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ABSTRACT Massive multi-input multi-output (MIMO) is envisioned as a key technology for the emerging
fifth generation of communication networks (5G). However, considering the energy consumption of the large
number of radio frequency (RF) chains, massive MIMO poses a problem to energy efficiency (EE) require-
ment of 5G. In this paper, we propose an energy-efficient power allocation method for millimeter-wave
(mmWave) beamspace MIMO non-orthogonal multiple access (NOMA) systems, where there may be
multiple users in each selected beam. First, according to the beam selection (BS) results, we get the
precoding matrix through zero-forcing (ZF) beamforming method. Second, we formulate the energy effi-
ciency (EE) maximization optimization problem as a fractional programming. Through sequential convex
approximation (SCA) and second-order cone (SOC) transformation, the original optimization problem can
be transformed to a convex optimization problem. By using iterative optimization algorithm, we can get the
power allocation results. Then, we analyze the convergence of our proposed iterative optimization method
and get that the solution in each iteration is a suboptimal solution to the original non-convex optimization
problem. Simulation results show that the proposed energy-efficient power allocation scheme has better
EE performance comparing with the conventional methods when the transmitted power exceeds the power
threshold.

INDEX TERMS Beamspace, NOMA, energy efficiency, power allocation, convex optimization.

I. INTRODUCTION
With the rapid development of mobile Internet and Internet
of things (IoT), there will be the prediction of 1000-fold
data traffic increase by the year 2020 [1], [2]. Massive
multi-input multi-output (MIMO) and non-orthogonal mul-
tiple access (NOMA) are two key techniques for the com-
ing fifth generation of communication networks (5G), which
work together for satisfying the future large demands of
communication service [3]–[6]. Besides the spectral effi-
ciency (SE), massive connectivity for IoT, lower latency and
diverse compelling services, energy efficiency (EE) is another
key performance indicator (KPI) of 5G, which is more than
100 times the EE of 4G. According to the propagation charac-
teristics of millimeter wave (mmWave), the energy consump-
tion of MIMO-NOMA systems can be reduced by relay [7]
and network densification [8], [9]. However, the energy con-
sumption of circuit, which is proportional to the number of
radio frequency (RF) chains, can degrade the EE performance

The associate editor coordinating the review of this article and approving
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of systems. That’s to say, the large-scale antenna array has
adverse effect on the EE requirement of 5G, although the
large-scale antenna array can offer higher SE by forming
directional beams with high gain.

For meeting the requirement of tremendous data
increase, in the conventional wireless communication resea-
rches, the most widely adopted metrics have been sum
rate maximization (SRMax)\spectral efficiency maximiza-
tion (SEMax) and sum power minimization (SPMin) [31].
In order to deal with the downlink SRMax problem, [10]–[15]
exploited the user pairing and power allocation algorithms,
which are always NP-hard optimization problems. Focus-
ing on user pairing and power allocation, [16] provided an
overview of the resource allocation (RA) algorithms for
downlink NOMA in a categorized fashion.

Besides the SE criteria, with consideration of the huge
information and communication technology energy con-
sumption, EE has recently drawn significant attention.
In [17], under NOMA scenario, the EEMax problem was
formulated as a non-convex fractional programming. Accord-
ing to the established feasible range of transmitting power,
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an EE-optimal power allocation strategy was proposed.
For considering the constraints on minimum user qual-
ity of service and the maximum transmitted power con-
straint, energy-efficient dynamic power allocation in NOMA
networks is explored by using the Lyapunov optimiza-
tion method [18]. Different from energy-efficient power
allocation for MIMO-NOMA with multiple users in a
cluster [19], Haitham et al. investigated the design of an
energy-efficient beamforming technique for downlink trans-
mission in the context of amultiusermulti-input single-output
(MISO) NOMA system [20]. Based on sequential convex
approximation (SCA) and Dinkelbach’s method, the origi-
nal non-convex fractional programming optimization prob-
lem was reformulated, respectively. Two novel algorithms
were proposed for solving the downlink beamforming prob-
lem for the multiuser MISO-NOMA system. Different from
the single-cell EE analyses, [21]–[23] examined the problem
of energy-efficient user scheduling and power allocation in
NOMA heterogeneous networks (HetNets).

In order to further improve the EE, based on beam selec-
tion (BS) method [28], the power consumption of large-scale
antenna array can be reduced by introducing discrete lens
array (DLA) [24], where the SE performance degeneration
is slight comparing with the conventional antenna selec-
tion strategies. By classifying all users into two groups,
i.e., the interference-users (IUs) and noninterference-users
(NIUs), [25] proposed an interference-aware beam selection
(IA-BS) method with keeping only one user in one beam.
In the conventional beamspace MIMO, the number of sup-
ported users cannot be larger than the number of RF chains.
Based on NOMA, combing with DLA, Wang et al. proposed
a spectrum and energy-efficient beamspace MIMO-NOMA
formm-Wave communications [26]. Tomaximize the achiev-
able SR, a dynamic power allocation was proposed by solv-
ing the joint power optimization problem, which included
the intra-beam and inter-beam power allocation. Based on
the Sherman-Morrison-Woodbury formula and iterative opti-
mization method [27], the dynamic power allocation problem
was solved for mmWave massiveMIMO-NOMAwith simul-
taneous wireless information and power transfer. We point
out that the main difference between BS MIMO-NOMA
method [26] and IA-BS method [25] is the number of users
in each selected beam. The former method allows multiple
users in each selected beam; the latter just guarantees that
there is only one user in each selected beam. Especially, it’s
more likely that there are multiple users corresponding to one
selected beam in the user dense scenarios.

According to the above references, we can find that
some papers have discussed the EE performance of
mmWave MIMO-NOMA communication systems. Without
DLA, reference [20] discussed energy-efficient beamforming
design for MISO-NOMA systems. Reference [26] consid-
ered the EE of mmWave beamspace MIMO-NOMA. How-
ever, the power allocation method was designed with SEMax
as metric. Without NOMA and DLA, [29] considered the
joint beamforming and antenna selection (JBAS) problem

under conventional OMA schemes. Especially, with pre-
condition of satisfying the users’ quality of service (QoS),
it makes no sense to purse SRMax blindly.

In this paper, we study on the energy-efficient power
allocation method for mmWave beamspace MIMO-NOMA
systems. The contributions of this paper can be summarized
as follows:
• Based on the BS method for mmWave beamspace
MIMO-NOMA [26] and ZF beamforming technique,
we formulate the energy-efficient power allocation prob-
lem as a non-convex fractional programming, which
considers the constraints of all users, i.e., minimum rate
constraints, successive interference cancellation (SIC)
constraints and maximum power budget. Especially,
complex SIC constraints were ignored in [26].

• The original optimization problem is a fractional pro-
gramming problem. Through SCA and SOC trans-
formation, the EEMax optimization problem can be
reformulated as a convex second-order cone program-
ming (SOCP), which is tractable. We choose iterative
optimization algorithm to solve the reformulated prob-
lem, so get the power allocation results. Then, we ana-
lyze the convergence of the proposed algorithm.

• We verify our proposed energy-efficient power allo-
cation method. The simulation results show that the
proposed iterative optimization method can converge
quickly. Comparing with the conventional power allo-
cation methods, the developed method has higher
EE when the power budget exceeds the power
threshold.

The rest of this paper is organized as follows. In Section II,
we construct the model for the mmWave beamspace
MIMO-NOMA systems and formulate the energy-efficient
power allocation problem. In order to get the power allocation
results, we introduce a series of mathematical transforma-
tions to reformulate the original optimization problem in
Section III. In Section IV, the convergence and computational
complexity analysis is performed. We verify our proposed
power allocation method in Section V. Finally, our conclu-
sions are presented in Section VI.

The following notations are used in this paper. The bold
lower-case and upper-case letters denote vectors and metri-
ces, respectively. (·)T , (·)H , (·)−1, (·)† represent the trans-
pose, Hermitian transpose, inverse, Moore-Penrose matrix
inversion of matrix, respectively. E {·} denotes the expecta-
tion. B denotes the selected beams set and |B| denotes the
number of selected beams. |Ki| and Ki denote the number of
served users and served users set in the i-th selected beam,
respectively. ‖ · ‖2 and | · | denote the 2-norm of a vector and
absolute value of a complex number, respectively. I denotes
the identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we introduce the mmWave beamspace
MIMO-NOMA model [26]. Then, we formulate the energy-
efficient power allocation optimization problem.
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A. SYSTEM MODEL
We consider a single-cell downlink mmWave communication
system, where the base station has N antennas and NRF RF
chains and servesK users. In the conventionalMIMO system,
each antenna corresponds to one RF chain, which means
N = NRF . TheK×1 received signal vector y can be described
as

y = HHWPs+ n, (1)

where n is a K × 1 additive white Gaussian noise (AWGN)
vector, which follows the distribution CN

(
0, σ 2IK

)
; s =

[s1, s2, · · · , sK ]T denotes the K × 1 transmitted signal of
K users and E

{
|si|2

}
= 1, i = 1, · · · ,K ; the K × K

diagonal matrix represents the transmitted power matrix P =
diag {p}, where p can be expressed as a column vector p =[√

p1,
√
p2, · · · ,

√
pK
]T and pi, i = 1, · · · ,K denotes the

power allocation for the i-th user; W =
[
w1 w2 · · · wK

]
denotes the N×K precoding matrix, where wi, i = 1, · · · ,K
is the N × 1 precoding vector for the i-th user; the N × K
channel state information (CSI) matrix is given by H =

[h1,h2, · · · ,hK ], where hi, i = 1, · · · ,K is the N × 1 CSI
vector.

According to themmWave propagation characteristics [11],
the mmWave CSI vector from the BS to the k-th user can be
expressed as follows [26]:

hk = ρ0k a
(
θ0k

)
+

L∑
l=1

ρlka
(
θ lk

)
, (2)

where ρ0k a
(
θ0k

)
is the line of sight (LoS) component of hk ,

in which ρ0k and a
(
θ0k

)
represent the LoS complex gain

and spatial direction information, respectively; ρlka
(
θ lk

)
, i =

1, · · · ,L is the non-line of sight (NLoS) component and L
denotes the total number of NLoS components, in which ρlk
and a

(
θ lk

)
represent the complex gain and spatial direction

information for NLoS, respectively. For the uniform linear
array (ULA), the array steering vector can be represented
as

a (θ) =
1
√
N

[
e−j2πθm

]
,

m ∈
{
q− (N − 1)

/
2, q = 0, 1, · · · ,N − 1

}
. (3)

In (3), θ= d
λ
sin (ϕ) is defined as spatial direction, in which

ϕ=
[
−π

/
2, π

/
2
]
denotes the physical direction, λ and

d = λ
/
2 are wavelength and antenna spacing, respectively.

In order to moderate the SE degradation when we perform
beam selection, by introducing DLA, (1) can be reformulated
as

ỹ = HHUHWPs+ n = H̃
H
WPs+ n. (4)

The DLA acts as an N × N spatial discrete fourier transform
matrix U . According to (3), the matrix U can be repre-
sented as U = [a (θ1) , a (θ2) , · · · , a (θN )], where θi, i ∈
{1, 2, · · · ,N } are defined uniformly ranging from −1 to 1.

H̃ denotes the beamspace CSI matrix, which can be repre-
sented as

H̃ =
[
h̃1, h̃2, · · · , h̃K

]
= [Uh1,Uh2, · · · ,UhK ] . (5)

In (5), h̃i is the beamspace CSI vector for the i-th user.

B. PROBLEM FORMULATION
In the conventional BS system, there is only one user in
one beam. In this part, we focus on cluster based beamspace
MIMO-NOMA, which means that more than one user can be
simultaneously served in one beam through NOMA. Accord-
ing to [26], we select |B| beams to serveK users and |B| ≤ K .
The selected beams set and corresponding user set can be
represented as B and K 1

= {1, 2, · · · ,K }, respectively. With
the beam selection results, we suppose that the i-th (i ≤ |B|)
selected beam serves |Ki| users, where |Ki| and Ki denote
the number of served users and served users set in the i-th
selected beam, respectively. |Ki|meets

∑|B|
i=1 |Ki| = K . With

the beamspace channel vector of the first user (strong user)
in each beam as the equivalent channel vector, the |B| × |B|
equivalent channel matrix Ĥ can be represented as Ĥ =[
ĥ1, ĥ2, · · · , ĥ|B|

]
, where ĥi, i ∈ {1, 2, · · · , |B|} denotes the

equivalent channel vector of i-th selected beam. Through ZF
beamforming technique, we can get the |B| × |B| precoding
matrix Ŵ as

Ŵ =
[
ŵ1, ŵ2, · · · , ŵ|B|

]
=

(
Ĥ
H)†

= Ĥ
(
Ĥ
H
Ĥ
)−1

, (6)

where ŵi, i ∈ {1, 2, · · · ,K } denotes the precoding vector
for i-th selected beam, and all the precoding vectors should
be normalized. For convenience, we use hi,j to denote the
beamspace CSI of j-th user in the i-th selected beam and use
wi instead of ŵi as the normalized precoding vector. The users
are indexed as the descending order of equivalent channel
gains as ∣∣∣hHi,1wi∣∣∣2 ≥ ∣∣∣hHi,2wi∣∣∣2 ≥ · · · ≥ ∣∣∣hHi,|Ki|

wi
∣∣∣2 . (7)

The received j-th user’s signal at the l-th (l ≤ j) user in the
i-th selected beam can be represented by

yli,j = hHi,lwi
√
pi,jsi,j + hHi,lwi

j−1∑
n=1

√
pi,nsi,n

+hHi,l
∑
m 6=i

|Kn|∑
n=1

wm
√
pm,nsm,n + υ li,j. (8)

According to the right side of (8), the first part denotes the
desired signal; the second part is the intra-beam interference,
the third part denotes the inter-beam interference, and the last
part is the noise. The received signal to interference and noise
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ratio (SINR) for the l-th user to decode the j-th user in the i-th
selected beam can be formulated as

r li,j=

∣∣hHi,lwi∣∣2pi,j∣∣hHi,lwi∣∣2 j−1∑
n=1

pi,n +
∑
m 6=i

∣∣hHi,lwm∣∣2 |Km|∑
n=1

pm,n + σ 2

. (9)

Then, the achievable rate of user j in the i-th beam can be
represented as

Ri,j = log2
(
1+min

{
r ji,j, r

j−1
i,j · · · , r

1
i,j

})
. (10)

In this paper, we suppose the bandwidth is a unit bandwidth,
which means SR is equivalent to SE and all K users share the
same spectral resource elements.

For formulating the EE maximization optimization,
we should firstly analyze the total power consumption of the
modeled beamspace MIMO-NOMA communication system.
The total power consumption can be denoted as

Ptot =
1
ε
Ptr + Pext , (11)

in which Ptr is the transmitted power defined as Ptr =
|B|∑
i=1

|Ki|∑
j=1

pi,j; 0 < ε < 1 is the energy efficiency of

power amplifier; Pext denotes the power consumption of
circuits [26], which is given by Pext = NRFPRF +NRFPSW +
PBB; PRF ,PSW and PBB denote the power consumption of
each RF chain, switching and baseband, respectively.

According to the above definitions, the EEMax optimiza-
tion problem can be formulated as follows:

OP1 : max
{pi,j}

EE =

|B|∑
i=1

|Ki|∑
j=1

Ri,j

Ptot
(12a)

s.t. Ri,j ≥ Rmin
i,j , ∀i ≤ |B| , j ≤ |Ki| , (12b)

pi,j ≥ 0, ∀i ≤ |B| , j ≤ |Ki| , (12c)
|B|∑
i=1

|Ki|∑
j=1

pi,j ≤ Pbud . (12d)

In the problem OP1, (12a) denotes the EE of the system,
the numerator of (12a) is the SR, the denominator is the total
power consumption as (11); (12b) means that each user’s
achievable rate should meet the minimum rate requirement 1

Rmin
i,j ; (12c) insures that the optimal power allocation factors

are nonnegative; (12d) guarantees the maximum transmitted
power should not exceed the power budget Pbud .

1Under the assumption of a given SIC decoding order, the constraint (12b)
guarantees SIC performed successfully. In this paper, the SIC decoding order
is the ascending order of equivalent channel gains. Alavi et al. [31] and
Cui et al. [35] also considered about the SIC constraints, where both of
them pointed out that the inter-cluster/inter-beam interference also affects
the SIC decoding process significantly. While Wang et al. [26] simplified
the constraints. Especially, Wei et al. [36] discussed the relationship among
SR, SIC decoding order and target data rate, which in this paper we don’t
discuss them in detail.

As we know, the optimization problem OP1 is a
non-convex fractional programming, which is intractable.
In order to transform the original problem to a tractable one,
in next section, we will reformulate the above optimization
problem by using a series of mathematical transformations,
i.e., SCA, SOC transformation, relaxation and iterative opti-
mization algorithm.

III. SOLVING THE ENERGY-EFFICIENT POWER
ALLOCATION PROBLEM
Different from the Dinkelbach’s method [29], [30], we deal
with the objective function by using a slack variable, so the
objective function is transformed into a linear objective
function. For the non-linear constraints, we deal with them
through SCA [30], [32] and SOCP [32], [34]. By solving
SPMin problem [31], we get the power allocation results.
Then, by using the above results from SPMin as an initial
iteration point, we solve the energy-efficient power allocation
problem through iterative optimization method.

According to references [20] and [29], by introducing two
slack variables α and β, which denotes squared energy effi-
ciency and squared power consumption, respectively. The
original problem OP1 can be equivalently reformulated as
follows:

OP2 : max
{pi,j}

α (13a)

s.t.
|B|∑
i=1

|Ki|∑
j=1

Ri,j ≥
√
αβ, (13b)

Ptot ≤
√
β, (13c)

(12b) (12c) (12d) . (13d)

In OP2, maximizing
√
α is equal to maximizing α.

As we know, the constraint (13b) is non-convex. According
to (10), (13b) can be rewritten as

|B|∑
i=1

|Ki|∑
j=1

log2
(
1+min

{
r ji,j, r

j−1
i,j · · · , r

1
i,j

})
≥
√
αβ. (14)

For dealing with the non-convexity of (14), by introducing
new slack variables δi,j and ηi,j, we define two new constraints
for the j-th user in the i-th selected beam as follows:

log2
(
1+min

{
r ji,j, r

j−1
i,j · · · , r

1
i,j

})
≥ δi,j, (15)

1+min
{
r ji,j, r

j−1
i,j · · · , r

1
i,j

}
≥ ηi,j. (16)

Based on (15), the constraint (14) can be rewritten as

|B|∑
i=1

|Ki|∑
j=1

δi,j ≥
√
αβ. (17)

The new constraint (17) is still non-convex. By using
first-order Taylor series expansion around the point

(
αt , β t

)
,

we can approximate
√
αβ from the upper bound, which can
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be written as√
αβ≤

√
αtβ t+

1
2

√
β t

αt

(
α−αt

)
+
1
2

√
αt

β t

(
β−β t

)
. (18)

With (18), the non-convex constraint (17) can be transformed
into

|B|∑
i=1

|Ki|∑
j=1

δi,j≥
√
αtβ t+

1
2

√
β t

αt

(
α−αt

)
+
1
2

√
αt

β t

(
β−β t

)
.

(19)

Based on (16), we can rewrite the constraint (15) as

ηi,j ≥ 2δi,j . (20)

The Hessian Matrix of the right-hand expression can be

represented as
[
2δi,j(ln 2)2 0

0 0

]
, which means 2δi,j is a convex

function.
Without considering about the other constraints, (20) is a

non-linear convex constraint, which has the exponential func-
tion 2δi,j . About the non-linear programming, the available
non-linear solver such as Fmincon, which is a MATLAB
optimization toolbox, can be used to solve non-linear prob-
lem. The constraint (20) satisfies the constraint types,
which was defined in the CVX guide (Section 4.4) [34],
but it’s a non-linear constraint. Reference [29] proposed
that the constraint (20) can be approximated by a sys-
tem of SOC constraints with a given accuracy. Fortunately,
the new version of CVX tool can approximate the expo-
nential function dynamically. In this paper, we just ignore
the non-linearity of the constraint (20) and let CVX solver
deal with it. Especially, we should pay attention to the
difference between Bit and Nat when we approximate the
exponential function before using CVX toolbox. That’s
because the approximating transformation in [29] is based on
Nat2.
According to (9), the constraint (16) can be reformulated

as ∣∣hHi,lwi∣∣2pi,j∣∣hHi,lwi∣∣2 j−1∑
n=1

pi,n +
∑
m 6=i

∣∣hHi,lwm∣∣2 |Km|∑
n=1

pm,n + σ 2

≥ ηi,j − 1,

(21)

in which i, j and l meet ∀i ≤ |B| , j ≤ |Ki| , l ≤ j, respectively.
We point out that i, j and l satisfy the above constraints in
the following content of section III if we don’t state them
again. The constraint (21) is still non-convex, by introducing
a new auxiliary variable ϑi,j ∈ R1

+ (∀i ≤ |B| , j ≤ |Ki|), then
the constraint can be reformulated into two new constraints
as follows:∣∣∣hHi,lwi∣∣∣2pi,j ≥ (ηi,j − 1

)
ϑi,j, (22a)

2Bit and Nat are two different units of information.

∣∣∣hHi,lwi∣∣∣2 j−1∑
n=1

pi,n +
∑
m 6=i

∣∣∣hHi,lwm∣∣∣2 |Km|∑
n=1

pm,n + σ 2
≤ ϑi,j.

(22b)

The constraint (22a) is a quadratic non-convex constraint.
With first-order Taylor series expansion around the point(
ηti,l, ϑ

t
i,l

)
, (22a) can be rewritten as∣∣∣hHi,lwi∣∣∣2pi,j ≥ (ηti.j − 1

)
ϑ ti,j + ϑ

t
i,j

(
ηi,j − η

t
i.j

)
+

(
ηti.j − 1

) (
ϑi,j − ϑ

t
i,j

)
. (23)

The constraint (22b) is a linear convex constraint about vari-
ables pi,j and ϑi,j.

We can certify that the right-hand expression of (13c) is a
concave function, so the constraint (13c) is convex. By intro-
ducing auxiliary variable β̃, we can transform the original
constraint (13c) into new constraints as follows:√

β ≥ β̃, (24a)

β̃ ≥ Ptot . (24b)

According to SOCP, the constraint (24a) can be reformulated
as

β + 1
2
≥

∥∥∥∥∥
[
β − 1
2

, β̃

]T∥∥∥∥∥
2

. (25)

The constraint (25) is equal to (24a).
According to the minimum rate requirement Rmin

i,j of i-th
user in the j-th selected beam, the minimum SINR require-
ment rmin

i,j can be represented as rmin
i,j = 2R

min
i,j − 1. On the

basis of (9), the constraint (12b) can be rewritten as∣∣hHi,lwi∣∣2pi,j∣∣hHi,lwi∣∣2 j−1∑
n=1

pi,n +
∑
m 6=i

∣∣hHi,lwm∣∣2 |Km|∑
n=1

pm,n + σ 2

≥ rmin
i,j .

(26)

The above inequation can be reformulated as∣∣∣hHi,lwi∣∣∣2pi,j − rmin
i,j (PIntra + PInter ) ≥ rmin

i,j σ
2, (27)

where PIntra denotes the power of intra-beam interfer-

ence
∣∣hHi,lwi∣∣2 j−1∑

n=1
pi,n, the power of inter-beam interference

∑
m 6=i

∣∣hHi,lwm∣∣2 |Km|∑
n=1

pm,n is denoted by PInter . Based on the

above mathematical transformations, the original optimiza-
tion problem OP1 can be reformulated as follows:

OP3 : max
{pi,j}

α (28a)

s.t. (19) (20) (23) (22b) (25)

(24b) (27) (12c) (12d) (28b)

Especially, we point out that the constraint (13c) is convex
and non-linear. By using SOC, we transform it into two new
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constraints (24b) and (25). That’s because with considering
about the constraint (20), the solver for SOCP is faster than
the average time of non-linear solver [29].

In order to solve the problem OP3, we choose iterative
method. The initial iterative point can be got by solving a
SPMin problem, which can be formulated as follows:

OP4 : min
{pi,j}

|B|∑
i=1

|Ki|∑
j=1

pi,j (29a)

s.t. Ri,j ≥ Rmin
i,j , (29b)

pi,j ≥ 0, (29c)
NRF∑
i=1

|Si|∑
j=1

pi,j ≤ Pbud . (29d)

By solvingOP4, we can get the initial power allocation results
defined as a K × 1 vector p0. We denote the initial point by(
α0, β0, η0,ϑ0). And β0 can be calculated from (13c); based
on (13b) and β0, α0 can be got; ϑ0

i,j can be achieved by (22b);
η0i,j can be got through (22a).
After getting the initial point, we use iterative method to

solve the problem OP2. We supposed that the initial point
of (t+1)-th iteration is defined as

(
αt , β t , ηt ,ϑ t

)
. With the

above initial point, we can get pt+1 and
(
αt , β t , ηt ,ϑ t

)
by

solving OP3. The iteration procedure continues until achiev-
ing the pre-defined accuracy ε or maximum number of iter-
ations Tmax. The accuracy 3 ε is defined as the difference
between two sequential optimal values (the square root of α).
Especially, without the pre-defined accuracy, the algorithm
will continue doing iteration with just few changes of optimal
value (EE value). Above all, we summarize the procedure of
the proposed iterative optimization method in Algorithm 1.

Algorithm 1 Proposed Iterative Optimization Algorithm

Input:
(
α0, β0, η0,ϑ0)

Output: The optimal power allocation result p∗.
1 Initialization: Set t = 0, by solving OP4, get the initial
power allocation vector pt , then generate the initial point(
αt , β t , ηt ,ϑ t

)
;

2 while ε ≤ 0.01× 10−3 or t ≤ Tmax do
3 t = t + 1;
4 Solve OP3, get the power allocation vector pt+1 and

the next initial point
(
αt+1, β t+1, ηt+1,ϑ t+1

)
;

5 end

3The accuracy is set differently according to the unit of power. Based on
OP2, the optimal EE value of each iteration is calculated by taking square
root of α. If the unit of power is Watt (W), the accuracy ε is formulated as
ε=
√

αt+1 −
√
αt and the termination criterion is expressed as ε ≤ 0.01.

Otherwise, if the unit is Milliwatt (mW), we can rewrite the termination
criterion as ε ≤ 0.01 × 10−3. That’s because, comparing with Watt,
the optimal EE of t-th

√
αt should be multiplied by 103 under mW scenario,

which ensures the unit of EE is bit/J/Hz. In this paper, we choose mW, so the
adopted termination criterion is ε ≤ 0.01× 10−3.

IV. CONVERGENCE AND COMPUTATIONAL
COMPLEXITY ANALYSIS
A. CONVERGENCE ANALYSIS
The reference [29] analyzed the convergence of its proposed
SCA-based beamformer design for EEMax, where iterative
optimization algorithm was introduced to solve the original
optimization problem. About the optimality, [20] used the
Dinkelbach’s method as the benchmark to verify the optimal-
ity of the proposed algorithm; [29] proved that the solutions
of iterative algorithm satisfy the Karush-Kunhn-Tucker con-
ditions via simulations.

Before we analyze the convergence of the proposed iter-
ative algorithm, we point out that the SCA transformation
is a sequential parametric convex approximation (SPCA)
type method [38]. Given that

√
αβ in (18) and

(
ηi,j − 1

)
ϑi,j

in (22a) are two nonconvex functions, the SCA transforma-
tion of this paper is a convex upper approximation4. That’s
because the first Taylor series expansion result is less or equal
to the original nonconvex function.

For ensuing analysis, we use
{
αt
}
to denote the set of

optimal value of each iteration via the proposed algorithm;
g (α, β) and G (α, β) denote the left part and the right part

of (18), respectively; SRt=
|B|∑
i=1

|Ki|∑
j=1
δti,j denotes the sum rate

of the t-th iteration, where δti,j is the optimal value of slack
variable δi,j in the t-th iteration. According to OP2 and OP3,
we can reformulate a new optimization problem, where the
nonconvex constraints (17) and (22a) have not been trans-
formed via SCA method. The new optimization OP5 is pre-
sented as follows:

OP5 : min
{pi,j}

α (30a)

s.t. (17) (20) (22a) (22b) (25)

(24b) (27) (12c) (12d) . (30b)

Based on the analyses in Section III, we point out that OP5 is
equivalent to OP1.

According to the Lemma 2.2 and Corollary 2.3 in [38],
we can get the conclusion that the sequence

{
αt
}
is conver-

gent. Next, we proof the above conclusion.
Proof
For t ≥ 0, in the t-th iteration, the constraint (19) can be

represented as

g (α, β) ≤ G
(
α, β, αt−1, β t−1

)
≤ SRt . (31)

We get αt and β t via solving the convex optimization problem
OP3. By substituting αt and β t into (31), we can get the
following result

g
(
αt , β t

)
≤ G

(
αt , β t , αt−1, β t−1

)
≤ SRt . (32)

4We perform SCA transformation by using first order Taylor series expan-
sion, which is a convex upper approximation of original nonconvex function
in this paper. If the original function is concave, the SCA is different, where
the original concave function is approximated from the lower bound [37].
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TABLE 1. Optimal value (maximum EE) of each iteration.

In the (t + 1)-th iteration, (19) can be described as

g (α, β) ≤ G
(
α, β, αt , β t

)
≤ SRt+1. (33)

As the number of iterations increases, the SR meets SRt ≤
SRt+1, which means that SR is a nondecreasing function.
According to (32) and (33), we can get

g
(
αt , β t

)
≤ SRt+1, (34)

which means that
(
αt , β t

)
is a feasible point of the optimiza-

tion problem corresponding to the (t+1)-th iteration. Suppose
that themaximum sum rate corresponding to the original non-
convex optimization problem OP5 is SR∗, according to (34),
we can get

g
(
αt , β t

)
≤ SRt+1 ≤ SR∗, (35)

which means
(
αt , β t

)
is a feasible point of non-convenx

optimization problem OP5. By solving OP3, we can get that
the next optimal value αt+1 meets αt+1 ≥ αt , which indi-
cates that the optimal value is nondecreasing. Considering
the bounded power constraint, our proposed energy-efficient
power allocation design is convergent.

According to (32) and (35), we supposed that the iteration
terminates in the n-th iteration, (32) can be reformulated as

g
(
αn, βn

)
≤ G

(
αn, βn, αn−1, βn−1

)
≤ SRn ≤ SR∗, (36)

where the equality can be established when (αn, βn) =(
αn−1, βn−1

)
. With the above analyses, we can analyze the

convergence of (23) in the same way.
About the optimality, according to the Proposition 3.2

in [38], the proposition clarified that if the convergent point
generated by the SPCA method is a regular point, then the
convergent point is a KKT point of original nonconvex prob-
lem. In this paper, it’s hard to prove the strong convexity of the
objective function and whether the convergent point αn is a
regular point or not, which are beyond the scope of this paper.
However, according to (36), we can get that the solution to
OP3 in each iteration is a suboptimal solution to the original
non-convex optimization problem OP5.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
The CVX toolbox uses interior-point algorithm for solving
SOCP programming. According to [37] and [39], we can get
that the computational complexity of interior algorithm for
SOCP programming is based on the number of variables,
constraints and constraint dimensions.

According to the optimization problem OP3, the total
number of constraints is 4 (1+ K ) + qc, where qc is a
constant related to the number of constraints which are
from the relaxation of the exponential constraints [20].

Then, the total number of iterations to decrease the dual-
ity gap to a constant fraction of itself is bounded above
by O

(
log

(
1
E

)√
4 (1+ K )+ qc

)
, where ε is the required

accuracy of the iterative algorithm. The amount of work per
iteration is O

(
(4 (1+ K )+ qc)2 (5 (1+ K )+ qc)

)
, where

4 (1+ K ) + qc and 5 (1+ K ) + qc are the total number of
variables and constraint dimensions, respectively.

V. SIMULATION RESULTS
In this section, the performances of the proposed energy-
efficient power allocation method for mmWave beamspace
MIMO-NOMA scheme are evaluated through numerical sim-
ulations. In this paper, we just consider a single-cell downlink
communication system, where the base station has N =

256 antennas and the antenna spacing is half of wavelength.
We define ε = 1. The number of selected RF chains
is variable according to the different transmission strate-
gies (schemes), which are based on different beam selec-
tion methods. For example, if we adopt full digital (FD)
transmission strategy, the number of selected RF chains is
NRF = N = 256; if we choose BS strategy, the number is
NRF ≤ K , which has been discussed in the above section.
We suppose that the base station has perfect beamspace CSI
of all users. The parameters of the proposed iterative algo-
rithm are identical to Algorithm 1.

A. CONVERGENCE OF PROPOSED POWER
ALLOCATION METHOD
In order to evaluate the convergence of the proposed iterative
algorithm, we set K = 20, transmitted power5 Ptr = 25dBm
and SNR = 10dB. Specially, in order to show the convergence
property, we just set the termination criterion as Tmax = 30.
The optimal values of each iteration are showed in TABLE 1,
where we just display the results of preceding eleven itera-
tions. Fig. 1 demonstrates the convergence of our proposed
algorithm. According to TABLE 1, with pre-defined accuracy
ε ≤ 0.01×10−3, we can find that the iteration will terminate
in the 11-th iteration.

B. SE AND EE AGAINST TRANSMITTED POWER
We study the performance of our proposed energy-efficient
power allocation method against different transmitted
power Ptr . For comparing, we also study the power allocation
method with maximizing SR as the criterion and analyze
the fixed power allocation under FD system and BS-OMA

5In the following simulations, we substitute transmitted power Ptr for
power budget Pbud . For maximizing the sum rate, we know that FD,
BS-OMA and BS-NOMA SRMax allocate all the transmitted power. How-
ever, the proposed power allocation method just consumes a portion of
transmitted power when Ptr is higher than a power threshold, which is
defined as an abscissa value of inflection point.
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FIGURE 1. The convergence of the proposed iterative optimization
algorithm, where K = 20, Ptr = 25dBm, SNR = 10dB.

FIGURE 2. The SE against transmitted power, where K = 5, SNR = 10dB.

system. In this part, we set K1 = 5 and K2 = 20. The
simulations are performed under SNR1 = 10dB.
From Fig. 2, we find that when the transmitted power

is high enough, the SEs of the proposed energy-efficient
power allocation schemes (BS-NOMA EEMax) remain sta-
ble, where ‘‘high enough’’ means that the transmitted power
is bigger than the power threshold (the abscissa value of
inflection point of asterisked curve in Fig. 3). The asterisked
curve denotes the EE of BS-NOMA SRMax.

However, the SEs of the other three schemes augment with
the increase of transmitted power. Especially, the BS-NOMA
EEMax and BS-NOMA SRMax have the nearly same SE
performance when the transmitted power is lower, which
means that Ptr is smaller than the power threshold. Fig. 3
depicts that the EE of the proposed scheme remains stable
when the transmitted power is high enough. The BS-NOMA
SRMax increases and then goes down when the transmitted
is enough high.

From Fig. 5, we can find that the inflection point of
asterisked curve shifts to the right side, which means that
the power threshold augments. That’s to say, as the num-
ber of users increases, more transmitted power is required
to reach the maximum EE point. Comparing with Fig 2,

FIGURE 3. The EE against transmitted power, where K = 5, SNR = 10dB.

FIGURE 4. The SE against transmitted power, where K = 20, SNR = 10dB.

FIGURE 5. The EE against transmitted power, where K = 20, SNR = 10dB.

the Fig. 4 depicts that the SE value of inflection point of
BS-NOMA EEMax is much bigger than that in Fig. 2.
However, according to Fig. 3 and Fig. 5, we can find that
the EE gap between maximum EE of BS-NOMA EEMax
in Fig. 3 and that in Fig. 5 is small. That’s because as the
number of user increases, more RF chains are required to
be activated. The power consumption of the circuits can’t be
overlooked, which is the main reason of carrying out beam
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TABLE 2. Power allocation results (mW), where K = 20, SNR = 10dB, Ptr = 40dBm.

FIGURE 6. The SE against number of users, where Ptr = 40dBm,
SNR = 10dB.

FIGURE 7. The EE against number of users, where Ptr = 40dBm,
SNR = 10dB.

selection/antenna selection. The power exhausted by RF cir-
cuits can degrade the EE performance of communication
system.

C. SE AND EE AGAINST NUMBER OF USERS
In this section, we evaluate the performance of the pro-
posed energy-efficient power allocation scheme under dif-
ferent number of users. Fig. 6 depicts that the SEs of FD
and BS-OMA remain almost unchanged, while the other
two schemes augment as the number of users increases.
Fig. 7 indicates that the proposed power allocation scheme
has best EE performance comparing with the other three
schemes. As shown in Fig. 5, we find that the power threshold

FIGURE 8. The SE under dense user scenario, where K = 20,
Ptr = 35dBm, SNR = 10dB.

is Ptr = 30dBm. Therefore, the proposed scheme has better
EE performance when the transmitted power isPtr = 40dBm.

D. POWER ALLOCATION RESULTS UNDER
DIFFERENT SCHEMES
We study on the power allocation results of BS-NOMA
SRMax, BS-NOMA EEMax. TABLE 2 depicts that the
BS-NOMA SRMax consumes the total transmitted power
to maximize the SR, while BS-NOMA EEMax just uses a
portion of the transmitted power. That’s because the trans-
mitted power exceeds the power threshold, where the power
threshold is 30dBm as depicted in Fig. 5 and the transmitted
power in TABLE 2 is 40dBm. In the BS-NOMA schemes
(BS-NOMA SRMax and BS-NOMA EEMax), User 2 and
User 3 are in the same beamspace and there exists power gap
between the above two users.

E. SIMULATION UNDER DENSE USER SCENARIO
In this simulation, we consider a dense user scenario, where
there is a high probability that several users may be in one
selected beam. Therefore, different from the previous CSI
setup, we suppose that several users have the same spatial
direction information of LoS path but with different path gain,
and NLoS components of each user can modeled according
to the corresponding LoS path. The constructed dense user
scenario is suitable for large-scale conference room, sports
center and so on, where multiple users may locate in the same
beam.

From Fig. 8 and Fig. 9, we can find that under dense
user scenario, the BS-NOMA EEMax scheme has better
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FIGURE 9. The EE under dense user scenario, where K = 20,
Ptr = 35dBm, SNR = 10dB.

EE performance comparing with the BS-NOMA SRMax,
although the latter scheme outperforms the former scheme in
terms of SE. The transmitted power is 35dBm, which exceeds
the power threshold corresponding to 6 users. Hence, in terms
of EE, the BS-NOMA EEMax performs better than the other
three schemes.

VI. CONCLUSION
In this paper, we focus on the energy-efficient power allo-
cation for mmWave beamspace MIMO-NOMA communi-
cation systems. According to the BS results, we get the
precoding matrix trough ZF beamforming technique. The
EEMax problem is formulated as a fractional programming
problem. By using SCA and SOC transformation, the original
fractional optimization problem is transformed into a con-
vex optimization problem, which is solved through iterative
optimization algorithm. Then, we analyze the convergence
of the proposed iterative optimization algorithm. Simulation
results show that the proposed power allocation scheme has
same EE performance with the BS-NOMA SRMax when
the transmitted power is lower than the power threshold;
the proposed scheme has better EE performance when the
transmitted power exceeds the threshold.
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