuracies for six classes among the total of nine classes.
As for computational time, our method only costs 36s, which
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FIGURE 10. Scattering plots considering the first two bands of (a) origin and the first two features derived from (b) PCA, (c) LPP, (d) LGE, (e) MPCA, (f)
TLPP, (g) TLGE, and (h) SATF using all the ground-truth data belonging to different classes in the AVIRIS Indian Pines scene. Different colors represent
different classes and the correlation coefficient (R2) in each case is reported inside parentheses.
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is very fast considering the quite long time of the other three
tensor-based methods, e.g., TLGE costs more than 400s in
this scene. In this scene, the tensor-based methods are also
superior to matrix-based methods. Fig. 9 visually exhibits
the classification maps. According to the results, the tensor-
based methods produce more smooth and accurate results,
whereas the traditional matrix-based methods obtain noisy
results. The above observations validated the effectiveness of
the proposed method for hyperspectral feature extraction and
classification.

H. ANALYSIS OF FEATURE SEPARABILITY
Finally, we analyzed the separability of the latent features
extracted by different DR methods. To this end, we compare
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the scattering plots considering the first two bands or features
in Fig. 10 and Fig. 11, respectively for the Indian Pines
and University of Pavia data sets. We use all the labeled
samples from the ground-truth data to plot the figures, and
different colors represent different classes. As shown in these
two figures, different pixels are highly mixed and hardly
to be separated in the spectral domain. On the other hand,
in the low-dimensional domain, the separability is greatly
enhanced. However, it is hard to rank the separability level
for different methods by visual inspection. We then conduct
a quantitative evaluation of the feature separability by calcu-
lating the correlation coefficient (R?) for different methods.
As we can see from the results, the correlations are greatly
reduced by DR methods, and the proposed method obtains
the lowest correlation, i.e., R? = 0.3340 for Indian Pines and
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R* = 0.3335 for University of Pavia data sets, illustrating a
good separability of the derived features.

IV. CONCLUSIONS

In this paper, we focus on the limitations of current tensor-
based DR methods by presenting a novel shape-adaptive
tensor factorization model for HSI classification. In partic-
ular, the method builds fourth-order tensor based on spectral-
spatial features modeled by shape-adaptive neighborhood,
yields more latent features via MLSVD, and conducts clas-
sification by using SMLR. On the above analysis of the
experimental results based on the two real data sets, we can
conclude that shape-adaptive neighborhood modeling signif-
icantly improves the performance of using traditional fixed
window in tensor-based DR, and the proposed method out-
performs traditional matrix-based and some tensor-based DR
methods in terms of feature separability and classification
accuracy.

Although our experimental results are encouraging, further
work on additional scenes and comparison methods should be
conducted in future. In our work, for the first time, we have
introduced shape-adaptive tensor factorization model in the
literature. Our next work will focus on adapting our method
with multi-scale neighborhood information modeling strat-
egy since detailed data structures and more complementary
information may be captured and beneficial to the classifica-
tion performance.
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