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ABSTRACT In this paper, we propose junction conditions for discontinuities due to local perturbation,
diverging, merging, andmulti-in-multi-out junctions. Traffic flows on junctions can be described by a system
of coupled Hamilton-Jacobi equations. At their connection points, it is necessary to propose appropriate
junction conditions to close the system. Then, we provide an effective numerical method to compute
approximate solutions to these Hamilton-Jacobi equations on junctions. The numerical boundary conditions
to close the Hamilton-Jacobi system are also proposed. Numerical tests demonstrate the effectiveness of both
the proposed junction conditions and the numerical method.

INDEX TERMS Hamilton-Jacobi equation, junction condition, traffic flow, local perturbation, macroscopic
model.

I. INTRODUCTION
Many traffic flowmodels have recently been designed. These
models are mainly used to study the temporal and spatial
distributions of traffic density and the driving habits of car
drivers, particularly by governments or their departments
to design traffic facilities or to provide references for the
construction of roads [1], [2]. Generally, the existing models
can be divided into two types: macroscopic trafficmodels and
microscopic models. Research on the macroscopic models
began with the LWRmodel of Lighthill andWhitham [3] and
Richards [4]. This LWRmodel describes the temporal-spatial
distribution of traffic density. It is a system of partial dif-
ferential equations (PDEs). We also refer to the book by
Garavello and Piccoli [5] and the references therein for a
good introduction. Moreover, note that macroscopic mod-
els can also be described in terms of the cumulative num-
ber of vehicles, i.e., the primitive of the density (see, for
example, [6]). This approach leads to the Hamilton-Jacobi
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equations, which have been studied on networks very recently
by Imbert and Monneau [7]. Regarding the microscopic traf-
fic flow models, Pipes [8] studied the car-following model
almost half a century ago, which described the processes by
which drivers follow each other in traffic streams [9]. Later,
there were some extensions to this model by Helly, Kometani
and Sasaki [10] and Gazis et al. [11]. Additionally, there are
many microscopic traffic models such as [12], [13]. One can
find some references from the review paper [9].

To compute the macroscopic traffic network, the Cell
Transmission Method and Link Transmission Method can
be used. We can refer to the papers [14], [15] for the Cell
Transmission Method and to [16], [17] for the Link Trans-
mission Method. The second method can be derived from
the Hamilton-Jacobi system, which only discretizes the time.
For the Hamilton-Jacobi approach, the traffic can be divided
into two parts: the homogeneous roads and the nodes link-
ing them. One can refer to [18]–[20]. The roads can be
described by Hamilton-Jacobi equations, and we should pro-
vide junction conditions at the nodes to close the traffic net-
work problem. For the classical Hamilton-Jacobi equations,
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there are many numerical methods, such as ENO [21] and
WENO [22], to compute the discontinuities such as shock
waves. Numerical methods are also used in [23], [24] to com-
pute the Hamilton-Jacobi system. The goal of this paper is to
propose different types of junctions and provide an effective
numerical method for computing junctions. The following
junction conditions are generally the main types at the nodes:
local perturbation, bifurcation, merging and multi-in-multi-
out, which have increasing complexity.

Local perturbations in traffic flows, such as road obstacles,
curves and even braking, such as at traffic lights, are very
common. It is easy to use a microscopic traffic model to
describe the local deceleration simply by multiplying by an
attenuation factor. In fact, the corresponding macroscopic
traffic model is hard to write. If a penalty term or a viscosity
term is added to the right side of the equation, the proper-
ties of the equation will change, and the simulation will be
unnatural. Therefore, it is difficult but important to propose a
macroscopicmodel with local perturbations. Notably, this has
been done in [25], where the authors obtain a macroscopic
model with a junction condition from a microscopic model
with a local perturbation.

According to this idea, we must construct more complex
junctions. The junctions should satisfy the following condi-
tions. First, the traffic generally encounters a local perturba-
tion (flux limiter) at the nodes. Second, the traffic distribution
should be set. In addition, it is also very important that the
total number of traffic flows remain unchanged. The proposed
numerical method should also retain these properties.

The goal of this paper is to propose junction conditions for
local perturbation, bifurcation, merging and multi-in-multi-
out nodes on a network. Let us refer to theworks [26], [27] for
some finite difference schemes to solve this type of equations.

The model is proposed in Section 2, and the numerical
method for this system is shown in Section 3. We present
several numerical tests to demonstrate the effectiveness of
the proposed junction conditions and numerical methods in
Section 4. At the end of this paper, we provide some conclu-
sions and remarks.

II. TRAFFIC FLOW MODEL POSED ON A JUNCTION
In fact, the entire transportation network can be roughly
divided into two parts. One part is the uniform road, which
can be described by the Hamilton-Jacobi equations. The other
part is the nodes that link these roads. Junction conditions
are used to model traffic flows through nodes. We consider
junction conditions to be dynamic boundary conditions for
the Hamilton-Jacobi equations. These conditions provide the
distribution rules for upstream fluxes at the nodes. In this
section, we describe the junction conditions for various nodes
in detail.

We use the following settings: there areM incoming roads
and N outgoing roads posed on the junction point O shown
in Fig. 1. The set of load numbers is defined as Q =

{−M ,−M + 1, . . . ,−1, 1, . . . ,N − 1,N }.

FIGURE 1. Junction approach for traffic flow networks.

TheM -in lane is defined on

Ji = (−∞, 0] · ei, J∗i = Ji\{0}, i = −M , . . . ,−1. (1)

The N -out lane after the junction is defined on

Ji = [0,+∞) · ei, J∗i = Ji\{0}, i = 1, . . . ,N , (2)

with linearly independent unit vector set {ei|i ∈ Q}.
The traffic is defined on

J =
⋃
i∈Q

Ji. (3)

and the junction point is

{x = 0} =
⋂
i∈Q

Ji. (4)

We assume that all vehicles follow the ODE systems on
each road Ji according to Fig. 1,

U̇j = Vi(Uj+1(t)− Uj(t)) ∗ φ(t,Uj(t)). (5)

Functions Vi(h) and φ(t, x) satisfy the following assumptions
• Vi: R→ R+ is Lipschitz continuous and non-negative.
• Vi is non-decreasing on R.
• There exists a hi ∈ (0,+∞) such that for all h < hi,
Vi(h) = 0.

• There exists a himax ∈ (hi,+∞) such that for all h >
himax , Vi(h) = Vi(himax) = V i

max .
• There exists a real pi ∈ [−ki, 0) such that the function
p 7→ pV (−1/p) is decreasing on [−ki, pi) and increas-
ing on [pi, 0), where ki := 1/hi.

• The function R × R → [0, 1] is Lipschitz continuous
and there exist r > 0 such that φ(t, x) = 1 for |x| > r .

Following [25] and [28], the macroscopic model on J is a
Hamilton-Jacobi model posed on a junction

uit + Hi(u
i
x) = 0 for x ∈ J∗i .

uit + F
i
A

(
uix(t, 0

−), uix(t, 0
+)
)
= 0 for x = 0

u(0, x) = u0(x) for x ∈ R,
(6)

where u is the distribution function, and the car density ρ
reads as

ρ(x, t) = −ux(x, t) x 6= 0. (7)
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A ≤ 0 is a constant called the flux limiter, Hi, i ∈ Q are
defined by

Hi(p) = −Vi

(
−1
p

)
|p| for − ki ≤ p < 0 (8)

with

H−i (p) =

{
Hi(p) if p ≤ pi
Hi(pi) if p ≥ pi

(9)

and

H+i (p) =

{
Hi(p0) if p ≤ pi
Hi(p) if p ≥ pi

(10)

Here, the parameter p indicates the opposite of traffic
density. Fig. 2 shows the diagram of functions Hi(p), H

+

i (p)
and H−i (p). The function Hi(p) has a minimum point H i at
p = pi, H

+

i (p) is an increasing function, and H−i (p) is a
decreasing function.

FIGURE 2. The diagram of the functions Hi (p) (left) and H+i (p) and H−i (p)
(right).

As we discuss above, the traffic flow can be described
as Hamilton-Jacobi equations on each lane, and we should
provide an effective junction condition on the junction point
x = 0. In this way, the entire traffic network is constructed.
In this section, we propose each node junction condition from
simple to difficult.

A. LOCAL PERTURBATION
First, we begin with a simple junction problem, which is a
road with a local perturbation at the origin point, where we
set M = N = 1.

The junction condition on x = 0 reads as

uit + FA(u
i
x(t, 0

−), uix(t, 0
+)) = 0, i = −1, 1, (11)

and FA is defined on x = 0 as

FA(p−, p+) = max(A,H+
−1(p−),H

−

1 (p+)) (12)

The flux limiter A is defined in [A0, 0], and

A0 = max
(
min
p∈R

(
H+
−1(p)

)
,min
q∈R

(
H−1 (q)

))
(13)

as a local perturbation around the junction point.

Theorem 1 (Maximum Principle): Let u(x, t) be a solution
to Eq. (6) and the junction condition (11) with initial data
u(x, 0) = u0(x). If u0 is Lipschitz continuous and satisfies{

−k−1 ≤ (u0)x ≤ 0 for x < 0
−k1 ≤ (u0)x ≤ 0, for x > 0

(14)

then, we have for all t > 0 that{
−k−1 ≤ ux ≤ 0 for x < 0
−k1 ≤ ux ≤ 0, for x > 0

(15)

Proof: Based on the [25], we give the following ideas
to prove the boundedness:
Set

� = {(t, x, y) ∈ [0,T )× R, x ≥ y}

We introduce,

M = sup
(t,x,y)∈�

{u(t, x)− u(t, y)}. (16)

We want to prove thatM ≤ 0. We argue by contradiction and
assume that M > 0. For any η, α > 0, small parameters,
we define

ϕ(t, x, y) = u(t, x)− u(t, y)−
η

T − t
− αx2 − αy2. (17)

Then, we have that

ϕ(t, x, y) ≤ u0(x)− u0(y)+ 2M0k0T − α(x2 + y2)

≤ −α(x2 + y2)++2M0k0T , (18)

where we used assumption −k−1 ≤ (u0)x ≤ 0 for the second
inequality. Therefore, we have

lim
|x|,|y|→+∞

ϕ(t, x, y) = −∞. (19)

Since ϕ is upper-semi continuous, it reaches a maximum at a
point that we denote by (t̄, x̄, ȳ) ∈ �. Classically we have for
η and α small enough, 0 <

M
2
≤ ϕ(t̄, x̄, ȳ),

α|x̄|, α|ȳ| → 0 as α→ 0.
(20)

t̄ > 0 and x̄ > ȳ. By contradiction, assume first that t̄ = 0.
Then, we have

η

T
< u0(x̄)− u0(ȳ) ≤ 0, (21)

where we used that u0 is non-increasing, and we get a contra-
diction. The fact that x̄ > ȳ, comes directly from the fact that
ϕ(t̄, x̄, ȳ) > 0.
By doing a duplication of the time variable and passing to

the limit in this duplication parameter, we get that
η

(T − t̄)2
≤ M̄ [u((̄t), y)](ȳ) · |2αȳ| · φ(t̄, ȳ)

− M̄ [u((̄t), x)](x̄) · |2αx̄| · φ(t̄, x̄)

≤ 2M0α(|x̄| + |ȳ|), (22)

passing to the limit as α goes to 0, we obtain a contradiction.
On the other hand, we introduce

M = sup
(t,x,y)∈�

{u(t, x)− u(t, y)− k0(x − y)}. (23)

We want to prove thatM ≤ 0. We argue by contradiction and
assume thatM > 0.
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For any η, α > 0, small parameters, we define

ϕ(t, x, y) = u(t, y)− u(t, x)−
η

T − t
−αx2 − αy2 − k0(x − y). (24)

Then, we have that

ϕ(t, x, y) ≤ u0(y)− u0(x)+ 2M0k0T

−α(x2 + y2)− k0(x − y)

≤ −α(x2 + y2)++2M0k0T , (25)

Therefore we have

lim
|x|,|y|→+∞

ϕ(t, x, y) = −∞. (26)

Using the fact that ϕ is upper-semi continuous we deduce
that ϕ reaches a maximum at a finite point that we denote
(t̄, x̄, ȳ) ∈ �. Classically we have for η and α small enough, 0 <

M
2
≤ ϕ(t̄, x̄, ȳ),

α|x̄|, α|ȳ| → 0 as α→ 0.
(27)

t̄ > 0 and x̄ > ȳ. By contradiction, assume first that t̄ = 0.
Then, we have

η

T
< u0(x̄)− u0(ȳ) ≤ 0, (28)

which is a contradiction. Hence t̄ > 0. Using that ϕ(t̄, x̄, ȳ) >
0, we deduce that x̄ ≥ ȳ.
By duplicating the time variable and passing to the limit

we have -uthat there exists two real numbers a, b, such that
(a,−k0 + 2αȳ) ∈ D̄+u(t̄, ȳ, (b,−k0 + 2αx̄) ∈ D̄+u(t̄, x̄ and

a− b =
η

(T − t̄)2
. (29)

we get

a+M [u( ¯t, y)](ȳ) · φ(t̄, ȳ) · | − k0 + 2αȳ| ≤ 0. (30)

We claim

M [u( ¯t, y)](ȳ) =
∫
R
J (z)E(u(t̄, ȳ+ z)− u(t̄, ȳ))dz

−
3
2
Vmax

= 0 (31)

Indeed, let z ∈ (h0, hmax]. If ȳ + z ≥ x̄, using that u is
non-increasing in space according above, we get

u(t̄, ȳ+ z)− u(t̄, ȳ) ≤ u(t̄, x̄)− u(t̄, ȳ)

≤ −k0(x̄ − ȳ) ≤ 0 (32)

If ȳ+ z < x̄, using the fact that ϕ(t̄, x̄, ȳ+ z) ≤ ϕ(t̄, x̄, ȳ), for
α small enough, we obtain

u(t̄, ȳ+ z)− u(t̄, ȳ) ≤ −k0z+ α(2zȳ+ z2)

≤ −k0z+ (2hmax ȳ+ h2max) ≤ 0 (33)

This implies that we have for all z ∈ (h0, hmax],

E(u(t̄, ȳ+ z)− u(t̄, ȳ)) =
3
2
. (34)

Injecting this in the non-local term, we deduce the
claim.

Finally, the fact that ut ≥ 0 implies that a, b ≥ 0. There-
fore, inequality (30) implies a = 0. Using (29), we obtain

η

T 2 ≤ 0, (35)

which is a contradiction.
The Hamilton-Jacobi equations with a junction condition

actually describe a deceleration behaviour (local perturba-
tion) of the traffic flow at the node. The flux limiter A reflects
the local perturbation in the microscopic model. Many types
of transportation nodes that we encounter, such as bifurcation
and merging, have such deceleration behaviour. We use this
approach as a basis to build more complex junction condi-
tions.

B. BIFURCATION CONDITION
In this subsection, the analytical bifurcation condition is
introduced. We first define the setting of the problem accord-
ing to Fig.3.

FIGURE 3. Schematic representation of the bifurcation problem.

We give the junction condition as{
uit + βiFA = 0 for x = 0, i = 1, . . . ,N
u−1t + FA = 0 for x = 0.

(36)

Here, the percentage βi ≥ 0 and
∑
βi = 1. FA is defined on

x = 0 as

FA = max

(
A,H+

−1(u
−1
x ),

N
max
i=1

(
H−i (uix)

βi

))
. (37)

The flux limiter A is defined in the closed interval [A0, 0], and

A0 = max

(
min
p∈R

(
H+
−1(p)

)
,

N
max
i=1

(
minq∈R

(
H−i (q)

)
βi

))
,

(38)

as a local perturbation around the junction point.

Theorem 2: Set ui(t, x) is a solution to Eq.(6) with junction
condition (36) and initial data ui(0, x) = ui0(x). If u

i
0 is

Lipschitz continuous and satisfies

−ki ≤ (ui0)x ≤ 0, x ∈ J∗i , i = −1, 1, 2, . . . ,N , (39)

then, we have for all t > 0 that

−ki ≤ uix ≤ 0, x ∈ J∗i , i = −1, 1, 2, . . . ,N . (40)
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FIGURE 4. Schematic representation of the merging problem.

C. MERGING CONDITION
In this subsection, we present the merging problemwithM >

1 and N = 1. The first part presents the merging as a zipper.
Then, we show the merging problem on demand.

Merging as a zipper is where a certain percentage of the
cars before the junction point strictly flow into the i-st lane.
The percentages are as follows:

αi ∈ (0, 1],
N∑
i=1

αi = 1. (41)

This junction condition is{
uit + αiFA = 0 for i < 0
u1t + FA = 0.

(42)

Here, FA is defined on x = 0 as

FA = max

(
A,

N
max
i=1

(
H+i (uix)

αi

)
,H−1 (u1x)

)
. (43)

The flux limiter A is defined in the closed interval [A0, 0], and

A0 = max

 N
max
i=1

min
p∈R

(
H+i (p)

)
αi

 ,min
q∈R

(
H−1 (q)

). (44)

However, this situation is only established when the traffic
is relatively large. In extreme cases, if one lane’s flux is zero,
all the remaining lanes will be blocked at the junction point
because they should strictly wait for the cars from the lane
with zero flux. We will show a numerical test in the next
section.

Another junction condition for merging that we present is
that the percentage is defined as the flux.

uit +
H+j (ujx)

min

(
−1∑

j=−M

(
H+j (ujx)

)
, b

)FA = 0 for i < 0

u1t + FA = 0.

(45)

Here, b simply takes a very small negative value (for example,
b = −10−10) to avoid dividing by 0, and FA is defined on

x = 0 as

FA = max

(
A,

−1∑
i=−M

(
H+i (uix)

)
,H−1 (u1x)

)
, x = 0. (46)

The flux limiter A is a number is defined in the closed interval
[A0, 0], and

A0 = max

(
−1∑

i=−M

(
min
p∈R

(
H+i (p)

))
,min
q∈R

(
H−1 (q)

))
. (47)

Theorem 3: Set ui(t, x) is a solution to Eq.(6) with junction
condition (42) or (45) and initial data ui(0, x) = ui0(x). If u

i
0

is Lipschitz continuous and satisfies

−ki ≤ (ui0)x ≤ 0, x ∈ J∗i , i = −M , . . . ,−1, 1, (48)

then, we have for all t > 0 that

−ki ≤ uix ≤ 0, x ∈ J∗i , i = −M , . . . ,−1, 1. (49)

For more complicated merging cases, we can combine the
above two types of junction conditions. For example, we can
choose the first junction in the case of relatively large flux
traffic and choose the second case for a smaller one. We do
not describe these cases here as they are beyond the scope of
this article.

D. MULTI-IN-MULTI-OUT CONDITION
In this subsection, we propose a junction condition based on
the work [28]. There are M incoming roads and N outgoing
roads posed on the junction point O shown in Fig. 5.

FIGURE 5. Schematic representation of the bifurcation problem.

The equation on the junction point is
uit +

H−i (uix)(∑
−1
j=−M

(
H−j (ujx)

)
, b
)FA = 0 for i < 0

uit + βiFA = 0 for i > 0.

(50)

Here, b simply takes a very small negative value, as we
discuss above, and FA is defined on x = 0 as

FA = max

(
A,

−1∑
i=−M

(
H+i (uix)

)
, max
i=1,...,N

(
H−i (uix)

βi

))
. (51)
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The flux limiter A is defined in the closed interval [A0, 0], and

A0 = min

(
−1∑

i=−M

(
min
p∈R

(
H+i (p)

))
,

N
min

q∈R,i=1

(
H−i (q)

βi

))
.

(52)

Theorem 4 (Maximum Principle): Let ui(x, 0) be a solu-
tion to Eq. (6) with junction condition (50) and initial data
ui(x, 0) = ui0(x). If u

i
0 is Lipschitz continuous and satisfies{

−k1 ≤ (u0)x ≤ 0 x ∈ Ji, i = −M , . . . ,−1,
−k2 ≤ (u0)x ≤ 0 x ∈ Ji, i = 1, . . . ,N ,

(53)

then, we have for all t > 0 that{
−k1 ≤ ux ≤ 0 x ∈ J∗i , i = −M , . . . ,−1,
−k2 ≤ ux ≤ 0 x ∈ J∗i , i = 1, . . . ,N .

(54)

To summarize, we use the Hamilton-Jacobi equations to
calculate the straight roads and use the junction conditions
to connect these Hamilton-Jacobi equations. Then, the traffic
flow problem is closed.

There exist a unique continuous (relaxed) viscosity solu-
tion u(t, x) satisfy the Hamilton-Jacobi equations (6) with
junction conditions (11), (36), (42), (45), or (50). In the
special case of convex Hamiltonians Hi with different mini-
mum values, problem (6) can be considered as the Hamilton-
Jacobi-Bellman equation, see for instance [28] when A = ∞.
In this case, existence and uniqueness of viscosity solutions
have been established either with a very rigid method [28]
based on an explicit Oleinik-Lax formula. For A < 0,
the mathematical prove progress can be found in ( [29],
Theorem 1.6).

In Section IV, we test these junction conditions and show
their effectiveness.

III. NUMERICAL METHODS
In this section, we present a numerical method for solv-
ing the Hamilton-Jacobi system with the different junction
conditions. Then, we show the positive definiteness and
boundedness of the proposed methods. Finally, the boundary
conditions and initial conditions are also proposed.

A. NUMERICAL METHODS FOR HAMILTON-JACOBI
EQUATIONS ON J∗i
In the above discussion, we note that the Hamilton-Jacobi
equations are used to characterize the dynamic behaviour of
traffic in uniform lanes and junction conditions are used to
describe information of the nodes. Let us first discuss the
numerical method of the Hamilton-Jacobi equations on J∗i .
Taking a traffic flow problem with a single junction condi-

tion on the origin as an example, the number set of the road

is given by

Q = {−M , . . . ,−1, 1, . . . ,N }.

In particular, M = N = 1 is a local perturbation problem,
M = 1,N > 1 is a bifurcation problem, and M > 1,N = 1
is a merging problem.

On the roads J∗i , i ∈ Q, the distribution functions ui are
continuous and differentiable. Set

mi(x, t) = uix(x, t), x ∈ J∗i , i ∈ Q t > 0.

mi(x, t) satisfies conservation laws

mit + Hi(m)
i
x = 0 x ∈ J∗i , i ∈ Q, t > 0. (55)

We select 1x as the length of the space grid and 1t as the
time step. Let

x ij = j1x · ei, tn = n1t.

Then, we approximate ui(x, t) on the integral point as

ui,nj = u(x ij , t
n), i ∈ Q, j ∈ Z, n ∈ N, (56)

and mi(x, t) on the half integral space point as

mi,n
j+ 1

2
= m(x i

j+ 1
2
, tn), i ∈ Q, j ∈ N, n ∈ N. (57)

The relation between unj and m
n
j+ 1

2
is given by

mi,n
j+ 1

2
=
ui,nj+1 − u

i,n
j

1x
. (58)

Then, the numerical scheme for computing the Hamilton-
Jacobi equations on J∗i reads as in (59), as shown at the bottom
of this page, where i ∈ Q, j ∈ Z and n ∈ N.
This scheme should follow the Courant-Friedrichs-Lewy

(CFL) condition, which reads as

λ ·max
i∈Q

(
max
−ki≤x≤0

|H ′i (x)|
)
≤ 1 (60)

where λ = 1t/1x.

B. NUMERICAL METHODS ON THE JUNCTION POINT
The junction condition can be written in the following form
uniformly{

uit + α̃iFA = 0 for x = 0, i = −M , . . . ,−1
uit + βiFA = 0 for x = 0, i = 1, . . . ,N .

(61)

where βi are the given constants

α̃i ∈ [0, 1], βi ∈ [0, 1].

ui,n+1j =
ui,nj+1 + u

i,n
j−1

2
−
1t
2

(
Hi

(
ui,nj+1 − u

i,n
j

1x

)
− Hi

(
ui,nj − u

i,n
j−1

1x

))
, (59)
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FnA = max

(
A,

−1∑
i=−M

(
H+i

(
ui,n0 − u

i,n
−1

1x

))
, max
i=1,...,N

(
1
βi
H−i

(
ui,n1 − u

i,n
0

1x

)))
. (66)

and
−1∑
−M

α̃i =

N∑
1

βi = 1. (62)

If the merging problem is similar to a zipper, α̃i = αi is a
given constant. If the merging progress depends on the flux,

α̃i =
H−i (uix)(∑

−1
j=−M

(
H−j (ujx)

)
, b
) , x = 0. (63)

The numerical scheme for Eq. (61) reads as
ui,n+10 − ui,n0

1t
+ α̃ni F

n
A = 0 for i < 0, n > 0,

ui,n+10 − ui,n0
1t

+ βiFnA = 0 for i > 0, n > 0,

(64)

where α̃ni = αi for zipper merging or

α̃ni =

H−i

(
ui,n0 −u

i,n
−1

1x

)
(∑

−1
j=−M

(
H−j

(
ui,n0 −u

i,n
−1

1x

))
, b
) , (65)

for another type of merging.
The numerical scheme for computing FnA is shown in (66),

as shown at the top of this page.

Theorem 5 (Discrete Maximum Principle): Let λ =
1t/1x. If 1t and 1x satisfy the CFL condition (60) and the
initial data satisfy

−ki ≤ m
i,0
j+ 1

2
≤ 0, (67)

with the numerical scheme (59) with the junction condi-
tion (64) and considering the relationship (58), then, we have
for every n ∈ N+,

−ki ≤ m
i,n
j+ 1

2
≤ 0. (68)

Proof: We should prove that if −ki ≤ mi,n
j+ 1

2
≤ 0, then,

−ki ≤ m
i,n+1
j+ 1

2
≤ 0.

If i < 0 and j < 0, we have

mi,n+1
j+ 1

2
=

1
2

(
mi,n
j+ 3

2
+ mn

j− 1
2

)
+
λ

2

(
Hi

(
mi,n
j+ 3

2

)
− Hi

(
mi,n
j− 1

2

))
. (69)

Set the function

y1 =
1
2
(x1 + x2)+

λ

2
(Hi (x1)− Hi (x2)) , (70)

where (x1, x2) ∈ [−ki, 0]× [−ki, 0].

Considering that λ ·max−ki≤x≤0 |H
′
i (x)| ≤ 1, we have

∂y1
∂x1
=

1
2
(1+ λHi′(x)) ≥ 0

∂y1
∂x2
=

1
2
(1− λHi′(x)) ≥ 0.

(71)

Using that y1(0, 0) = 0 and y1(−ki,−ki) = −ki, then,
we have

y1(x1, x2) ∈ [−ki, 0], (x1, x2) ∈ [−ki, 0]× [−ki, 0].

Therefore, if−ki ≤ m
i,n
j+ 1

2
≤ 0 and−ki ≤ m

i,n
j+ 3

2
≤ 0, we have

−ki ≤ m
i,n+1
j+ 1

2
≤ 0, if j 6= −1, j 6= 0. (72)

If i > 0 and j > −1, the case should be similar.
Then, we estimate mi,n+1

j+ 1
2

around the junction point. First,

we consider i < 0 and j = −1

mi,n+1
−

1
2
=

mi,n
−

3
2
+ mi,n

−
1
2

2

−
λ

2

(
2FnA − Hi

(
mi,n
−

3
2

)
− Hi

(
mi,n
−

1
2

))
. (73)

Using that FnA ≤ 0, we have

mi,n+1
−

1
2
≥

mi,n
−

3
2
+ mi,n

−
1
2

2

+
λ

2

(
Hi

(
mi,n
−

3
2

)
+ Hi

(
mi,n
−

1
2

))
(74)

Set the function

y2 =
1
2
(x1 + x2)+

λ

2
(Hi (x1)+ Hi (x2)) , (75)

where (x1, x2) ∈ [−ki, 0]× [−ki, 0].
Considering that λ ·max−k0≤x≤0 |H

′
i (x)| ≤ 1, we have

∂y2
∂x1
=

1
2
(1+ λH ′i (x)) ≥ 0

∂y2
∂x2
=

1
2
(1+ λH ′i (x)) ≥ 0.

(76)

Using that y2(−ki,−ki) = −ki, we deduce that

y2(x1, x2) ≥ −ki, (x1, x2) ∈ [−ki, 0]× [−ki, 0].

Therefore, we have mi,n+1
−

1
2
≥ −ki.

For the second inequality, using that FnA ≥ H+j

(
mi,n
−

1
2

)
,

we obtain (77), as shown at the top of the next page.
Set the function

y3 =
1
2
(x1 + x2)−

λ

2

(
2H+i (x2)− Hi (x1)− Hi (x2)

)
,

(78)

where (x1, x2) ∈ [−ki, 0]× [−ki, 0].
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mi,n+1
−

1
2
≤

mi,n
−

3
2
+ mi,n

−
1
2

2
−
λ

2

(
2H+i

(
mi,n
−

1
2

)
− Hi

(
mi,n
−

3
2

)
− Hi

(
mi,n
−

1
2

))
. (77)

Considering that λ ·max−ki≤x≤0 |H
′
i (x)| ≤ 1, we have

∂y3
∂x1
=

1
2
(1+ λH ′i (x)) ≥ 0

∂y3
∂x2
=


1
2
(1+ λH ′i (x)) ≥ 0 −ki ≤ x ≤ pi

1
2
(1− λH ′i (x)) ≥ 0 pi ≤ x ≤ 0

(79)

Using that y3(0, 0) = 0, we obtain mi,n+1
−

1
2
≤ 0. Thus,

−ki ≤ m
n+1
−

1
2
≤ 0. (80)

Similarly, we estimate the point on the bifurcation lane
i > 0, j > −1

mn+11
2
=

mn3
2
+ mn1

2

2

−
λ

2

(
2FnA − Hi

(
mi,n3

2

)
− Hi

(
mi,n1

2

))
. (81)

Using that FnA ≤ 0, −ki ≤ mi,n3
2
≤ 0 and −ki ≤ mi,n1

2
≤ 0,

we have

mi,n+11
2
≤

mi,n3
2
+ mi,n1

2

2

+
λ

2

(
Hi

(
mi,n3

2

)
+ Hi

(
mi,n1

2

))
≤ 0. (82)

Using that FnA ≥ H
−

i

(
mi,n1

2

)
, we have

mi,n+11
2
≥

mi,n3
2
+ mi,n1

2

2

+
λ

2

(
H−i

(
mi,n1

2

)
− Hi

(
mi,n3

2

))
+
λ

2

(
H−i

(
mi,n1

2

)
− Hi

(
mi,n1

2

))
(83)

Set the function

y4 =
1
2
(x1 + x2)+

λ

2

(
2H−i (x2)− Hi (x1)− Hi (x2)

)
, (84)

where (x1, x2) ∈ [−ki, 0]× [−ki, 0].
Considering that λ ·max−ki≤x≤0 |H

′
i (x)| ≤ 1, we have

∂y4
∂x1
=

1
2
(1− λH ′(x)) ≥ 0

∂y4
∂x2
=


1
2
(1+ λH ′i (x)) ≥ 0 −ki ≤ x ≤ pi

1
2
(1− λH ′i (x)) ≥ 0 pi ≤ x ≤ 0

(85)

Using that y4(−ki,−ki) = −ki, we have m
i,n+1
1
2
≥ −ki. Thus,

−k0 ≤ m
i,n+1
1
2
≤ 0. (86)

C. BOUNDARY CONDITIONS FOR
HAMILTON-JACOBI SYSTEM
If we want to numerically solve the Hamilton-Jacobi equa-
tions with junction conditions, then, suitable boundary condi-
tions are needed. In this subsection, we propose the Dirichlet
boundary condition, incoming boundary condition and out-
going boundary condition.

1) DIRICHLET BOUNDARY CONDITION
If the problem setting is that ux has a compact support in the
computational domain, we can set the boundary conditions
on the left point as{

ui,n+1
−J = ui,n

−J ,

ui,n+1
−J+1 = ui,n

−J+1,
(87)

where x i
−J and x

i
J are artificial/physical boundary points.

The first equation means that there are no other cars com-
ing from the left boundary. The second equation indicates
that all the cars will stop at the right boundary one by one.
The total amount of traffic in the computational domain will
remain unchanged.

2) INCOMING BOUNDARY CONDITION
If there is a stable infinite incoming traffic flow, we set

uix(x, t) = Mfi (t), x = −x iM . (88)

The boundary condition can be Neumann boundary
conditions

uit + H
+

i (Mfi (t
n)) = 0, x = −x iM . (89)

Clearly, the above equation is a one-way transmission wave
of (6). The total number of incoming cars isMfi (t). Its numer-
ical discretization is

ui,n+1
−J − ui,n

−J

1t
+ H+i (Mfi (t)) = 0 (90)

3) OUTGOING BOUNDARY CONDITION
As we present above, if the right boundary is written as the
Dirichlet boundary condition, then, all the cars will stop at
the right boundary. If we want, all the cars are free to exit the
computational domain, just as there is no right boundary.

The outgoing boundary condition is written as

uit + H
−

i (uix) = 0, x = x iM , (91)
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and its numerical discretization is

ui,n+1J − ui,nJ
1t

+ H−i (
ui,nJ − u

i,n
J−1

1x
) = 0. (92)

To summarize, for simulating traffic flow networks,
we solve Hamilton-Jacobi equations with some junction con-
ditions. We present a finite difference scheme Eq. (59) with
a numerical junction condition Eq. (64), some suitable ini-
tial data and the boundary conditions Eq. (87), Eq. (90)
or Eq. (92). In the next section, we will test this scheme
numerically.

IV. NUMERICAL VALIDATION AND APPLICATION
In this section, we verify the validity of the junction condi-
tions proposed above and apply the local perturbation prob-
lem to a traffic light problem.

A. LOCAL PERTURBATION AND INFLUENCE OF THE
FLUX LIMITER A
First, we test the local perturbation problem.

Based on the previous work [30], we assume the following
numerical test and set the related parameters are as follows:

xM = 200, J = 2000, 1x =
xM
J
= 0.1, 1t = 0.001.

We consider a Greenshields optimal velocity function:

V (h) =



0 h ≤ h0,

Vmax

(
1−

(
h0
h

)2
)

h0 < h < hmax ,

Vmax

(
1−

(
h0
hmax

)2
)

h > hmax .

(93)

For the values of the different parameters for the optimal
velocity function, we take

V−1max = V 1
max = 58km/h,

h−10 = h10 = 2m,
h−1max = h1max = 25m.

(94)

Therefor, we can calculate the functionHi with the follow-
ing parameters:

k−1 = k1 = 0.5m−1,
p−1 = p1 = −0.25m−1,
H−1(p−1) = H1(p1) = −2.0139s−1.

(95)

In our setting, we have

max
u

(
|H ′
−1,1(ux)|

)
≤ 16. (96)

Thus, the time step1t = 0.01 fits the CFL condition (60).
First, we study a Gaussian beam packet

u(x, 0) = u0(x) =
∫ x

−xM

(
−U ∗ exp

(
−b(y− x1)2

))
dy

going across the local perturbation point x = 0 (see Figs. 6
to 11), where U = 0.75k0, b = 0.008, and x1 = −50. We set

FIGURE 6. The time evolution of density (−ux (x, t)) without local
perturbation.

FIGURE 7. The time evolution of density (−ux (x, t)) with the flux limiter
A = −2.1.

FIGURE 8. The time evolution of density (−ux (x, t)) with a different flux
limiter A = −1.0.

the left boundary condition as the Dirichlet boundary condi-
tion (87) and the right boundary condition as the outgoing
boundary condition (92).

Here, Fig. 6 shows the system without local perturbation,
and Figs. 7 to 11 show the system with local perturbation
which in the flux limiter is A = −2.1,−1.0,−0.5,−0.1, 0,
respectively. From these figures, we find the following

• When there is no perturbation point, the wave packet
moves forward. A shock wave (discontinuity) is gen-
erated at the rear of the Gaussian wave packet. This is
due to the rear of the wave packet having a small traffic
density and fast speed, while the centre of the wave
packet has a high traffic density and slow speed. After
such a nonlinear interaction, the shockwave is produced.

• When A ≤ A0, the flux limiter does not work, and the
system is strictly similar to the one obtained without a
local perturbation.

• When A = −1, the flux limiter begins to show its
blocking effect on traffic.

• When A continues to increase to −0.5, the blocking
effect of the limiter on the traffic flow becomes more
pronounced. The time for which the entire flow has
crossed the perturbation point is significantly increased.
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FIGURE 9. The time evolution of density (−ux (x, t)) with a different flux
limiter A = −0.5.

FIGURE 10. The time evolution of density (−ux (x, t)) with a different flux
limiter A = −0.1.

FIGURE 11. The time evolution of density (−ux (x, t)) with a different flux
limiter A = 0.

TABLE 1. Block data with different flux limiter A.

• When A is infinitely close to 0, such as A = −0.1,
the traffic is blocked behind the origin point, only allow-
ing traffic to pass at an extremely slow speed.

• When A = 0, the flux limiter can block the entire flow.
Just as at the crossroads, the traffic was blocked by the
red light.

We list some block data caused by different flux limiters A.
From Table 1, we have the following observations as the flux
limiter A increases:

• The time to retardation and that to maximum density are
shortened. The time that the traffic flow is blocked also
increases.

• The maximum density before the junction increases.
When it reaches its maximum, all cars nearly stop before
the junction.

• The density after the junction gradually decreases.

FIGURE 12. Time evolution of relative error ε(t).

Third, we study the conservation of the cars and some other
attributes for the numerical method. In this part, we change
the right boundary to a Dirichlet boundary condition. Fig. 12
shows the total number of cars. We define the total traffic
number as

I (t) =
∫ xl

xr
(−ux(x, t))dx, (97)

and the relative error in time as

ε(t) =
I (t)− I (0)

I (0)
. (98)

Fig. 12 shows the relative error of the total traffic number.
From this and the above figures, we can observe the following

• The total number of cars is almost unchanged. The
relative error is approximately 10−14, which means that
our algorithm is very good at retaining the conservation
of traffic flow.

• The value of density (−ux) is still non-negative irrespec-
tive of A in our calculation interval. Moreover, the traffic
density is always in [0, 0.5]. The numerical method also
maintains this property.

B. APPLICATION TO TRAFFIC LIGHTS
In this part, we will present one application of this model: the
modelling of traffic lights. We considered the traffic lights on
the crossroad to be a time-dependent flux limiter such as

A(t) =

{
0 t mod 10 ∈ [0, 6],
H (p0) t mod 10 ∈ [6, 10).

(99)

Fig. 13 shows the time-dependent flux limiter A(t) in the
traffic simulation with traffic lights. As shown, we assume
that there is a red traffic light that is active when A(t) = 0,
while the green traffic light is active when A(t) = H (p0).
The computational domain that we set is [−150, 150].
The left boundary condition is the incoming boundary con-
dition Mf (t) that reads as

Mf (t) = α(sin(ωt))2, (100)
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FIGURE 13. The flux limiter A(t) in the traffic light simulation.

FIGURE 14. The time evolution in the traffic light simulation with
parameters α1 = 0.1 (left) and α2 = 0.15 (right).

and we set the right boundary as the outgoing boundary
condition.

Here, we set ω = 0.5 and set α as 0.1 and 0.15. The results
are shown in Fig. 14.
From these figures, we find the following
• In each cycle, the traffic is blocked and released when
traffic lights (red/green) appear alternately.

• This traffic system with these traffic lights is suitable
for α = 0.1, while it is not suitable for α = 0.15. The
cars will increasingly accumulate behind the traffic light
when α = 0.15.

• Clearly, our approach can be used to optimize and sim-
ulate traffic flows in the case of traffic lights.

C. NUMERICAL VALIDATION FOR BIFURCATION
CONDITION
In this subsection, we will only show the effectiveness of the
junction conditions. First, we test the bifurcation condition.

In this test, we select M = 1 and N = 3. Four lanes have
the Greenshields optimal velocity functions as Eq.(93). The
max velocities for the lanes are{

V 0
max = 120km/h, V 1

max = 120km/h,
V 2
max = 70km/h, V 3

max = 58km/h.

The bifurcation coefficients are

β1 = 0.4, β2 = 0.4, β3 = 0.2.

Additionally the flux limiter is A = −2.
The computational domain is defined on

J0 = [−300, 0] · e0,

Ji = [0, 300] · ei, i = 1, 2, 3. (101)

FIGURE 15. The time evolution of density (−ux (x, t)) for the bifurcation
problem with parameters β1 = 0.4, β2 = 0.4, β3 = 0.2 and
V 0

max = 120km/h, V 1
max = 120km/h, V 2

max = 70km/h, V 3
max = 58km/h.

FIGURE 16. The number on each lane against t for the bifurcation
problem.

The initial data are a Gaussian beam in J0

u(x, 0) =
∫ x

−300

(
0.475∗exp

(
−0.002(y+50)2

))
dy, (102)

and u(x, 0) = 0 on Ji, i = 1, 2, 3. Both left and right
boundary conditions can be selected as Dirichlet boundary
conditions. The discretization parameters 1x = 1 and 1t =
0.01 fit the CFL condition (60).

The result is shown in Fig. 15 which reveals the following:
• All cars flow into three lanes at the junction point.
• The traffic was slightly blocked at the junction point by
the flux limiter A.

• Finally, all cars enter the three-lane lane with the given
rate βi, i = 1, 2, 3.

The curves of the total number of each lane over time are
shown in Fig. 16. We observe the following:
• The total number of all lanes is strictly unchanged.
• The numbers of cars on J1 and J2 are always the same
and twice the number of cars on J3.

Here, we should note that the total number being
unchanged is very important. This linked the stability of the
Hamilton-Jacobi system.
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FIGURE 17. The time evolution of density (−ux (x, t)) for the merging
problem with parameters α1 = 0.5, α2 = 0.5 and V−1

max = 120km/h,
V−2

max = 120km/h, and V 0
max = 58km/h.

FIGURE 18. The number on each lane against t for the merging problem
with certain merging parameters.

D. NUMERICAL VALIDATION FOR MERGING CONDITION
Then, we test the merging condition.

First, we test the process of merging (M = 2 and N = 1)
by a given percentage β1 = β2 = 0.5 as a zipper. The max
velocities for the lanes are

V−1max = 120km/h, V−2max = 120km/h, V 0
max = 70km/h.

and A = −2.
The computational domain is defined on

Ji = [−300, 0] · ei, i = −1,−2,
J0 = [0.300] · e0. (103)

We set nonzero initial data on both lanes J−1 and J−2.

u(x, 0)=
∫ x

−300

(
0.475∗exp

(
−0.002(y+50)2

))
dy, (104)

and

u(x, 0)=
∫ x

−300

(
0.325∗exp

(
−0.002(y+80)2

))
dy, (105)

respectively. The boundary condition and discretization
parameters are the same as in the above subsection.

FIGURE 19. The time evolution of density (−ux (x, t)) for the merging
problem without certain merging parameters and V−1

max = 120km/h,
V−2

max = 58km/h, and V 0
max = 120km/h.

FIGURE 20. The number on each lane against t for the merging problem
without certain parameters.

The result is shown in Fig. 17 and Fig. 18, which show the
following:
• The two traffic streams flow into J0 at the junction point.
• The traffic was slightly blocked at the junction point by
the flux limiter A.

• The total numbers of all lanes are strictly unchanged.
• Due to the different numbers of J−1 and J−2, there are
still some cars on J−1 after all the cars go away from J−2.
The remaining cars on J−1 will be stuck at the junction
point forever.

Then, we tested the next merging junction condition. The
other conditions remain unchanged. We only change the ini-
tial value on J−2

u(x, 0) =
∫ x

−300

(
0.325 ∗ exp

(
−0.002(y+ 150)2

))
dy.

(106)

The result is changed to Fig. 19 and Fig. 20. Some aspect
has changed because
• The traffic no longer remitted in accordance with a fixed
proportion but in accordance with the current flow of
merging.
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FIGURE 21. The time evolution of a real M-in-N-out problem.

FIGURE 22. The number on each lane against t .

• By the time that t = 7, the traffic on J−1 had already
left. However, the cars on J−2 can still continue to enter
J0 until t = 22.

E. NUMERICAL VALIDATION FOR MULTI-IN-MULTI-OUT
CONDITION
We turn to an M -in-N -out numerical problem in this
subsection.

In this part, we select M = 2 and N = 3. We combine the
above two subsections that in which the nonzero initial data
are on J−1 and J−2. Every condition is unchanged.

A real M -in-N -out numerical problem is shown in Fig. 21
and Fig. 22, which show the following:

• The merging flow goes into the junction point according
to the proportion of the flux.

• The traffic flows into Ji, i = 1, 2, 3 according to a
certain percentage.

• The total number of vehicles is strictly unchanged.

F. APPLICATION TO INTERSECTION WITH
MEASURED DATA
To further verify the validity of the model and calculation
method proposed in this paper, we acquired the measured

FIGURE 23. Diagram of the intersection of Chaoyangmenwai Street and
Dongdaqiao Road.

TABLE 2. Timing status of traffic lights within a time period T = 206s.

data from videos recorded near the intersection of Chaoyang-
menwai Street and Dongdaqiao Road in Beijing (these data
were provided by Kyland Technology Company), and then
we performed numerical simulations using these data.

The east-west direction is Chaoyangmenwai Street, and the
north-south direction is Dongdaqiao Road. There are four
left-turn arrow lights, one direct signal light, one right-turn
signal light and four round-headed lights (a total of ten lights)
in this intersection. The open and close mode of the signal
lamp is shown in this section, part B. The traffic lights are
controlled by multi-period periodic control. There is no green
wave control on the main road. The timing of the signal lamp
is shown in Table 2. The left-turn node is affected by the
direct traffic flow; thus, it is necessary to design the flow
restriction conditions separately.

We have traffic flow detectors at four entrances (turn left,
turn right and go straight). The values enter the incoming
boundary conditions used by the Hamilton-Jacobi equation.
The lanes in the four exit directions are set as the outgoing
boundary conditions.

One of the most important values that we are concerned
with at the intersection is the number of cars in the queue.
To study the number of queued cars, we take one hour
for the numerical simulation of early peak 7:30-8:30, peak
14:00-15:00 and evening peak 17:30-18:30 on June 29, 2019.
We record the maximum number of queued cars at the
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TABLE 3. Comparison of observation and numerical results of maximum queue length at intersections (relative error shown in parentheses).

intersection and compare it with the results of video traffic
photographs, as shown in Table 3.

The above table shows that the numerical results are in
good agreement with the actual data collected by video. The
overall relative error is within ±15%. The largest relative
error occurs during the evening peak of the north entrance,
which is 14.2%, and the smallest occurs during the early peak
time of the south entrance. This result means that the results
of this model have high accuracy both qualitatively and quan-
titatively. The model proposed in this paper is suitable for
studying the problem of traffic flows at such junctions.

V. CONCLUSION
Based on the first-order car-following model in a traffic
network, we use a new macroscopic traffic flow model to
simulate the traffic network. The model is described by a set
of PDEs plus a junction condition. The junction condition
provides the distribution rules of the roads and is often with
a flux limiter. We analytically studied junction conditions.
Then, we studied a numerical method for computing this
system. Finally, we studied the traffic junction numerically
and demonstrated its effectiveness.

The main contributions of this paper are as follows:

• Junction conditions for local perturbation, bifurcation
and merging are proposed;

• Furthermore, the real traffic junction condition (M -in-
N -out) is also proposed;

• An effective numerical method for computing the
Hamilton-Jacobi equations with junction conditions is
proposed;

• The Dirichlet boundary condition, incoming boundary
condition and outgoing boundary condition are pro-
posed;

• The boundedness, regularity and conservation of this
numerical method are proven;

• The influence of flux limiter in traffic flows is studied;
• Numerical studies are presented to demonstrate the
effectiveness of the conditions.
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