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ABSTRACT Along with the development of digital health, efficient machine learning is anxiously needed
to handle the growing health data. Among various machine learning algorithms, back propagation neural
network (BPNN) shows great effectiveness in both academia and industrial fields. However, it is frequently
reported that the conventional BPNN algorithm encounters low efficiency issue in dealing with large-scale
digital health data. Therefore this paper presents a Hadoop based parallelized BPNN algorithm which is
able to process the large-scale data efficiently. In order to complement the potential accuracy loss issue
for the parallelized data processing, ensemble learning techniques are also involved. Additionally although
Hadoop supplies a number of default schedulers, the heterogeneous distributed computing environment
may still impact the efficiency of the parallelized BPNN. Consequently, this paper also presents a gene
expression programming (GEP) algorithm based load balancing approach, which enables the computing
resource awareness and the optimal scheduling of the parallelized BPNN. The experiments employ the
classification task as the underlying testing basis. Two types of the experiments are carried out, in which
the first one focuses on evaluating the accuracy of the presented algorithm with classifying the benchmark
dataset; the second one focuses on evaluating the efficiency of the presented algorithm with classifying
the large-scale dataset. The experimental results show the effectiveness of the presented resource aware
parallelized BPNN algorithm.

INDEX TERMS Back propagation neural network, parallelization, Hadoop, load balancing, gene expression

programming.

I. INTRODUCTION

At present, machine learning technologies have been signif-
icantly applied in the digital health researches to achieve the
classification, optimization, function approximation, pattern
recognition, and so on. Among a number of machine learning
algorithms, artificial neural network (ANN) has been proved
to be one of the most effective algorithms to solve the prac-
tical problems [1]-[6], [30]-[33]. In various types of ANN
algorithms, back propagation neural network (BPNN) has
been widely studied due to its remarkable function approxi-
mation abilities. For example, Almaadeed et al. [1] employed
multimodal neural networks including BPNN for voice iden-
tification. Fan ef al. [2] also successfully employed BPNN to
implement the respiratory monitoring which is an important
tool for clinical monitoring.
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However, in the recent years due to the development of the
data collection and the storage technologies, the volume of
data has been increasingly enlarged. In current big data era,
researchers adopted BPNN to carry out the large-scale data
analysis [3], [4]. However, the authors pointed out that BPNN
encounters low efficiency issue for handling the large-scale
data. Therefore, quite a number of efforts have been done to
solve the issue. Li et al. [5] presented a BPNN algorithm with
a self-adaptive learning speed in the training phase. Based
on the experimental results, their algorithm performs effi-
ciently compared to the constant learning speed based BPNN.
Liu et al. [6] also designed a hierarchical neural network
for processing the large-scale geometry information. Their
work indicates that the neural network has great potential
and effectiveness to process the large-scale data. However,
the processing efficiency should be carefully considered.
In terms of large-scale data processing using the neural net-
work, Gu et al. [7] pointed out that the most time-consuming
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phase is the training phase. Therefore the authors presented
cNeural which is an in-memory computing based distributed
neural network aiming at improving the training efficiency.
Although the experimental results indicate that the algorithm
is effective, their simple in-memory distributed computing
platform has been significantly limited by the participated
volume of memory, the lack of the fault tolerance, and the
lack of the load balancing. As a result, the well-developed
distributed computing infrastructures or frameworks with
the advanced distributed computing oriented characteristics
become effective tools in enabling the parallelization of the
neural network.

Huqqani et al. [8] established an OpenMP (Open Multi-
Processing) based distributed computing environment for
parallelizing the neural network. Their parallelization is
based on the separation of the structural and topological data.
However, the simple data separation may result in insufficient
training of the network, which further leads to the accuracy
loss issue. And also although OpenMP can improve the uti-
lization of the multi-core system, it is still limited by the
participated memory to process the extreme large-scale tasks.
Research [9] presented a parallel artificial neural network
using MPI (Message Passing Interface). However, the impact
of the heterogeneity of the cluster has not been discussed.
As a result, Hadoop [10] which is a MapReduce comput-
ing model [11] based distributing computing framework has
been widely employed by quite a number of researchers.
Liu et al. [12] presented a MapReduce based distributed
BPNN for processing large-scale mobile data. They also
separated the training dataset into a number of data chunks
and further employed adaboosting to complement the algo-
rithm accuracy loss caused by the data separation. However,
the simple sampling technique employed by adaboosting
may enlarge the weight of wrongly classified data, which
would deteriorate the algorithm accuracy. Liu et al. [13], [29]
employed bagging technology instead of adaboosting to over-
come the accuracy loss issue caused by the data separation
in the parallelization. Based on the experimental results, their
Hadoop based parallelized BPNN can maintain accuracy with
satisfied efficiency for classifying large-scale data.

The aforementioned researches indicate that the paral-
lelized BPNN benefits from the advantages of the Hadoop
framework. However, several researches pointed out that the
load imbalance issue of the distributed training significantly
impacts the data processing efficiency in a heterogeneous
Hadoop cluster [17], [19], [29]. Although Hadoop has a num-
ber of default schedulers such as FIFO, fair scheduler, and
capacity scheduler, these universal schedulers cannot adapt to
various kinds of Hadoop jobs [14]-[16]. Additionally sched-
uler designed for a specific type of Hadoop job [14]-[16] may
not serve the other types of the jobs well [17]. Research [17]
also presented a load balancing algorithm which can serve
multiple types of Hadoop jobs. However, the authors admitted
that their algorithm only considers the load balancing among
mappers so that if the imbalance occurs in reducers the perfor-
mance of the algorithm may deteriorate. Therefore, a proper

VOLUME 7, 2019

scheduler specially serving the parallelized BPNN training in
the heterogeneous Hadoop cluster is quite necessary.

In order to process the large-scale data using BPNN in
a heterogeneous Hadoop cluster efficiently and accurately,
this paper presents a resource aware parallelized BPNN algo-
rithm. Based on the data separation, the standalone BPNN
can be parallelized into a number of parallel sub-BPNNs,
each of which inputs one separated data chunk to process.
In order to handle the insufficient training and the accuracy
loss issues due to the data separation, ensemble techniques
including bootstrapping and majority voting are employed.
By aggregating the outputs of the sub-BPNNs, the accuracy
of the presented algorithm can be improved. Additionally,
this paper further employs the gene expression program-
ming algorithm to reveal the relations between the processing
capacity of the cluster and the Hadoop parameters. And then
the genetic algorithm is adopted to optimize the parameters
according to the divisible load theory. Based on the optimized
parameters, the load balancing can be achieved and therefore
the efficiency of the presented parallelized BPNN running in
the Hadoop cluster is able to be improved.

The rest of the paper is organized as: section II briefly
presents the principles of BPNN and Hadoop; section III
gives the details of parallelizing BPNN in Hadoop; section IV
introduces the scheduler design focusing on improving the
efficiency of the distributed training; section V shows and
discusses the experimental results; section VI concludes the

paper.

Il. BRIEF INTRODUCTION OF BPNN AND HADOOP
FRAMEWORK

A. BACK PROPAGATION NEURAL NETWORK (BPNN)

Fig. 1 shows a typical three-layer BPNN with one input layer,
one hidden layer, and one output layer as an example. The
input layer contains a number of n inputs; the hidden layer
contains a number of p neurons; the output layer contains a
number of / outputs.

Input layer Hidden layer Output layer
e L N\ 7 L N\ —
Vi
ini
outi
. y2
mn?2
outi
inn Vp
IN Y our
FIGURE 1. The structure of a typical BPNN.
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Let IN = (iny, ina,...,in,)T denote one input data
instance; ¥ = (y1, y2, ..., yp)T denote the output of the hid-
den layer; OUT = (outy, outy, . .., outl)T denote the output
of the output layer; D = (dy,d>, ..., d; )T denote the actual
value; wij and by (i = 1,2,...,n;j = 1,2,..., p) denote
the weights and biases between the input layer and the hidden
layer; wig and by (j = 1,2,...,p;k =1,2,...,1) denote the
weights and biases between the hidden layer and the output
layer. Sigmoid function [34] indicated by (1) is selected as the
activation function.

f@=1/0+e™) ey

Therefore, in the feed forward phase:

yi =f1)_ (wgini+bp)l, j=1.2.....p (2
i=1

P
outy, =fIY_ (wpyj+b)l. k=12....1 (3
j=1

The feed forward phase completes.
In the back propagation phase, let E denote the discrepancy
between OUT and D. Therefore E can be represented by (4).

I
. 1 2 1 2
E=3(D-0UT) = ;(dk outy) “4)

Further, E can be derived from the back layer to the front
layer. Therefore, for the output layer and the hidden layer,
E can be represented by (5) and (6) respectively.

l 14
1
E= 5 Z {dk —f[Z Wiky; + b1} 3)
k=1 j=1
1 ! p n
E=3 2 {di —f[; (wjkf[l; (wyini + bi)] + b))

(6)

According to (4) to (6), the back propagation phase is able to
tune the weights w and biases b of the output layer and the
hidden layer based on the gradient descent. Let o denote the
learning speed, @ € (0, 1). Equations (7) and (8) indicate
the details of the tuning.

oFE
Aw=—a—, w=w+Aw 7)
aw
Ab oF b=>b+ Ab (8)
= —0—:, =
ab

The back propagation phase completes.

After a number of epochs, the training terminates. The
trained network can be employed for the testing using the
testing data instances by executing only feed forward.

B. HADOOP FRAMEWORK
Hadoop framework is a famous implementation of MapRe-
duce computing model which provides the parallel computing
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mainly based on the Map and Reduce functions. As an impor-
tant component of Hadoop framework, Hadoop Distributed
File System (HDFS) supplies remarkable data storage and IO
abilities which significantly facilitate the big data processing.
In HDFS, data instances are stored in data chunks in the form
of key-value pairs for example {k1, v1}. Hadoop framework
also provides another two important components including
mapper and reducer which are the implementations of the
Map and Reduce functions of MapReduce computing model.
Mainly the mappers serve the parallel data processing and
the reducers collect the intermediate outputs from the map-
pers and generate the final output. When a Hadoop cluster
starts a job, a number of mappers will be started in parallel,
each of which reads one data chunk containing several data
instances from HDFS and starts processing according to k1.
The mappers keep generating the intermediate outputs in the
form of {k2, v2}. The reducers collect and further process
the intermediate outputs according to k2. At last, the reducers
generate the ultimate outputs which are finally saved into
HDFS again. The computing resources of Hadoop are man-
aged by YARN [10] which supplies a number of schedulers
for example capacity scheduler, fair scheduler, and FIFO
scheduler. The main architecture of the Hadoop framework
is shown in Fig. 2.

Ill. THE PARALLELIZATION OF BPNN

The parallelization of BPNN is based on the data separation.
However, the researches [13], [18], [29] pointed out that the
simple separation of the training data leads to accuracy loss in
the testing phase. Therefore this paper employs bootstrapping
and majority voting to improve the accuracy for the paral-
lelized BPNN.

Bootstrapping is a sampling algorithm which has ability
to simulate the original sample distribution in the sampled
data [27]. The basic concept of bootstrapping is to control
the appearance time of the training instances in the sampled
samples. In order to implement bootstrapping, replacement
method can be employed. Based on certain bootstrapping
number, each training instance appears exactly the same time.
The original sample distribution can be maintained in the
separated sample data chunks using bootstrapping. Majority
voting [28] is proved to be an effective way of combining
a number of weak classifiers into a strong classifier. Based
on the voted result from each participated weak classifiers,
majority voting has a higher chance to achieve the correct
result.

In the training phase, our work firstly adopts bootstrapping
to generate a number of m bootstrapped data chunks based on
the original training dataset, where m is the number of map-
pers employed to run the algorithm. Let 7' denote the original
training dataset; 7, b = 1, ..., m denote a bootstrapped data
chunk. Therefore T and T}, satisfy | J;_, T, = T. In each
data chunk, a specially designed format for each training
instance is:

{instance;, target;, instancetype}
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FIGURE 2. The architecture of the Hadoop framework.
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FIGURE 3. The training phase of the parallelized BPNN.

where instance; represents the normalized i instance in a
data chunk; target; represents the encoded output of instance;;
The instancetype field is filled a string “training” to explic-
itly indicate that instance; is a training instance.

Secondly, each mapper initializes one BPNN (sub-BPNN)
inside itself with the random initial parameters. And then each
mapper inputs one data chunk from HDFS respectively. As a
result, the training instances saved in the data chunk can be
finally input into the mapper moreover into the sub-BPNN
one by one. If the instancetype is “training”’, the sub-BPNN
in the mapper executes the training operation. The instance;
is processed by the feed forward using (2) to (3) whilst the
encoded target; is employed to tune the network parameters
by the back propagation using (4) to (8). After a number
of epochs, the training of the sub-BPNN terminates. As a
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result, for the number of m mappers, a number of m trained
classifiers are created in the Hadoop cluster. The training
phase of the parallelized BPNN is shown in Fig. 3.

In the testing phase, let 7, denote the testing dataset;
instance; denote one normalized testing instance in T,
instance € T,. As long as the testing phase starts, each
testing instance; is input into all the number of m previously
trained mappers. In each mapper, instance; is identified by the
sub-BPNN using only feed forward according to (2) to (3).
And then the mapper outputs an intermediate output in the
{key-value} form:

{instance;, output,}

where output, represents the result for instance; processed
by the mapper so that a number of m mappers finally output
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FIGURE 4. The collection formed by the reducer.

a number of m intermediate outputs for the testing instance
instance;. Afterwards the parallelized BPNN algorithm starts
one reducer to collect all the number of m intermediate out-
puts. Finally, a collection of the key instance; with a number
of m results is aggregated. Fig. 4 shows an example of the
collection.

Inside the collection, majority voting votes the final result
result for instance;. The result with the maximum number
of occurrence in the collection is voted as the final result.
At last the final result for instance; is saved into HDFS in
the form of:

{instance;, result}

The testing phase keeps running until all the testing instances
in T, are identified. And then the parallelized algorithm
terminates. Fig. 5 shows an example that the testing phase
of the parallelized BPNN processes a testing instance;. The
algorithm finally decides that output; is the final result.

IV. SCHEDULER OPTIMIZATION OF THE HADOOP
FRAMEWORK

A. HADOOP PARAMETERS IMPACTING DATANODE
PROCESSING TIME

Although Hadoop provides a number of universal schedulers
to balance the load for a heterogeneous cluster, a number of
researches for example [17], [20] pointed out that the default
schedulers may not work well for arbitrary types of jobs.
Therefore a number of specially designed load balancing
algorithms which are frequently based on the data locality
or the modeling of the Hadoop job processing are presented.
However, it has been admitted that the scheduler optimization
based on the data locality cannot fully utilize the cluster
resources [19]. Moreover, the scheduler optimizations using
the modeling of Hadoop [17], [20] claimed that the modeling
is extremely complicated because of the complex workflows
and intertwined parameters of the Hadoop framework. As a
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FIGURE 5. The testing phase of the parallelized BPNN.
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FIGURE 6. Identification of the processing time ¢ of a DataNode.

result the authors can only concentrate the modeling of the
mapper, whilst the modeling of the reducer is neglected.
Research [21] presented a GEP based Hadoop parameter
optimization in enabling the improvement of the cluster effi-
ciency. However, the authors mined the correlations of the
processing time and the Hadoop parameters based on the
entire cluster, which may lose accuracy of measuring the pro-
cessing capacity of individual DataNodes in the cluster.

The aforementioned difficulties motivate us that if a pattern
(processing capacity) of a working DataNode can be recog-
nized, the complicated mathematical modeling of the node
could be avoided. Therefore, the awareness of the processing
capacity of one DataNode can be great helpful of balancing
load among multiple DataNodes. This paper evaluates the
processing capacity mainly represented by the processing
time of each individual DataNode in the cluster, which eases
the identification of the correlations between the nodal pro-
cessing time and the Hadoop parameters.

Fig. 6 shows a working DataNode contributing a number
of a mappers and a number of b reducers to the cluster. The
processing time ¢ of the DataNode can be determined by the
dependent variables x which represent a number of n parame-
ters (including input data size and Hadoop framework param-
eters controlling the data processing) and a mathematical
equation f. Therefore, based on the history experimental ¢
and x, a proper equation f could be mined.
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However, it should be realized that there are a great number
of the parameters which may affect the processing time of
the Hadoop framework. The great number of the parameters
may significantly impact the function mining and the solution
of the optimized scheduler. Therefore in order to mine the
equation f and facilitate the solution of the optimized sched-
uler, firstly a proper number of Hadoop parameters which
impact the processing time mostly [21] of one DataNode are
listed in Table 1. The values of the parameters employed in
our experiments are listed in Table 2. We also abbreviate the
names of the parameters in Table 2.

Based on the parameters and values shown in Table 1 and
Table 2, a number of experiments were carried out. The
processing time ¢ of each DataNode and its corresponding
values of the parameters are recorded. Afterwards this paper
employs GEP algorithm [22] to mine the equation f using
the recorded history processing time ¢ and the values of the
parameters.

B. MINING THE EQUATION REPRESENTING THE
TRAINING TIME OF A DATANODE USING GEP

GEP is a function mining algorithm which is able to mine
a mathematical equation f representing the correlation y =
f(x) based on the values of the dependent variables y and
the independent variables x. Similar to the genetic algorithm,
GEP simulates the biological evolution to mine an equation
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TABLE 1. The parameters impacting the processing time of a DataNode.

Name of the parameter Default value Data Type Brief description
input data size of one node size of the input data Float total size of the data chunks input into a DataNode
mapreduce.task.io.sort.factor 10 Integer the number of streams that can be merged while sorting
mapreduce.task.io.sort.mb 100 Float the size of the buffer for sorting
mapreduce.map.sort. 0.8 Float the threshold in percentage for spilling the data saved in buffer to
spill.percent hard disk
mapreduce.job.reduces 1 Integer the number of the reducers employed by a submitted job
mapreduce.tasktracker. the number of the map slots (mappers) configured in each
. 2 Integer
map.tasks.maximum DataNode
mapreduce.tasktracker. ) Integer the number of the reduce slots (reducers) configured in each
reduce.tasks.maximum DataNode
o the maximum size of the memory for Java virtual machine of each
mapred.child.java.opts 200MB Float
task
mapreduce.reduce.shuffle. 0.66 Float the threshold in percentage for starting merging the data in the
merge.percent buffer
mapreduce.reduce.shuffle. 07 Float the amount of memory in percentage assigned to a reducer to store
input.buffer.percent map intermediate output during the shuffle process
mapreduce.reduce.shuffle.
5 Integer the number of the copy threads of a reducer

parallelcopies

TABLE 2. The values of the parameters employed in the experiments.

Name of the parameter Abbreviation

Range of value

input data size of one node Xo
mapreduce.task.io.sort.factor X,

mapreduce.task.io.sort.mb X,
mapreduce.map.sort. X,
spill.percent
mapreduce.job.reduces X4
mapreduce.tasktracker. X
map.tasks.maximum >
mapreduce.tasktracker. X,
reduce.tasks.maximum
mapred.child.java.opts X5
mapreduce.reduce.shuffle. X
merge.percent
mapreduce.reduce.shuffle. X
input.buffer.percent
mapreduce.reduce.shuffle. Xio
parallelcopies

{60.28MB, 120.56MB, 180.84MB, 241.12MB, 361.6SMB}
[2,20]
[10MB, 200MB]

[0.1,0.9]
[1,4]

4

4
[400MB, 500MB]

[0.1, 0.9]

[0.1, 0.9]

[2, 10]

that has the best fitness for representing the correlation
between y and x. However, a novel component named as
function set including a number of mathematical operators
has been employed by GEP so that the algorithm is able to
evolve and output the mined equation f explicitly. In the evo-
lution, GEP generates offspring mainly using the operations
including selection, crossover, and mutation. Each individual
of the offspring is assessed by a fitness function so that the
best fitted individuals have higher chances to be selected to
produce next generation. The evolution keeps evolving until
a satisfied equation is discovered.

114706

Let ¢ represent the recorded history processing times of one
DataNode; t. represent one record in ¢; parameters repre-
sent the recorded history values of the Hadoop parameters;
parameters. represent one record in parameters, which is
related to 7. Table 3 shows the steps of mining the equation f
which describes t = f(parameters) for one DataNode using
GEP algorithm.

As long as the equation f representing ¢ = f (parameters)
for an individual DataNode is mined, it can be further
employed to execute the load balancing for the heterogeneous
Hadoop cluster.
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TABLE 3. The function mining based on history experimental data.

Input dataset: ¢, parameters, t. € t, parameters. € parameters
Output: f* for representing ¢ = fiparameters)
1. Initiate GEP components and parameters including function set,
link function, selection, mutation, and crossover. A chromosome is
composed by 4 genes using the link function, each of which is
consisted by function set and terminal set, for example:
Head Tail
1
+ Xy - Xa X /17 X; X3 Xs X4 Xy Xo

Function set Termial set
2. Set fitness function max(num,/num,), where num, represents the
total sample number; num, represents the correctly fitted samples
using the currently mined f; a correctly fitted sample satisfies
[value-target|<0.15; target represents the input #.; value represents
the calculated time using the current mined equation f'and the input
parameters..
3. While fitness is NOT satisfied OR iteration number is NOT
reached

GEP keeps evolving to mine the equation f.
4. Output the finally mined equation .
5. Algorithm terminates.

C. LOAD BALANCING FOR A HETEROGENEOUS

HADOOP CLUSTER

Let N denote the number of DataNodes participated to pro-
cess a job; TotalDataSize denote the total training data size
of the job; InputDataSize; (Xo ;) represent the training data
size input into the j‘h DataNode, j = 1,2, ..., N; t; repre-
sent the estimated processing time for InputDataSize; of the
jth DataNode using the mined equation f;; parameterscjysier
(X1 to X1p) represent the optimized parameters to be config-
ured in the physical Hadoop cluster. Therefore, according to
the divisible load theory [23]-[25], the efficiency of the job
processing can be improved if the number of N DataNodes
finish the processing at the same time:

Moreover according to the mined f, (9) can be represented
by (10):

fi(InputDataSize, parameters jyster)
= fo(InputDataSizey, parameters jyster)

= fz(InputDataSize3, parameters jyster)
= --- = fy(nputDataSizey , parameterscjyster) (10)

As a result, the optimized parameters for the Hadoop
cluster and the input training data size for each DataNode
can be achieved by solving (10). As long as the equation is
solved, the training data size assigned to the ;™ DataNode
is determined by InputDataSize;, whilst parametersjyge, are
written into the configuration file of the physical Hadoop
cluster.
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However, (10) is difficult to be solved. Therefore this paper
adopts genetic algorithm (GA) to solve the equation. In order
to implement GA, the detailed settings are listed below.

« Fitness function: To measure the similarity of the pro-
cessing times for the participated DataNodes, Mean
Square Error (MSE) is employed as the fitness function
Fitness which can be represented by (11).

(11)

Fitness =

o Crossover, mutation, population, and selection:
Crossover is the single point crossover. The mutation
is the single point mutation based on a probability
pm = 0.1. The population is 100. In each generation
the best fitted chromosome individuals are selected to
generate next generation.

o Constraint: During the evolution, the values of the
parameters in a chromosome individual should satisfy
(12) to (14).

N
ZlnputDataSizej = TotalDataSize (12)
j=1
mapreduce.task .io.sort.mb < mapred .child java.opts (13)
mapreduce.job.reduces < mapreduce.tasktracker

.reduce.tasks.maximum (14)

« Chromosome and gene: The coding of the chromosome
is decimal coding. An example of a chromosome and its
genes (4 nodes in one cluster) is shown in Fig. 7.

V. PERFORMANCE EVALUATION

A. EXPERIMENTAL ENVIRONMENT

To evaluate the performance of the resource aware paral-
lelized BPNN algorithm, a physical cluster with one NameN-
ode and four heterogeneous DataNodes is established. The
details of the cluster are shown in Table 4.

The cluster maximally supplies 16 mappers and 4 reducers.
The dataset employed in the following experiments is a stan-
dard benchmark dataset Iris dataset [26], of which the details
are shown in Table 5. The algorithm efficiency and accuracy
are evaluated based on the classification task using the Iris
dataset. In the algorithm accuracy evaluations, the number
of the training instances is from 10 to 120 whilst the rest
instances are the testing instances. The bootstrapping number
is initially set to 4. In the algorithm efficiency evaluations,
the data size is increased from 4MB to 1024MB.

B. EVALUATION OF ALGORITHM ACCURACY
The experiments in this section focus on the algorithm
accuracy. In terms of comparison, the standalone BPNN

is also implemented. The experimental results are shown
in Fig. 8 and Fig. 9.
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FIGURE 7. One chromosome and its genes of the genetic algorithm.

TABLE 4. The details of the cluster.

Node type CPU Memory Hard Disk Operating system
NameNode Core i7@3.0GHz 8GB 750GB SSD Ubuntu 14.04 LTS with Hadoop 2.6.3
DataNodel Core i7@3.8GHz 32GB 240GB SSD Ubuntu 14.04 LTS with Hadoop 2.6.3
DataNode2 Core i5@3.2GHz 8GB 1TB HDD Ubuntu 14.04 LTS with Hadoop 2.6.3
DataNode3 Core i7@2.8GHz 16GB 1TB SSD Ubuntu 14.04 LTS with Hadoop 2.6.3
DataNode4 Core i5@1.9GHz 8GB 256GB SSD Ubuntu 14.04 LTS with Hadoop 2.6.3
TABLE 5. The details of the dataset. TABLE 6. The parameters employed of the GEP algorithm.
Type Iris Number of genes 4
Dataset Characteristics Multivariate Link function +
Instance Number 150 Head length 6
Attribute Number 4 Function set +-*/ cos sin tan exp log sqrt abs
Fitness max(num,/num,)
Class Number 3 .
Terminal set Xo X Xo X3 Xy X5 X X7 Xg Xo X0
Population size 1000
Fig. 8 shows the classification accuracies of the standalone Mutation rate 0.044
BPNN and the parallelized BPNN without the presented IS transposition rate 0.1
load balancing algorithm (with the default capacity scheduler RIS transposition rate 0.1
supplied by YARN). The results indicate that the bootstrap- Gene transposition rate 0.1
ping and majority voting can help to improve the algorithm One-point recombination rate 0.4
precision when the number of the training instances is small. Two-point recombination rate 02
However, when the number of the training instances becomes Gene recombination rater 0.1

larger, the performances of the two algorithms become sim-
ilar. Fig. 8 also shows that with bootstrapping and majority

voting the curve of the parallelized BPNN increases stably, Fig. 9 shows the classification accuracy of the parallelized
which indicates that the employed ensemble techniques can BPNN with the presented load balancing algorithm and with
improve the accuracy stability. the default capacity scheduler. The figure indicates that the
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TABLE 7. An example of the optimized parameters for processing 1GB data of the cluster.

Parameter Xo1 X0z Xo3 Xo4 Xy X5

X3 X4 X5 X5 X7 X8 X9 Xl 0

Value 3374 375.8 160.1 150.7 - 54

0.57 - 4 1 - 0.15 0.51 2

—+— Standalone BPNN —— Parallelized BPNN with Default Scheduler

100

80

60

Precision (%o)

40

10 20 30 40 50 60 70 80 90 100 110 120
Number of Tramning Instances

FIGURE 8. The precision comparison of standalone BPNN and
parallelized BPNN.

—s—Parallelized BPINN with Load Balancing —=—Parallelized BPNN with Default Scheduler
100 4

80 1

60 1

Precision (%0)

40 |

20 4

10 20 30 40 50 60 70 80 90 100 110 120
Number of Training Instances

FIGURE 9. The precision comparison of the parallelized BPNN.

performances of both the parallelized BPNNs are quite simi-
lar. The slight gap between the two curves is mainly because
of the differences of the parameters in the two networks.

Fig. 10 shows the accuracy of the parallelized BPNN
affected by the bootstrapping number. In the experiments,
a number of 50 training instances and 100 testing instances
are employed. Fig. 10 shows that initially increasing the
bootstrapping number can improve the algorithm accuracy.
However, when a certain bootstrapped value is reached, keep-
ing enlarging the bootstrapping number cannot significantly
improve the accuracy.

C. EVALUATION OF ALGORITHM EFFICIENCY

The mined equations representing the processing times of
the four DataNodes are listed in the appendix. Based on
the mined equations, the load balancing is applied in the
physical Hadoop cluster. The optimized Hadoop parameters
are configured in the cluster, whilst the optimized size of the

VOLUME 7, 2019
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FIGURE 10. The precision affected by the bootstrapping number.

input training data for each DataNode is uploaded into HDFS.
The performances of the load balancing algorithm with an
increasing number of DataNodes in the cluster are shown
in Fig. 11, 12, 13, 14 and Table 7. In terms of comparisons,
the parallelized BPNN with the default capacity scheduler
and the standalone BPNN are also implemented.

Fig. 11 shows the estimated performances and the real
performances of the resource aware parallelized BPNN with
two participated DataNodes (DataNodel and 2). Fig. 11a sug-
gests that theoretically the parallelized BPNN based on the
presented load balancing algorithm significantly outperforms
the one with the default scheduler. The experimental results
based on the physical cluster shown in Fig. 11b further prove
that the presented resource aware parallelized BPNN shows
better efficiency due to its computing resource dispatching
ability especially for an individual Hadoop job.

Similar to Fig. 11, Fig. 12a and Fig. 12b shows the
algorithm performances with three participated DataNodes
(DataNodel, 2 and 3). The presented resource aware paral-
lelized BPNN performs the best.

Fig. 13 shows the algorithm performances with four
DataNodes (DataNodel, 2, 3 and 4) in the cluster. The results
also indicate that the efficiency of the resource aware par-
allelized BPNN benefits from the presented load balancing
algorithm significantly. In the experiments, the parallelized
BPNN with the default capacity scheduler shows worse per-
formance even than that of the clusters with only two and
three DataNodes. The reason is that DataNode4 in the cluster
has the smallest processing capacity. The evenly distributed
data for the DataNode costs longer processing time which
greatly deteriorates the performance of the entire cluster.

Additionally the details of the optimized parameters for
processing 1024MB data using the four DataNodes are listed
in Table 7. The values marked by “—” indicate that the
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FIGURE 11. (a) The comparisons of the estimated job processing times for two DataNodes. (b) The comparisons of the real job processing times for

two DataNodes.
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FIGURE 12. (a) The comparisons of the estimated job processing times for three DataNodes. (b) The comparisons of the real job processing times for

three DataNodes.
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FIGURE 13. (a) The comparisons of the estimated job processing times for four DataNodes. (b) The comparisons of the real job processing times for four

DataNodes.

parameters are phased out during the GEP evolution. Result
shown in Fig. 13 proves the effectiveness of the optimized

parameters.

114710

Fig. 14 shows the convergence of GA for mining the

optimized scheduler dealing with the data size of 1024MB.
Because of the large number of parameters in a chromosome,
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FIGURE 14. The convergence of GA for mining the optimized scheduler
dealing with the data size of 1024MB.

300 generations are consumed to achieve the optimized
parameters.

VI. CONCLUSION

This paper presents a resource aware parallelized BPNN
algorithm to serve the large-scale digital health data pro-
cessing efficiently. Based on the data separation, the tra-
ditional standalone BPNN can be parallelized using the
Hadoop framework. Further in order to solve the accuracy
loss issue, bootstrapping and majority voting techniques have
been employed. Therefore, the distributed weak classifiers
are able to compose a strong classifier to execute the accurate
data processing. In terms of the load imbalance in the het-
erogeneous cluster, this paper also presents a load balancing
algorithm using the GEP and GA algorithms. Based on the
experimental results, the presented algorithm is able to handle
the large-scale data processing in terms of efficiency and
accuracy.

However, there are still two issues which should be
addressed in our future work. The first one is that the
class imbalance issue frequently exists in the practical dig-
ital health datasets. The data separation and sampling may
aggravate the issue. The second one is that only a limited
number of parameters are selected to achieve the optimal
scheduler. However, it is known that a large number of
parameters may affect the processing time of the Hadoop
framework. Therefore, to develop an optimal parameter
selection approach and a scheduler solution approach with
better convergence ability will be great helpful to further
explorer the potential of the Hadoop framework in terms of
the efficiency improvement.

APPENDIX

This section shows the experimental results of measuring the
processing abilities of the DataNodes. In each figure, two
curves are generated. One is based on the real processing
time of the DataNode, whilst the other one is the estimated
processing time based on the mined equation f.

VOLUME 7, 2019

The results shown in Fig. 15 is based on the experiments
of DataNodel. The mined equation is shown by (15).

1 = (((abs(((sqrt(X9)) + (tan(X))) * (Xo)/(X5))))
+ (exp(X3)) + ((X10)/(X2)) + ((X2)
+(X5)))/(X2))) + (sin(X3)) 15)

where ¢ denotes the data processing time of the DataNode.

—+—Fitted Equation ~ ——Experimental Data
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Number of Experiments

FIGURE 15. The real processing time and the processing time computed
using the equation mined by GEP for DataNode1.

The results shown in Fig. 16 is based on the experiments
of DataNode2. The mined equation is shown by (16).

t = (((tan(exp(tan(Xp))))) + (tan(exp(tan(tan(Xo))))))
+ ((X0)/((X6) + (X3)))) + (abs(tan(tan(tan(Xo)))))
(16)

—o— Fitted Equation =~ = Experimental Data

Job PracessingTim (s) for DataNade2
8
(=}

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of Experiments

FIGURE 16. The real processing time and the processing time computed
using the equation mined by GEP for DataNode2.

The results shown in Fig. 17 is based on the experiments
of DataNode3. The mined equation is shown by (17).

t = (((=X3g)) + (cos(X2)))
+ ((cos(X5))/(tan((Xo) * (X6)))))
+ ((Xo)/(cos(cos((cos(X9)) — (Xg))))  (17)

The results shown in Fig. 18 is based on the experiments
of DataNode4. The mined equation is shown by (18).

1 = ((((cos(log(Xp))) * (X2)) + (Xo))
+ ((X2) * (log(X3))) * (cos(Xp)))) + (Xo) ~ (18)
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FIGURE 17. The real processing time and the processing time computed
using the equation mined by GEP for DataNode3.
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FIGURE 18. The real processing time and the processing time computed
using the equation mined by GEP for DataNode4.
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FIGURE 19. The convergence of GEP for mining the equation for
DataNode2.

Fig. 19 shows the convergence of the GEP algorithm for
mining the equation for DataNode2 as an example. It can
be observed that to reach the target fitness, only around
50 generations are needed.
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