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ABSTRACT With the development of visual sensor equipment (e.g., personal smart phones, vehicle cameras,
surveillance videos and camcorders), scene recognition technology has attracted much attention due to
its latent applications in visual surveillance, intelligent traffic and aerial remote sensing. Although some
progress has been made in the field of scene recognition in recent years, the complexity of scene images
and the inadequate numbers of labeled data pose challenges in this area. Hence, to effectively fuse the
multiple features of each image and employ the information of both labeled and unlabeled images for
scene recognition, we proposed a semi-supervised multi-feature regression (SSMFR) model in this paper.
The SSMFR model possesses three advantages. First, the model propagates the labels of labeled data to
unlabeled data by utilizing graph-based semi-supervised learning techniques so that both the information
regarding unlabeled data and labeled data can be exploited to gain better performance. Second, SSMFR
employs multiple graphs to characterize the structures of multiple feature spaces and adaptively assigns the
weight to different graphs. Therefore, SSMFR can efficiently preserve the manifold structure of samples in
each feature space and adequately exploit the complementary information of multiple features. Moreover,
SSMFR adopts a l2,1-norm constraint to learn a sparse and robust classifier for scene recognition. To solve
the SSMFRmodel, we proposed a simple and efficient iterative update optimization scheme. Finally, we also
proved the convergence of SSMFR by theoretical analysis and experiments. Experiments were conducted
on several benchmark scene datasets, and the experimental results demonstrated that the proposed SSMFR
model can obtain better performance for scene recognition than some other state-of-the-art algorithms.

INDEX TERMS Scene recognition, semi-supervised recognition model, multi-features regression.

I. INTRODUCTION
In the past decades, the rapidly developing multimedia
brought the explosion of image data on the Internet, making it
difficult for people to determine what they need or are inter-
ested in. Hence, methods for using computers to automati-
cally manage images, especially to classify and query images

The associate editor coordinating the review of this article and approving
it for publication was Peng Liu.

in the same way as humans understanding high-level image
semantics, has drawn increasing attention. As one of the clas-
sical issues in the field of image understanding, scene recog-
nition is the process of categorizing images into semantic
types of scenes, which can be widely used in various applica-
tions, e.g., action recognition, context-aware object detection,
intelligent vehicle/robot navigation and aerial remote sensing
applications [1]–[5]. Although the accuracy and robustness of
scene recognition models have been greatly improved in the

121612 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4028-6149
https://orcid.org/0000-0001-9828-0319
https://orcid.org/0000-0002-6867-3282


C. Zheng et al.: Scene Recognition via SSMFR

past several years, scene recognition is still challenging not
only because the ambiguity, variability and a wide range of
illumination in scene images, but also because the number
of labeled scene images is much smaller than the unlabeled
scene images in the real world [6]–[8]. There is a fascinating
property of the human visual system: we recognize images
by using very few labeled samples, and we accomplish the
image recognition task by integrating multiple features, such
as color, shape and the objects that appear on images. Is it
possible that computers acquire such a capability through
machine learning techniques? This is the main motive of our
study in this paper. To reduce the human effort in labeling data
and construct an effective classifier that can utilize multiple
features of data, we developed a novel semi-supervised multi-
feature regression (SSMFR) model for scene recognition.

The visual content of a given scene image can be described
by different features, such as color, texture and shape.
Intuitively, it is beneficial for scene recognition tasks to
utilize different features simultaneously [9]. Therefore, how
to effectively use multiple pieces of evidence from heteroge-
neous or independent features becomes an interesting issue.
Previous studies have indicated that comparing with utilizing
only one kind of feature or directly integrating multiple kinds
of features into one feature vector, better performance could
be obtained for image recognition if the information of differ-
ent features is fused properly [10]. Recently, there have been
many efforts to develop efficient scene recognition methods
by fusing multiple features of data. Sun et al. [11] proposed
a two-stage probabilistic classification framework to utilize
multiple features for scene classification. Song et al. [12] pro-
posed a joint multi-feature spatial context (JMSC) model for
recognizing scene images in the semantic manifold. In JMSC,
two types of contextual relations, including multi-feature
relations obtained from different low-level visual features
and local spatial relations between neighboring patches, are
exploited to enhance consistent scene category co-occurrence
patterns and eliminate noise patterns. With the rise of large
data sets and the convolutional neural network (CNN),
Song et al. [13] developed a new multi-scale multi-feature
context model (MMC) by extending JMSC. MMC builds the
semantic manifold on top of multiscale CNNs and combines
spatial relations, various scales and features to construct a
rich context model for scene recognition. Although these
approaches achieved good performances in scene recognition
by utilizing multiple visual features, they all need a large
number of labeled training samples. However, collecting a
mass of high-quality labeled training images is very diffi-
cult and time-consuming in practical applications [14], [15];
for instance, 111 researchers from different institutes spent
more than 220 hours labeling only 63 hours of TRECVID
2003 development corpus [16], [17]. Conversely, unlabeled
images are often easy to obtain [18]. Therefore, integrat-
ing the labeled and unlabeled images together is crucial
for improving the accuracy of a scene classifier. This moti-
vates us to develop a SSMFR method. Compared with other
algorithms, the contributions of our SSMRF are threefold.

First, by utilizing graph-based semi-supervised learning tech-
niques, SSMFR can combine multiple features from both
labeled and unlabeled images to infer a more accurate classi-
fier. Second, by employingmultiple graphs to characterize the
structures of multiple feature spaces and adaptively assigning
the weight to different graphs, SSMFR not only preserves the
manifold of each feature but also exploits the complemen-
tary information contained in different features. Moreover,
SSMFR adopts a l2,1-norm constraint to learn a sparse and
robust scene classifier.

The remainder of this paper is organized as follows.
Section II briefly reviews related work. In Section III,
we introduce the details of our proposed SSMFR and its
iterative solution algorithm. The convergence analysis of
SSMFR is also provided in this section. Section IV gives
the experimental results and analysis. Finally, a conclusion
is drawn in Section V.

II. RELATED WORK
Our work is devoted to achieving more satisfactory scene
recognition performance. Since multi-feature learning and
semi-supervised learning are both effective ways to obtain
good performance of image or video understanding tasks,
we combine them in a unified framework for scene recogni-
tion. In this section, we briefly review three related research
issues including scene recognition, multi-feature learning,
and semi-supervised learning.

A. SCENE RECOGNITION
Scene recognition is an important research topic in the area
of computer vision and pattern recognition [19], which has
been studied from various viewpoints by researchers, and
numerous methods have been proposed in the recent years for
acquiring high scene recognition accuracy. Bosch et al. [20]
roughly divided these approaches into two main categories:
low-level and semantic modeling-based methods. Low-level-
based methods focus on developing the discriminative visual
features (e.g., SIFT [21], GIST [22] and CENTRIST [23]) to
represent the color, texture or shape information of scene
images, while semantic modeling-based approaches involve
learning semantic intermediate representations (e.g., local
semantic concepts [24], [25] and semantic objects [26]–[28])
to model the content of scene images. Recently, with the
proliferation of deep learning, there has been a surge of
research interests in exploring deep architectures to solve
the scene recognition problem [29], [30]. Khan et al. [7]
presented a deep learning-based spectral feature for image
recognition. This spectral descriptor is a spectral domain
representation of convolution features from deep network
architectures, which can enhance the discriminative ability of
deep networks and achieve satisfactory performance of scene
recognition. Herranz et al. [31] utilized scale-specific con-
volutional neural networks (CNNs) to construct a multiscale
architecture, which is an effective way to combine ImageNet-
CNNs and Places-CNNs in different scale ranges and address
dataset bias to improve scene recognition performance.
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Guo et al. [32] proposed a locally supervised deep hybrid
model (LS-DHM) to encode and enhance the convolu-
tional features. LS-DHM collaboratively explores the Fisher
convolutional vector and the fully connected layer of the
convolutional neural network (CNN) to gain significant
scene recognition improvements. Zhu et al. [33] proposed
a discriminative multimodal fusion framework for RGBD
indoor scene recognition; this framework considers the intra-
and inter-modality correlation of all data and regularizes
the learned features to be simultaneously compact and dis-
criminative. Although the abovementioned methods achieve
good scene recognition performance, they require a tremen-
dous amount of labeled data to learn the representation of
images or train the classification model. However, collecting
massive data, especially labeled image or video data, is a
very time consuming process [17]. Moreover, these methods
focus on designing more accurate features for scene image
representation but they do not pay attention to how to fuse
independent or heterogeneous features effectively and explic-
itly, and they cannot use the information of the unlabeled
data [10].

To use the unlabeled data to improve the recognition
performance, some semi-supervised learning methods are
proposed for scene recognition tasks [34]–[36]. Liu et al. [34]
proposed p-Laplacian regularization to preserve the local
geometry of data for identifying the scene images.
Han et al. [35] proposed a semi-supervised generative frame-
work (SSGF) to achieve the task of scene recognition. These
methods can gain good performance by using the information
of both labeled and unlabeled data, but they just use one
feature or directly connecting several features into one feature
vector, which limit the performance of algorithms to some
extent.

B. MULTI-FEATURE LEARNING
Effectively fusing multiple features for image understanding
tasks has attracted increasing attention from the researchers in
the machine learning community. Concatenating all types of
features into one vector is a common method of manipulating
themultiple features. However, feature concatenation leads to
the dimensionality of the feature vector to be very high and is
less effective in the task of image understanding [37]–[39].
To address this issue, the concept of multi-feature lean-
ing has been developed by researchers, and many multi-
feature learning algorithms have been proposed to exploit the
structural information of each feature. Canonical correlation
analysis (CCA) [40] and the two-view-based support vector
machine (SVM-2k) [41] are two well-known multi-feature
learning algorithms. CCA is a statistical algorithm that max-
imizes the relations between two modalities of data, while
SVM-2k learns one SVM classifier based on two views of
data. The various improved versions of CCA and SVM-2k
have been commonly applied in image recognition tasks [10].
Recently, Yang et al. [42] proposed an efficient multi-task
feature selection model (FSSI) for multimedia content anal-
ysis. FSSI considers the feature correlation by evaluating

the importance of different features jointly. Xia et al. [43]
developed a multiview spectral embedding (MSE) approach,
which learns a physically meaningful and low-dimensional
embedding of all views simultaneously for encoding differ-
ent features. Ren et al. [44] proposed a maximum margin
multimodal deep neural network (3mDNN) to discrimina-
tively fuse multiple features. Wang et al. [45] developed an
adaptive multiview feature selection (AMFS) method, which
automatically learns Laplacian graphs for multiview features
and adaptively assigns a weight to each feature by adopting a
local linear regression model. These approaches are superior
to feature concatenation. However, they require vast amounts
of labeled data for training, which is usually time-consuming
and seldom available in practical applications.

C. SEMI-SUPERVISED LEARNING
Previous studies have shown that it is beneficial for image
semantics understanding when labeled and unlabeled data
are simultaneously employed [10]. Therefore, many semi-
supervised learning techniques have been proposed to utilize
the information of both unlabeled and labeled data in the
training phase to learn better classifiers.

According to [46], the existing semi-supervised learn-
ing methods can be grouped into five categories, includ-
ing EM with generative mixture models, self-training,
cotraining, transductive support vector machines, and graph-
based approaches. Among these approaches, graph-based
semi-supervised learning have been a topic of recent
interest [47], [48]. Graph-based semi-supervised approaches
construct a weighted graph in which the nodes represent the
samples in the dataset, the edges connect the similar sam-
ples, and the weights of edges reflect the similarity between
samples [48]. Different strategies have been developed for
graph-based semi-supervised learning [47], [49]–[54]. For
example, by assuming that the neighboring samples should
have similar class labels, Zhou et al. [50] proposed a local
and global consistency (LGC) algorithm, which estimates
the labels of unlabeled samples by iteratively spreading the
label information of every samples of graph to its neigh-
bors. Cai et al. [55] developed a semi-supervised discrim-
inant analysis (SDA) algorithm, which finds an optimal
low-dimensional subspace by constructing a graph to pre-
serve the geometric structure of both labeled and unla-
beled samples. Though the abovementioned approaches have
achieved good performances for image recognition (i.e., face
recognition) tasks, they all adopt one feature or simply con-
catenate multiple features as one feature vector. Therefore,
as we have discussed earlier, when applying these algorithms
in the field of scene recognition, their performances may be
limited because using one feature cannot represent the con-
tent of scene images well and concatenating multiple feature
vectors into one feature neglects the potential complementary
information among multiple features.

To overcome the aforementioned limitations, we presented
a novel learning model named the semi-supervised multi-
feature regression (SSMFR), which combines the advantages
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FIGURE 1. The overall procedure of the proposed SSMFR.

of multi-feature learning and semi-supervised learning for
scene recognition.

III. THE PROPOSED SSMFR ALGORITHM
A. FORMULATION OF SSMFR
In SSMFR, the potentially related and complementary struc-
ture information among multiple features are exploited by
jointly learning multiple subclassifiers (also called mapping
matrices) for all features, and the global consistency of the
prediction labels in the process of label propagation is guaran-
teed through the weighted graph regularization operator. The
overall SSMFR procedure is shown in Fig. 1.

Let us denote X = {x1, x2, . . . , xl, xl+1, . . . , xN } ∈ <D×N

as the training set of image samples in D dimensional space,
where xi ∈ <D×1(1 ≤ xi ≤ N ) is the feature vec-
tor of i-th image and N is the total number of training
samples. Without loss of generality, we suppose that the
first l samples, i.e., Xl = {x1, x2, . . . , xl} ∈ <D×l in X
are labeled samples, and rest of the samples, i.e., Xu =
{xl+1, xl+2, . . . , xN } ∈ <D×(N−l) inX are unlabeled samples.
Let Y = [y1, y2, . . . , yN ] ∈ {0, 1}N×C denote the labeled
matrix of X , whereC is the total number of classes. In labeled
matrix Y , if xi is labeled as a sample in the j-th category, then
we set the element yij = 1 in yi ∈ <C , and set other elements
as yik = 0(k 6= j). If xi is an unlabeled sample, we set all
elements in yi ∈ <C as 0. Suppose each image sample is
described byM different features, Xm =

[
xm1 , x

m
2 , . . . , x

m
N

]
∈

<
dm×N represents the set of the m-th features of all samples,

where xmi is the m-th feature of the sample xi and dm is the
dimension of this feature.

In the field of semi-supervised learning, there is an impor-
tant manifold assumption which demonstrates that data in
a small local region should have similar properties, and

the labels of them should also be similar [56]. To better
preserve the label consistency of data in the manifold struc-
ture and efficiently integrate multi-feature learning and semi-
supervised learning into a unified framework, we propose the
SSMFR model as

min
Wm,A

M∑
m=1

||XmTWm
− A||22 +

M∑
m=1

λ||Wm
||2,1

+9 (A)+ 0 (A,Y ) , (1)

where A = [a1, a2, . . . , aN ] ∈ <
N×C
+ is the prediction label

matrix of the training dataset, the element ai ∈ <C of A
represents the prediction label vector of sample xi; Wm

∈

<
dm×C denotes the mapping between the m-th feature set Xm

and the prediction label matrix A;
M∑
m=1
||XmTWm

− A||22 is the

global error of label predicting; ||Wm
||2,1 is the constraint

term to enforce the row sparsity on the learned Wm and
make Wm more robust; 9(·) is the graph regularization term
that exploits the potential complementary information from
various features of the image and ensures that the labels
predicted by the different features are consistent; 0(·) is the
penalty term to ensure that the estimated labels of the labeled
samples are same with their real labels; and λ is a trade-off
parameter. In the following, we will introduce the specific
form and the derivation process of each term in Eq. (1).

To improve the performance of the learned classification
model by making use of both labeled and unlabeled data in
the training dataset, we first utilize the label propagation tech-
nology based on adaptive weighted multiple graphs to prop-
agate label information from labeled data to unlabeled data.
Specifically, for each feature set Xm, we construct a weighted
undirected graph Gm in which the weight Smij between the
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i-th node (sample xmi ) and the j-th node (sample xmj ) is
defined as

Smij =


exp

(
−||xmi − x

m
j ||

2
2/2σ

2
)
,

if xmj ∈ 1k
(
xmi
)
or xmi ∈ 1k

(
xmj
)

0, otherwise,

(2)

where 1k
(
xmi
)
=

[
xmi,1, x

m
i,2, . . . , x

m
i,k

]
denotes the set of

k-nearest neighbors of the i-th sample xmi in the m-th feature
set Xm; and σ is a parameter.

In the process of label propagation, the manifold structure
of each feature set should be maintained. That is, the adjacent
samples should be assigned similar labels [48] in the predic-
tion label matrix A. This goal can be achieved by minimizing
the following objective function:

N∑
i,j=1

∥∥∥∥∥ aidmii − aj
dmjj

∥∥∥∥∥
2

2

Smij = tr
(
AT
(
I − Dm−

1
2 SmDm−

1
2

)
A
)

= tr
(
ATLmA

)
,

s.t. A ≥ 0 (3)

where Dm is the diagonal matrix whose diagonal elements
are defined as dmii =

∑N
j=1 S

m
ij ; The matrix Lm = I −

Dm−
1
2 SmDm−

1
2 is the normalized Laplace matrix of the undi-

rected weighted graphGm constructed by them-th feature set.
In addition to preserving the manifold structure of each

feature set, we also exploit the underlying complementary
information among different features to take full advantage of
various features. Therefore, all normalized Laplace matrixes
of M feature sets are combined with adaptive weights, and
this combination can be achieved by defining the following
graph regularization term:

9(A) = min
A,ω

M∑
m=1

ωm tr
(
ATLmA

)
+ β ||ω||22,

s.t. A ≥ 0,
M∑
m=1

ωm = 1, ω ≥ 0 (4)

where ωm is the weight of the m-th undirected graph Gm,
and the weights of all undirected graphs are combined as
a weight vector ω=[ω1, ω2, . . . , ωM ]. The regularization
term ||ω||22 is to avoid ω overfitting any normalized Laplace
matrixes [55]; β ≥ 0 is a trade-off parameter.
When the label information of the labeled samples is prop-

agated over the graph, we need to ensure that the prediction
labels of the labeled training samples are not change toomuch
from their initial assigned labels. Hence, a penny term is
defined as

0 (A,Y ) = min
A

N∑
i=1

||ai − yi||22qii, (5)

where qii is calculated in the following manner: if the i-th
sample is a labeled sample, qii is set as a very large value,
otherwise qii is set as 0.

After label propagation, we aim to learn the mapping
matrix between the samples and their labels based on the
multiple features of both the labeled and unlabeled samples.
Because the regularization term based on the l2,1-norm con-
straint can guarantee row sparsity on the mapping matrix and
ensure that the mapping matrix is more robust [57], we adopt
the l2,1-norm as the regularization term in the proposed
SSMFR model. By combining the information of multiple
features and minimizing the global label prediction error,
SSMFR learns the mapping matrixW = [W 1,W 2, . . . ,WM ]
between the samples and the labels by the following
formula:

min
Wm

M∑
m=1

||Xm
T
Wm
− A||22 + λ ||W

m
||2,1, (6)

where Xm represents the m-th feature set of the samples;
Wm

∈ <
dm×C denotes the mapping matrix between the

sample set Xm and its corresponding label set (Wm can
also be denominated as the subclassifier corresponding to
the m-th feature set). To achieve the minimum of global
prediction error of all subclassifiers learned from multiple
features, the label prediction error ||Xm

T
Wm
− A||22 of all

subclassifiers are summed up and minimized by the term

min
Wm

M∑
m=1
||Xm

T
Wm
− A||22; ||W

m
||2,1 =

∑N
i=1 ||W

m
i ||2 is used

to enforce that W is a row sparse matrix and more robust;
λ ≥ 0 is a parameter used to avoid overfitting.
By combining Eqs. (4), (5) and (6), the objective function

of SSMFR in Eq. (1) is reformulated as

min
Wm,A,ω

ε
(
Wm,A, ω

)
=

M∑
m=1

||Xm
T
Wm
− A||22 + λ||W

m
||2,1

+α

(
N∑
i=1

||ai − yi||22qii +
M∑
m=1

ωm tr
(
ATLmA

))
+β ||ω||22.

s.t.A ≥ 0,
M∑
m=1

ωm = 1, ω ≥ 0 (7)

Because
M∑
m=1

ωm tr(ATLmA) = tr(AT (
M∑
m=1

ωm Lm)A) and

N∑
i=1
||ai − yi||22qii = tr

(
ATQA− 2ATQY + Y TQY

)
where Q

is a diagonal matrix and its diagonal element is qii, Eq. (7)
can be further rewritten as

min
Wm,A,ω

ε
(
Wm,A, ω

)
=

M∑
m=1

||Xm
T
Wm
− A||22 + λ ||W

m
||2,1
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+α tr

(
AT
(

M∑
m=1

ωmLm
)
A+ATQA− 2ATQY + Y TQY

)
+β‖ω‖22 ,

s.t. A ≥ 0,
M∑
m=1

ωm = 1, ω ≥ 0 (8)

where α is an introduced trade-off parameter.
Equation (8) is the ultimate objective function of the pro-

posed SSMFR. Through it, SSMFR spreads the label of the
labeled data to the unlabeled data. Consequently, SSMFR can
utilize both the information of labeled and unlabeled data
to improve the accuracy of the learned classifier. Moreover,
SSMFR utilizes adaptive non-negative weighted multigraph
label propagation to exploit the latent complementary infor-
mation contained in different features. The SSMFR model
also provides an explicit mapping matrix between each fea-
ture set and its prediction label matrix so that the ‘‘out-of-
sample’’ problem can be effectively avoided [56], [58].

B. OPTIMIZATION
From Eq. (8), it can be seen that there are three variables
(i.e., A, ω and Wm) need to be optimized and the objective
function of SSMFR is convex to each variable but not convex
to them jointly. Therefore, it is unrealistic to find the global
optimal solution of Eq. (8). To address this issue, we propose
a simple and effective optimization algorithm based on an
alternative updating scheme to solve the objective function of
the proposed SSMFR. In our scheme, we update each variable
by fixing others, and this process is iteratively executed until
the objective function achieves a stable value.

1) FIXING ω AND W m TO UPDATE A
When fixing the weight vector ω and the mapping matrix
Wm (m = 1, 2, . . . ,M), the optimization problem with
respect to the prediction label matrix A becomes

min
A
ε (A) = min

A

M∑
m=1

||Xm
T
Wm
− A||22

+α tr
(
ATL A+ ATQA− 2ATQY + Y TQY

)
s.t. A ≥ 0, (9)

where L =
M∑
m=1

ωmLm.

By introducing the Lagrangian multiplier matrix ξ and
removing the unrelated terms with respect to A, we obtain
the Lagrange equation of Eq. (9) as

φ (A, ξ) =
M∑
m=1

tr
(
ATA− 2ATXm

T
Wm

)
+α tr

(
ATL A+ ATQA− 2ATQY

)
+ tr (ξA) .

(10)

Setting the derivative of Eq. (10), with respect to A, to 0,
we obtain

∂φ (A, ξ)
∂A

= 2MA− 2
M∑
m=1

Xm
T
Wm
+ 2α L A

+ 2α QA− 2α QY + ξ = 0. (11)

According to the Karush-Kuhn-Tucker condition
ξijAij = 0 [30], we get

[MA− F + α L A+ α QA− α QY ] ij Aij = 0 (12)

where F =
M∑
m=1

Xm
T
Wm.

We define the matrixes L = L+ − L− and F = F+ − F−

according to [16], and then the predicted label matrix A can
be solved as

Aij← Aij

[
F+ + αL−A+ αQY

]
ij[

F− + αL+A+ αQA+MA
]
ij

. (13)

2) FIXING W m AND A TO UPDATE ω
To solve the weight vector ω, we fix the mapping matrix
Wm (m = 1, 2, . . . ,M) and the prediction label matrix A,
then the optimization problem of ω becomes

min
ω
ε (ω) = min

ω
ρ (ω) = qTω + β ||ω||22,

s.t.
M∑
m=1

ωm = 1, ω ≥ 0 (14)

where q = (q1, q2, . . . , qM )T , and the element
qm = tr(ATLmA).
It can be easily seen that Eq. (14) is a convex quadratic

programming problem. By referring to the solution method
in [55], we adopt a fast coordinate gradient descent algorithm
to solve Eq. (14) quickly and effectively. Based on the con-
straint conditions

∑M
m=1 ωm = 1 and ωm ≥ 0, if we only

update any pairs of elements ωi and ωj(i 6= j) in ω and fix
other elementsωm(m 6= i, j) in each iteration solution, wewill
obtain

ωj = 1−
M∑
m=1
m6=i,j

ωm − ωi. (15)

Let ρ(ωi) represent the objective function, it can be
expressed by

ρ (ωi) =
M∑
m=1
m6=i,j

ωmqm + β
M∑
m=1
m6=i,j

ω2
m+ωiqi+ωjqi + β

(
ω2
i + ω

2
j
)

=

M∑
m=1
m6=i,j

ωmqm+β
M∑
m=1
m6=i,j

ω2
m+ωiqi+

1− M∑
m=1
m6=i,j

ωm − ωi

qi

+β

ω2
i +

1−
M∑
m=1
m6=i,j

ωm − ωi


2 . (16)
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Differentiating Eq. (16) with respect to ω, we get

∂ρ(ωi)
∂ωi

= qi − qj + 2β
(
ωi − ωj

)
= 0. (17)

According to Eq. (17), we can obtain

ω∗i − ω
∗
j =

1
2β

(
qj − qi

)
. (18)

where ω∗i and ω∗j are the results of updating ωi and ωj,
respectively. Since ω∗i + ω

∗
j = ωi + ωj, the updated ω

∗
i can

be expressed as

ω∗i =
1
4β

(
qj − qi

)
+
ωi + ωj

2
. (19)

To ensure that ω∗i is non-negative, the problem of solving
Eq. (19) can be further decomposed into the following form:

1) if qj−qi4β +
ωi+ωj

2 ≤ 0, then{
ω∗i = 0
ω∗j = ωi + ωj.

(20)

2) According to the symmetry of the variables i and j,
we can achieve that if qi−qj4β +

ωi+ωj
2 ≤ 0, then{

ω∗i = ωi + ωj

ω∗j = 0,
(21)

3) otherwiseω∗i =
1
4β

(
qj − qi

)
+
ωi + ωj

2
ω∗j = ωi + ωj − ω

∗
i .

(22)

By using Eqs. (20) to (22), the variables in the weight
vector ω are iteratively optimized in pairs until the value of
the objective function in Eq. (14) is convergent.

3) FIXING ω AND A TO UPDATE W m

By fixing the weight vector ω and the prediction label
matrix A, the optimization problem of the mapping matrix
Wm (m = 1, 2, . . . ,M) can be reduced to

min
Wm

ε
(
Wm)

= min
Wm

M∑
m=1

||Xm
T
Wm
− A||22 + λ ||W

m
||2,1.

(23)

According to the properties of the matrix, we know that
the equation ||A||2,1 = tr(ATGA) is satisfied for any matrix
A ∈ <n×m, where G is a diagonal matrix, and its i-th
diagonal element is gii = 1/(2||ai||2). Therefore, Eq. (23)
is equivalent to

min
Wm

ε
(
Wm)

= min
Wm

M∑
m=1

tr
((
Xm

T
Wm
− A

)T (
Xm

T
Wm
− A

))
+ λtr

(
WmTGmWm

)

= min
Wm

M∑
m=1

tr
(
WmT XmXm

T
Wm
− 2WmT XmA+ ATA

)
+ λtr

(
WmTGmWm

)
, (24)

where Gm is a diagonal matrix, and its i-th diagonal element
is gii = 1/(2||wmi ||2); w

m
i is the i-th row of Wm. By setting

the derivative of the above objective function with respect to
Wm to 0, we have

XmXm
T
Wm
+ λGmWm

= XmA. (25)

Let Eq. (25) left multiply (XmXm
T
+ λGm)−1, we have:

Wm
=

(
XmXm

T
+ λGm

)−1
XmA. (26)

Since ||wmi ||2 may be zero in practice, it needs to
redefine gmii as

gmii =
1

2||wmi ||2 + υ
, (27)

where υ is an extremely small constant.
Finally, theWm in Eq. (23) can be solved by an alternative

updating scheme. In the t-th iteration, we first fix Gmt−1 to
update Wm

t , then we fix Wm
t to update Gmt . This iteration

procedure is repeated until the algorithm converges. The
procedure of optimizingWm is shown in Algorithm 1.

Algorithm 1 OptimizingWm

1: For m = 1: M
2: t = 1;
3: Repeat
4: CalculateWm by Eq. (26);
5: Calculate Gm by Eq. (27);
6: Update t = t + 1;
7: Until convergence;
8: End
9: Output:Wm (m = 1, 2, . . . ,M).

In conclusion, the optimization process of our proposed
SSMFR algorithm is shown in Algorithm 2. As seen from
Algorithm 2, A, ω and Wm are updated alternately and
iteratively, which demonstrates that the proposed SSMFR
executes label propagation and classification model learning
jointly. Therefore, the proposed SSMFR can achieve more
accurate classifiers and predicted labels because the predicted
labels and the mapping matrix affect each other through each
iteration.

C. RECOGNITION CRITERION
The classifiers Wm (m = 1, 2, . . . ,M) can be obtained by
using Algorithm 2with the training dataset. In the recognition
phase, the label of a given testing image I represented by M
features zm ∈ <d

m
×1(m = 1, 2, . . . ,M ) can be estimated by

Label(I ) = argmax
c∈{1,2,...,C}

[∑M
m=1 z

T
mW

m

M

]
c

, (28)
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Algorithm 2 SSMFR Algorithm
1: Input: The data and label matrices
Xm (m = 1, 2, . . . ,M) and Y , and the parameters λ,
α and β;
2: Initialize: A = rand(N ,C), ω = 1/M and T = 1;
3: Calculating the weight matrix Sm (m = 1, 2, . . . ,M) by
using Eq. (2);
4: Repeat
5: Update the prediction label matrix A by using Eq. (13);
6: Calculating the weight vector ω through the coordinate
gradient descent method;
7: Update the mapping matrix Wm according to Algo-
rithm 1;
8: Update T = T + 1;
9: Until the value of the objective function in Eq. (8) does
not change;
10: Output: The mapping matrix Wm (m = 1, 2, . . . ,M),
the prediction label matrix A and the weight vector ω.

where
∑M

m=1 (zm)
TWm

M is a label prediction vector with C
dimensions. Specifically, the recognition process of our pro-
posed SSMFR is shown in Algorithm 3.

Algorithm 3 The Recognition Process of SSMFR
1: Input: The training dataset Xm (m = 1, 2, . . . ,M) and
its label set Y , M features zm ∈ <d

m
×1(m = 1, 2, . . . ,M )

of a given testing image I ;
2: Calculate the mapping matrix Wm (m = 1, 2, . . . ,M)
according to Algorithm 2;
3: Compute the label of the testing sample I by using
Eq. (28);
4: Output: The prediction.

D. CONVERGENCE ANALYSIS
To prove the convergence of SSMFR, we need to prove that
the subproblems as shown in Eqs. (9), (14) and (23) will
decrease the objective function value of our SSMFR. Since
our proposed SSMFR essentially follows the similar fashion
of many existing algorithms, e.g., the algorithms proposed
in Refs. [16] and [59], we exclude the proof that Eq. (9)
will not be increased when the variable A is updated by
Eq. (13), please refer the literature [16] and [59] for details.
Furthermore, Eq. (14) has been proven to be strictly convex
in the literature [17], [55], which ensures that the value of
the objective function of SSMFR is decreasing by utilizing
the coordinate gradient descent to solve it at each iteration.
Hence, to demonstrate that SSMFR algorithm is convergent,
it is just need to prove that Eq. (23) will not be increased when
variableWm is updated by Algorithm 1.

According to Algorithm 1, if we fix Gm to Gmt and update
Wm
t+1 in the t-th iteration, we have

ϕ(Wm
t+1,G

m
t ) ≤ ϕ(W

m
t ,G

m
t ). (29)

Equation (29) can be rewritten as

tr
((
Xm

T
Wm
t+1 − A

)T (XmTWm
t+1 − A

))
+ λtr

(
WmT
t+1G

m
t W

m
t+1
)
≤ tr

((
Xm

T
Wm
t − A

)T (XmTWm
t − A

))
+ tr

(
WmT
t Gmt W

m
t
)
. (30)

Since ||Wm
||2,1 =

m∑
i=1
||wmi ||2, we have

tr
((
XmTWm

t+1 − A
)T (XmTWm

t+1 − A
))

+ λ
∑
i

||(wmi )t+1||
2
2

2||(wmi )t ||2
≤ tr

((
XmTWm

t+1 − A
)T(XmTWm

t+1− A
))

+ λ
∑
i

||(wmi )t ||
2
2

2||(wmi )t ||2
, (31)

and

tr
((
XmTWm

t+1 − A
)T (XmTWm

t+1 − A
))

+ λ
∑
i

||(wmi )t+1||2−λ(
∑
i

||(wmi )t+1||2−
∑
i

||(wmi )t+1||
2
2

2||(wmi )t ||2
)

≤ tr
((
XmTWm

t+1 − A
)T (XmTWm

t+1 − A
))
+ λ

∑
i

||(wmi )t ||2

− λ(
∑
i

||(wmi )t ||2 −
∑
i

||(wmi )t ||
2
2

2||(wmi )t ||2
). (32)

Given any i, we can clearly find that

||(wmi )t+1||2 −
||(wmi )t+1||

2
2

2||(wmi )t ||2
≤ ||(wmi )t ||2 −

||(wmi )t ||
2
2

2||(wmi )t+1||2
.

(33)

Thus, the following inequation is satisfied.∑
i

||(wmi )t+1||2 −
∑
i

||(wmi )t+1||
2
2

2||(wmi )t ||2

≤

∑
i

||(wmi )t ||2 −
∑
i

||(wmi )t ||
2
2

2||(wmi )t ||2
. (34)

By combining Eqs. (31) and (34), we get

||XmTWm
t+1 − A||

2
2 + λ||W

m
t+1||2,1

≤ ||XmTWm
t − A||

2
2 + λ||W

m
t ||2,1. (35)

Therefore, the following inequation holds.

M∑
m=1

||XmTWm
t+1 − A||

2
2 + λ||W

m
t+1||2,1

≤

M∑
m=1

||XmTWm
t − A||

2
2 + λ||W

m
t ||2,1. (36)

Eq. (36) demonstrates that the objective function in Eq. (23)
is not increased in each iteration.

We now discuss the convergence of our proposed SSMFR
algorithm shown in Algorithm 2. Let η(At , ωt ,W t ) rep-
resent the objective function value of our SSMFR in the
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t-th iteration. Based on the above convergence analysis,
it can be easily seen that by using Eq. (13), the coordi-
nate gradient descent method and Algorithm 1 given above,
we can obtain the optimal solution of each variable in the
(t+1)-th iteration by fixing two others. Meanwhile, we have
η(At+1, ωt ,W t ) ≤ η(At+1, ωt ,W t ), η(At , ωt+1,W t ) ≤
η(At , ωt ,W t ) and η(At , ωt ,W t+1) ≤ η(At , ωt ,W t+1), and
by combining them together, we get η(At+1, ωt+1,W t+1) ≤
η(At , ωt ,W t ). Therefore, Algorithm 2 can ensure that the
value of η(A, ω,W ) is nonincreasing. Moreover, because
all terms in Eq. (8) is not smaller than 0, the function
η(At , ωt , W t ) has the lower bound. According to η(At+1,
ωt+1, W t+1) ≤ η(At , ωt ,W t ) and Cauchy’s Convergence
Rule [60], the proposed optimization algorithm for SSMFR
is convergent.

IV. EXPERIMENTS
In this section, the effectiveness of SSMFR is evaluated by
extensive experiments.

A. DATASET
To test the performance of our proposed SSMFR, we evalu-
ated it on five popular scene datasets, including three small
datasets (Scene8 [22], UIUC Sports [61] and Scene15 [24])
and two large dataset (MIT Indoor [62] and SUN397 [2]).
The Scene8 dataset [22] consists of 2688 images across

8 different scene categories, and the size of each image is
256 × 256. The UIUC Sports dataset [61] contains
1585 images of 8 sport scene classes, and the mini-
mum resolution of the images is about 800 × 600. The
Scene8 dataset [24] consists of 15 scene categories with a
total of 4485 images, which are approximately 300×250 in
average resolution. The MIT Indoor dataset [62] contains
15620 images labeled into 67 indoor scene categories, and
all images have a minimum resolution of 200 pixels on the
smallest axis. It should be noted that we just use a subset
containing 6700 images of MIT Indoor dataset in the exper-
iments. The SUN397 dataset [2] contains 397 scene cate-
gories and each category includes at least 100 images. The
total number of images is 108754 which make it extremely
challenging for scene recognition task [32]. Similar to the
literatures [63]–[65], we also use a subset of SUN397 to
evaluate our proposed method. The subset is created by ran-
domly selecting 100 scene categories and each category has
100 randomly selected images. Fig. 2 shows some images
from the different datasets.
The abovementioned datasets are fairly challenging for

scene recognition because 1) the same or similar objects
usually appear in the different scene categories; 2) the appear-
ances, sizes and numbers of objects are very diverse within
the same scene class; and 3) the backgrounds of the images
belonging to the same scene class are very different [17].

B. EXPERIMENTAL SETUP
In the experiments, we extracted several features to describe
the color, texture and shape information of the scene images.

FIGURE 2. Example images from different datasets.

For the datasets Scene8, UIUC Sports, Scene15 and MIT
Indoor, we computed several different features for each
dataset. Specifically, when extracting GIST [22] and the
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TABLE 1. Details of the experimental datasets.

Pyramid Histogram of Visual Words (PHOW) [66] feature
descriptors, the parameters were set referring to [22] and [66],
respectively. Local Binary Pattern (LBP) [67], gradient
histogram and HSV color histogram were extracted from
nonoverlapping 32×32 subregions of each image, and the
bag-of-words model [68] was used to quantify them as
feature vectors. For SUN397 dataset, we used the features
(GIST [22], Geo-Texton [2] and LBP [69])1 precomputed
by the Xiao et al. [2]. Table 1 gives the details of each
dataset and its feature descriptors. Note that the HSV color
histogram was not extracted for the Scene15 dataset since it
includes gray images, andHSV color and gradient histograms
are not extracted for the MIT Indoor dataset since it is very
time-consuming to extract these two features for this large-
scale dataset. In each dataset, 40%, 30% and 30% of samples
are randomly selected as the labeled training samples, unla-
beled training samples and testing samples, respectively. The
process of random sample selection was repeated 10 times,
and the average recognition rate and standard deviation are
provided in the following subsections.

C. EXPERIMENTAL RESULTS AND ANALYSIS
We executed two experiments to illustrate the validity of our
proposed SSMFR.

First, to prove that our proposed SSMFR model can
effectively fuse multiple features to improve the recog-
nition performance, the SSMFR model with the single
feature was compared with the SSMFR model with mul-
tiple features on five datasets. The comparison results are
shown in Table 2. As shown in Table 2, when only adopt-
ing a single feature, the best recognition performances of
Scene8, Scene15 and MIT Indoor datasets were obtained
by adopting GIST features, the best recognition perfor-
mance of UIUC Sports was obtained by PHOW features,
and the best recognition performances of SUN397 was
gained by LBP feature. The highest recognition accura-
cies (%) and standard deviations (%) of the five datasets
were 78.08±0.88, 64.34±1.48, 62.84±1.03, 16.32±0.62 and
19.76±0.48 respectively. While employing the fusion of
multiple features, SSMFR can improve the recognition rates

1https://vision.princeton.edu/projects/2010/SUN/

TABLE 2. Average recognition rates (%) and standard deviations (%) of
SSMFR by using a single feature and multiple features.

on the five datasets to 84.76±1.15, 79.62±1.19, 76.80±0.89,
22.78±1.05 and 29.92±0.72 respectively. The average recog-
nition precision was significantly increased by approximately
10%. These experimental results demonstrate that the accu-
racy of scene recognition will be limited when only a single
feature is used and the proposed SSMFR algorithm can
greatly improve the recognition performance by effectively
fusing the multiple features.

TABLE 3. Recognition rates (%) and standard deviations (%) of the
different methods on five datasets.

Next, we compared the proposed SSMFR algorithm
with several state-of-the-art algorithms, including Fea-
ture Selection with Shared Information among Multiple
Tasks (FSSI) [42], Low Rank Representation with Adap-
tive Distance Penalty (LRRADP) [70], Multi-Modal Semi-
Supervised LearningModel (MMSSL) [6], Structural Feature
Selection with Sparsity (SFSS) [71], Multi-view Learning
with Adaptive Neighbours (MLAN) [72]. FSSI is a super-
vised multi-feature learning method, LRRADP and SFSS
are semi-supervised learning method without multi-feature
learning, and the other two algorithms are semi-supervised
multi-feature learningmethods. The results of all methods are
described in Table 3.
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FIGURE 3. Example images from different datasets. Recognition rate of the proposed SSMFR with different λ values
in the five datasets.

By comparing the results in Table 3, we have the following
observations. First, the overall performance of the supervised
algorithm FSSI was generally worse than the other five semi-
supervised algorithms (LRRADP, MMSSL, SFSS, MLAN
and SSMFR) because FSSI cannot utilize the useful infor-
mation of unlabeled samples, which demonstrates that it is
beneficial to use unlabeled data for scene recognition tasks,
especially when the amount of labeled data is not large.
Second, the proposed SSMFR always gained better perfor-
mance than the other four semi-supervised algorithms. This
maybe because that SFSS and LRRADP directly connect-
ing multiple features into one feature vector, which cannot
efficiently fuse multiple features to recognize scene images.

For MLAN, since there is no label propagation mechanism
in it, the label information of labeled samples cannot be fully
used. Although MMSSL employs the label propagation tech-
nique to take full advantage of the label information, it does
not adopt l2,1-norm as the regularization. Thus, the classifier
obtained by this approach may lack of robustness to the
potential noise or outliers in the data.

Finally, to further verify the performance of our proposed
SSMFR is superior to other methods, we used the one-tailed
Wilcoxon rank sum test to validate whether SSMFR performs
significantly better than other compared methods. In this
one-tailed Wilcoxon rank sum test, the null hypothesis is
that the performance of SSMFR is the same as that of the
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FIGURE 4. Recognition rate of the proposed SSMFR with different α values in the five datasets.

compared methods, and the alternative hypothesis is that the
performance of SSMFR is better than that of the compared
methods. For instance, if we want to compare the recognition
rate of SSMFR with that of FSSI (SSMFR vs. FSSI), the null
hypotheses can be defined as H0: MSSMFR = MFSSI, and
the alternative hypothesis can be defined as H1: MSSMFR >

MFSSI, where MSSMFR and MFSSI represent the medians of
the recognition rates of SSMFR and FSSI, respectively, on all
datasets. The significance level of this test is set as 0.05 and
the test results are shown in Table 4. From this Table, it can
be found that the p-values obtained by all pair-wise one-tailed
Wilcoxon rank sum tests are less than 0.05, which means
the alternative hypotheses are accepted in all tests and our
proposed SSMFR significantly outperforms other compared
methods in this paper.

D. PARAMETER SENSITIVITY ANALYSIS
The parameter sensitivity analysis of three parameters λ, α
and β in the proposed SSMFR model are discussed in this
section. λ is used to avoid the over-fitting of the proposed
model, α is used to control the importance of the adaptive
multiple graphs-based label propagation term in Eq. (8), and
β is used to control the sparse of the non-negative weight
vector ω. In experiments, λ, α and β are tuned from the
set {0.001, 0.01, 0.1, 1, 10, 100, 1000}. Specifically, we have
tested the influence of the combination of three parameters
(λ, α and β) together, but for the ease of understanding
and concision, when we plot the Figs. 3-5, we fix two of
the three parameters as their optimal values and report the
average recognition accuracy and standard deviation while
the other parameter is changing. The recognition performance
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FIGURE 5. Recognition rate of the proposed SSMFR with different β values in the five datasets.

TABLE 4. The P-values of the pair-wise one-tailed wilcoxon rank sum
tests on the five datasets.

of SSMFR with different values of λ, α and β for different
datasets are described in Figs. 3-5, from which we can con-
clude the following points: 1) A small value of parameter
λ contributes to a much better performance (see Fig. 3).

This is because if λ is too large, only the regularization
term ||Wm

||2,1 in the SSMFR model takes a dominant role,
which leads the mapping relationship between the feature
set and the label matrix to not be accurately learned and
thus decreases the recognition accuracy. 2) With the increase
of parameter α values, the recognition rate shows a trend
of increasing first and then descending (see Fig. 4). This
is because, as the value of α increases, the information of
unlabeled data can be more fully used by SSMFR, which is
beneficial for improving the recognition performance. When
the optimum recognition rate is reached, if the value of α
continues to increase, the role of the other terms in Eq. (8)
will be ignored, resulting in a decline in the performance of
the SSMFR. 3) From Fig. 5, it can be generally observed that
the proposed SSMFR achieves its best performances under
moderate values of parameter β which controls the sparse of
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FIGURE 6. Convergence curves of the proposed SSMFR in the five datasets.

non-negative weight vector. This is because β = 0 will lead
a trivial solution of Eq. (14) as

ωi =

{
1, if qi = minm=1,...,M qm
0, otherwise.

(37)

This extremely sparse solution is undesirable since SSMFR
only adopts one feature and ignores the useful complemen-
tary information among different features. Conversely, a uni-
form weight vector (i.e.,ωi = 1/M (i = 1, 2, . . . ,M )) will be
obtained when β is set as a very large value, and the differ-
ent contribution of multiple features is neglected. Moreover,
we can also find that the performance of our algorithm is

insensitive to the β values when it is set neither too small nor
too large.

E. CONVERGENCE EVALUATION
The convergence proofs of the proposed SSMFR are pre-
sented in Section III.D. Here, the convergence curves of our
approach on the five datasets are shown in Fig. 6, in which the
x-axis represents the iteration numbers and y-axis represents
the objective function value in Eq. (8). It can be easily seen
from Fig. 6 that the value of the objective function of our
proposed algorithm gradually decreases with the increase of
iteration times, and the curve of the objective function value
eventually reaches flat. Therefore, our proposed algorithm is
convergent on the five datasets.
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V. CONCLUSION
Scene recognition is helpful in narrowing the gap between
computers and human beings when exploring an understand-
ing of a scene. However, due to the complexity of scene
images and the limited amount of labeled data, scene recog-
nition is challenging work. Specifically, in the scene recog-
nition problem, different information of scene images (color,
texture, shape, etc.) can be described by different features,
while a large number of scene images are lack of manual
category labels. Hence, integrating multi-feature learning and
semi-supervised learning into a unified model cannot only
fuse different features of images, but also use the informa-
tion of unlabeled images to improve the efficiency of scene
recognition.

In this paper, we proposed a new semi-supervised scene
recognition method called SSMFR. SSMFR can fully exploit
the complementary information contained in various features
and learn a unified global label matrix and the subclassifiers
corresponding to each feature jointly. By introducing the
adaptive weighted multigraph label propagation, the infor-
mation of unlabeled samples can be adopted to improve the
performance of the classifier. By using l2,1-norm to constrain
the learning process of the classifier, SSMFR can learn amore
robust classifier for scene recognition. In addition, we present
an effective iterative algorithm to solve the SSMFR model.
A large number of experiments were executed on five clas-
sical databases, and the experimental results verify that our
proposed SSMFR is valid.

At last, it should be pointed out that our SSMFR is a
linear approach. Thus, it may not be able to process highly
nonlinear distributed data. In our future work, we will try
to combine our proposed algorithm with nonlinear kernel
function or deep learning framework for solving this problem.
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