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ABSTRACT By using semi-discrete and Takagi-Sugeno fuzzy methods, a new version of discrete analogue
of stochastic fuzzy cellular neural networks is formulated, which gives a more accurate characterization for
continuous-time stochastic model than that by Euler scheme. Firstly, the 2p-th moment global exponential
stability for the obtained semi-discrete stochastic Takagi-Sugeno fuzzy model is studied with the help of
Minkowski inequality and Hölder inequality. Secondly, the 2p-th mean almost periodic outputs of the model
is investigated by using Krasnoselskii’s fixed point theorem. Finally, illustrative examples and numerical
simulations are given to demonstrate that our results are feasible.

INDEX TERMS Moment global exponential stability, semi-discrete method, stochastics, Takagi-Sugeno
approach.

I. INTRODUCTION
In [1], cellular neural networks (CNNs), which have been
widely applied in psychophysics, parallel computing, per-
ception, robotics, adaptive pattern recognition, associative
memory, image processing pattern recognition and combina-
torial optimization. All of these applications heavily depend
on the (almost) periodicity and global exponential stability.
Specifically, many scholars had focused on the issues of the
existence and global exponential stability of the equilibrium
point, periodic and almost periodic solutions of CNNs with
time delays in literatures [2]–[7]. For instance, Xu [7] con-
sidered the following CNNs with time delays:

dxi(t)
dt
= −ai(t)xi(t)+

n∑
j=1

bij(t)fj(xj(t))

+

n∑
j=1

cij(t)gj(xj(t − τij(t)))+ Ii(t), (I.1)

The associate editor coordinating the review of this article and approving
it for publication was Yilun Shang.

where n denotes the number of units in a neural network,
xi(t) corresponds to the state of the ith unit at time t ,
ai > 0 represents the passive decay rate at time t , fj and
gj are the neuronal output signal functions, bij(t) and cij(t)
denote the strength of the jth unit on the ith unit at time t ,
Ii(t) denotes the external input at time t , the continuous
function τij(t) corresponds to the information transmission
delay at time t , i, j = 1, 2, . . . , n. In [7], the author studied the
existence and exponential stability of anti-periodic solutions
of system (I.1).

Uncertain models described by stochastic differential
equations have received great attentions in recent years, since
they have been widely applied in practice such as engineer-
ing, physics, chemistry and biology [8], [9]. In the actual
situations, uncertainties have a consequence on the perfor-
mance of neural networks. In neural networks, the connection
weights of the neurons depend on certain resistance and
capacitance values that include modeling errors or uncer-
tainties during the parameter identification process. The
uncertainties come mainly from the deviations and pertur-
bations in parameters. In particular, when modeling neu-
ral networks, the parameter uncertainties should be taken
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into consideration. Therefore, we consider the following
stochastic CNNs:

dxi(t) =
[
− ai(t)xi(t)+

n∑
j=1

bij(t)fj(xj(t))

+

n∑
j=1

cij(t)gj(xj(t − τij(t)))+ Ii(t)
]
dt

+

n∑
j=1

dij(t)σj(xj(t − ηij(t)))dwj(t), (I.2)

where dij, ηij and σj are similarly specified as the correspond-
ing parameters in system (I.1), wj is the standard Brownian
motion, i, j = 1, 2, . . . , n.

The discrete-time neural networks become more important
than the continuous-time counterparts when implementing
the neural networks in a digital way. In order to investigate
the dynamical characteristics with respect to digital signal
transmission, it is essential to formulate the discrete ana-
log of neural networks. A large number of literatures had
been obtained for stability analysis of discrete-time deter-
minant or stochastic neural networks formulated by Euler
scheme [10]–[19]. The semi-discrete method [20] of deter-
minant differential equations is very popular in recent years
and it is widely utilized in the researches of continuous-time
neural networks [20]–[25]. However, as far as the authors
know, few scholars use this method to formulate the discrete
analogue of stochastic differential equations. In order to get
the discrete analogue of system (I.2) by the semi-discrete
method [20], the following stochastic CNNs with piecewise
constant arguments corresponding to system (I.2) has been
taken into account:

dxi(t) =
[
− ai([t])xi(t)+

n∑
j=1

bij([t])fj(xj([t]))

+

n∑
j=1

cij([t])gj(xj([t]− τij([t])))

+

n∑
j=1

dij([t])σj(xj([t]− ηij([t])))1wj([t])

+ Ii([t])
]
dt,

where [t] denotes the integer part of t , i = 1, 2, . . . , n. Here
the discrete analogue of the stochastic part of system (I.2) is
obtained by Euler scheme. For each t ∈ R, there exists an
integer k ∈ Z such that k ≤ t < k + 1. Then the above
equation becomes

dxi(t) =
[
− ai(k)xi(t)+

n∑
j=1

bij(k)fj(xj(k))

+

n∑
j=1

cij(k)gj(xj(k − τij(k)))

+

n∑
j=1

dij(k)σj(xj(k − ηij(k)))1wj(k)+ Ii(k)
]
dt,

where i = 1, 2, . . . , n. Integrating the above equation from k
to t and letting t → k + 1, we achieve the discrete analogue
of system (I.2) as follows:

xi(k + 1)

= e−ai(k)xi(k)

+
1− e−ai(k)

ai(k)

[ n∑
j=1

bij(k)fj(xj(k))

+

n∑
j=1

cij(k)gj(xj(k − τij(k)))

+

n∑
j=1

dij(k)σj(xj(k − ηij(k)))1wj(k)+ Ii(k)
]
, (I.3)

where k ∈ Z, i = 1, 2, . . . , n.
Almost all dynamical models in real world cannot

be represented by linear systems and have a nonlinear
term. Simultaneously, linear control methods are applica-
ble only to the linear models and sometimes the nonlinear
models [26], [27] need to be linearized. In [28], Takagi and
Sugeno presented a fuzzy method depicted by IF–THEN
rules, which describe input-output relationships of nonlinear
models. The major characteristic of Takagi-Sugeno fuzzy
model is to show the local behaviour of each fuzzy rule by
a linear model. As a matter of fact, Takagi-Sugeno fuzzy
method can be applied to research universal approximators of
almost all nonlinear models [29], [30]. For more researches
on the dynamical behaviors of Takagi-Sugeno fuzzy neural
networks, see [31]–[33].

Periodicity often appears in implicit ways in various natu-
ral phenomena. For instance, this is the case when one stud-
ies the effects of fluctuating environments. Though one can
deliberately periodically fluctuate environmental parameters
in controlled laboratory experiments, fluctuations in nature
are hardly periodic. Almost periodicity is more likely to accu-
rately describe natural fluctuations [34]–[44]. The concept of
almost periodicity is important in probability especially for
investigations on stochastic processes. The interest in such
a notion lies in its significance and applications arising in
engineering, statistics, etc., see [40]–[44].

Stimulated by the above discussions, the main purpose
of this paper is to investigate the 2p-th mean almost peri-
odic outputs and moment global exponential stability of
Takagi-Sugeno fuzzy model of system (I.3).
Research Highlights: The main contributions of this article

are related as follows:
• A fuzzy model is obtained for semi-discrete stochastic
CNNs by using Takagi-Sugeno fuzzy method.

• A discrete Volterra integral expression is obtained for
semi-discrete stochastic fuzzy CNNs.

• A decision theorem for 2p-th moment global exponen-
tial stability of semi-discrete stochastic fuzzy CNNs is
derived.

• The existence of 2p-th mean almost periodic oscillations
for semi-discrete stochastic fuzzy CNNs is obtained.
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• The problems solved in this paper can stimulate the
studies of many other discrete stochastic fuzzy dynamic
systems.

The paper is organized as follows. In Section 2, a fuzzy
model of system (I.3) has been established by using Takagi-
Sugeno fuzzymethod, and some necessary lemmas are stated.
In Section 3, the 2p-th moment global exponential stability
of the obtained semi-discrete stochastic Takagi-Sugeno fuzzy
model is discussed. In Section 4, we employ Krasnoselskii’s
fixed point theorem to research the 2p-th mean almost peri-
odic outputs of the fuzzy model. In Section 5, two examples
and computer simulations are also given to illustrate our
main results. The conclusions and future developments of this
paper are presented in Section 6.

II. TAKAGI-SUGENO FUZZY MODEL DESCRIPTION AND
PRELIMINARIES
A. TAKAGI-SUGENO FUZZY MODEL DESCRIPTION
By the fuzzy method in [28], the r th rule of the Takagi-
Sugeno fuzzy model of system (I.3) is of the following form:
Plant Rule l: IF θ1 is Pl1 and · · · and θq is Plq, THEN

xi(k + 1) = e−ai(k)xi(k)

+
1− e−ai(k)

ai(k)

[ n∑
j=1

bij(k)f lj (xj(k))

+

n∑
j=1

cij(k)glj(xj(k − τij(k)))

+

n∑
j=1

dij(k)σ lj (xj(k − ηij(k)))1wj(k)

+ Ii(k)
]
, (II.1)

where θ = (θ1, . . . , θp)T is the known premise variable
vector, Pls(l = 1, 2, . . . , r, s = 1, 2, . . . , q) are the fuzzy
sets, r is the number of fuzzy IF-THEN rules; f lj , g

l
j and σ

l
j

are the lth outputs of fj, gj and σj of system (I.3), respectively;
k ∈ Z, i, j = 1, 2, . . . , n.

The final output of the fuzzy model (II.1) is inferred as
follows:

xi(k + 1) =
r∑
l=1

wl(θ )
{
e−ai(k)xi(k)

+
1− e−ai(k)

ai(k)

[ n∑
j=1

bij(k)f lj (xj(k))

+

n∑
j=1

cij(k)glj(xj(k − τij(k)))

+

n∑
j=1

dij(k)σ lj (xj(k − ηij(k)))1wj(k)

+ Ii(k)
]}
, (II.2)

where k ∈ Z, i = 1, 2, . . . , n,

wl(θ ) =
el(θ )∑r
l=1 el(θ )

, el(θ ) =
q∏
s=1

Pls(θs),

Pls(θs) denotes the grade of membership of θs in Pls. Hence,
we have

el(θ ) ≥ 0,
r∑
l=1

el(θ ) > 0, wl(θ ) ≥ 0,

r∑
l=1

wl(θ ) = 1, l = 1, 2, . . . , r .

Then system (II.2) can be transformed to

xi(k + 1)

= e−ai(k)xi(k)

+
1− e−ai(k)

ai(k)

r∑
l=1

wl(θ (k))
[ n∑
j=1

bij(k)f lj (xj(k))

+

n∑
j=1

cij(k)glj(xj(k − τij(k)))

+

n∑
j=1

dij(k)σ lj (xj(k − ηij(k)))1wj(k)

+ Ii(k)
]
, (II.3)

where k ∈ Z, i = 1, 2, . . . , n.

B. PRELIMINARIES
Let (�,F ,P) be a probability space and BC(Z;Lp(�;Rn))
denote the vector space of all bounded continuous functions
from Z to Lp(�;Rn). Define |X |p = max1≤i≤n(E|xi|p)

1
p ,

∀X = {xi} := (x1, x2, . . . , xn)T ∈ Lp(�;Rn).
Then Lp(�;Rn) is a Banach space equipped with | · |p.
Define

‖X‖p = sup
k∈Z
|X |p = max

1≤i≤n
sup
k∈Z

(E|xi(k)|p)
1
p ,

∀X = {xi} ∈ BC(Z;Lp(�;Rn)). Then BC(Z;Lp(�;Rn))
is a Banach space equipped with ‖ · ‖p for
p ≥ 1.
Lemma 1 [ [45] (Minkowski Inequality)]: Assume that

p ≥ 1, E|ξ |p <∞, E|η|p <∞, then

(E|ξ + η|p)1/p ≤ (E|ξ |p)1/p + (E|η|p)1/p.

Lemma 2 [[45] (Hölder Inequality)]: Assume that p > 1,
then∑

k

|akbk | ≤
[∑

k

|ak |
]1−1/p[∑

k

|ak ||bk |p
]1/p

.

If p = 1, then
∑

k |akbk | ≤ (
∑

k |ak |)(supk |bk |).
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Lemma 3: X = {xi} is the final output of Takagi-Sugeno
fuzzy system (II.3) if and only if

xi(k)

=

k−1∏
s=k0

e−ai(s)xi(k0)

+

k−1∑
v=k0

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

r∑
l=1

wl(θ (v))

[ n∑
j=1

bij(v)f lj (xj(v))+
n∑
j=1

cij(v)glj(xj(v− τij(v)))

+

n∑
j=1

dij(v)σ lj (xj(v− ηij(v)))1wj(v)+ Ii(v)
]
, (II.4)

where k0 ∈ Z, k ∈ (k0,+∞)Z, i = 1, 2, . . . , n.
Proof: Let

F li (k, x)

:=

n∑
j=1

bij(k)f lj (xj(k))+
n∑
j=1

cij(k)glj(xj(k − τij(k)))

+

n∑
j=1

dij(k)σ lj (xj(k − ηij(k)))1wj(k)

+ Ii(k), k ∈ Z, i = 1, 2, . . . , n, l = 1, 2, . . . , r .

By 1[u(k)v(k)] = [1u(k)]v(k) + u(k + 1)[1v(k)] and
system (II.3), it gets

1

[ k−1∏
s=0

eai(s)xi(k)
]

=

k∏
s=0

eai(s)[1− e−ai(k)]
ai(k)

r∑
l=1

wl(θ (k))F li (k, x),

where i = 1, 2, . . . , n, l = 1, 2, . . . , r , k ∈ Z. So
k−1∑
v=k0

1

[ v−1∏
s=0

eai(s)xi(v)
]

=

k−1∑
v=k0

v∏
s=0

eai(s)[1− e−ai(v)]
ai(v)

r∑
l=1

wl(θ (v))F li (v, x)

is equivalent to
k−1∏
s=0

eai(s)xi(k)

=

k0−1∏
s=0

eai(s)xi(k0)

+

k−1∑
v=k0

v∏
s=0

eai(s)[1− e−ai(v)]
ai(v)

r∑
l=1

wl(θ (v))F li (v, x),

where i = 1, 2, . . . , n, l = 1, 2, . . . , r , k ∈ Z. By the
above equations, we can easily derive (II.4). This completes
the proof.

Lemma 4 [9]: Suppose that g ∈ L2([a, b],R), then

E
[

sup
t∈[a,b]

∣∣∣∣ ∫ t

a
g(s)dω(s)

∣∣∣∣p] ≤ CpE[ ∫ b

a
|g(t)|2dt

] p
2

,

where

Cp =


(32/p)p/2, 0 < p < 2,
4, p = 2,[

pp+1

2(p− 1)(p−1)

] p
2

, p > 2.

Lemma 5: Assume that {x(k) : k ∈ Z} is real-valued
stochastic process and w(k) is the standard Brownian motion,
then

E
∣∣x(k)1w(k)∣∣p ≤ CpE∣∣x(k)∣∣p, k ∈ Z,

where Cp is defined as that in Lemma 4, p > 0.
Proof: By Lemma 4, it follows that

E
∣∣x(k)1w(k)∣∣p = E

∣∣∣∣ ∫ k+1

k
x(k) dw(s)

∣∣∣∣p
≤ CpE

∣∣∣∣ ∫ k+1

k
x2(k) ds

∣∣∣∣
p
2

≤ CpE
∣∣x(k)∣∣p,

k ∈ Z.

This completes the proof.

III. MOMENT GLOBAL EXPONENTIAL STABILITY OF
TAKAGI-SUGENO MODEL
Set f̄ = sup

k∈Z
|f (k)| and f = inf

k∈Z
|f (k)| for bounded function f

defined on Z. Define

ā := max
1≤i≤n

āi, a := min
1≤i≤n

ai,

r2p :=
(1− e−ā)
a(1− e−a)

max
1≤i≤n

sup
k∈Z

r∑
l=1

wl(θ (k))
n∑
j=1

[
b̄ijL lj

+ c̄ijK l
j + d̄ij3

l
jC

1
2p
2p

]
, β2p :=

α2p

1− r2p
,

where

α2p :=
(1− e−ā)
a(1− e−a)

max
1≤i≤n

sup
k∈Z

r∑
l=1

wl(θ (k))
[ n∑
j=1

(
b̄ij|f lj (0)|

+ c̄ij|glj(0)|
)
+ Īi +

n∑
j=1

d̄ijσ lj (0)C
1
2p
2p

]
.

Suppose that X = {xi} with initial value ϕ = {ϕi} and
X∗ = {x∗i } with initial value ϕ∗ = {ϕ∗i } are arbitrary two
solutions of system (II.3). For convenience, let

γ2p = max
1≤i≤n

sup
s∈[−µ0,0]Z

{(E|ϕi(s)− ϕ∗i (s)|
2p)

1
2p },

µ0 = max
(i,j)
{τ̄ij, η̄ij}.
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Definition 6 [9]: System (II.3) is said to be 2p-th moment
global exponential stability if there are positive constants M
and λ such that

E|X (k)− X∗(k)|2p < Mγ2pe−λk , ∀k ∈ [−µ0,+∞)Z.

The 2-nd moment global exponential stability will be called
square-mean moment global exponential stability.

For the sake of deriving themoment global exponential sta-
bility of Takagi-Sugeno fuzzy model (II.3), some conditions
are considered below.
(H1) The lth outputs f lj , g

l
j and σ

l
j of fj, gj and σj satisfy the

Lipschitz conditions, i.e., there exist several positive
constants L lj , K

l
j and 3

l
j such that

|f lj (u)− f
l
j (v)| ≤ L lj |u− v|,

|glj(u)− g
l
j(v)| ≤ K l

j |u− v|,

|σ lj (u)− σ
l
j (v)| ≤ 3

l
j |u− v|,

for all u, v ∈ R, where j = 1, 2, . . . , n, l = 1, 2, . . . , r .
(H2) r2p < 1.
Theorem 7: Assume that (H1)-(H2) hold, then Takagi-

Sugeno fuzzy model (II.3) is 2p-th moment globally exponen-
tially stable.

Proof: Suppose that X = {xi}with initial value ϕ = {ϕi}
and X∗ = {x∗i } with initial value ϕ

∗
= {ϕ∗i } are arbitrary two

solutions of model (II.3). Then it follows from Lemma 3 that

|xi(k)− x∗i (k)|

≤

k−1∏
s=0

e−ai(s)|ϕi(0)− ϕ∗i (0)|

+
(1− e−ā)

a
sup
t∈Z

r∑
l=1

wl(θ (t))
k−1∑
v=0

k−1∏
s=v+1

e−ai(s)
n∑
j=1

{
b̄ijL lj |xj(v)− x

∗
j (v)|

+ c̄ijK l
j |xj(v− τij(v))− x

∗
j (v− τij(v))|

+ d̄ij3l
j |xj(v− ηij(v))− x

∗
j (v− ηij(v))||1wj(v)|

}
≤ e−ak |ϕi(0)− ϕ∗i (0)| +

(1− e−ā)
a

sup
t∈Z

r∑
l=1

wl(θ (t))

×

k−1∑
v=0

e−a(k−v−1)
n∑
j=1

{
b̄ijL lj |xj(v)− x

∗
j (v)|

+ c̄ijK l
j |xj(v− τij(v))− x

∗
j (v− τij(v))|

+ d̄ij3l
j |xj(v− ηij(v))

− x∗j (v− ηij(v))||1wj(v)|
}
, (III.1)

where i = 1, 2, . . . , n, k ∈ [−µ0,+∞)Z. For convenience,
let

a0 =
1− e−ā

a
,

and Z = {zi}, zi(k) = xi(k) − x∗i (k), i = 1, 2, . . . , n, k ∈ Z.
By Minkoswki inequality in Lemma 1, Hölder inequality in
Lemma 2 and Lemma 5, it gets from (III.1) that

|Z (k)|2p
= |X (k)− X∗(k)|2p
≤ e−akγ2p

+ sup
t∈Z

r∑
l=1

wl(θ (t)) max
1≤i≤n

n∑
j=1

a0b̄ijL lj

×

{[ k−1∑
s=0

e−a(k−s−1)
]2p−1

×

k−1∑
s=0

e−a(k−s−1)E
∣∣xj(s)− x∗j (s)∣∣2p} 1

2p

+ sup
t∈Z

r∑
l=1

wl(θ (t)) max
1≤i≤n

n∑
j=1

× a0c̄ijK l
j

{[ k−1∑
s=0

e−a(k−s−1)
]2p−1

×

k−1∑
s=0

e−a(k−s−1)E
∣∣xj(s− τij(s))

− x∗j (s− τij(s))
∣∣2p} 1

2p

+ sup
t∈Z

r∑
l=1

wl(θ (t)) max
1≤i≤n

n∑
j=1

a0d̄ij3l
j

×

{[ k−1∑
s=0

e−a(k−s−1)
]2p−1

×

k−1∑
s=0

e−a(k−s−1)E
∣∣[xj(s− ηij(s))

− x∗j (s− ηij(s))]1wj(s)
∣∣2p} 1

2p

≤ e−akγ2p + sup
t∈Z

r∑
l=1

wl(θ (t))
{
max
1≤i≤n

n∑
j=1

a0b̄ijL lj

×

{[ k−1∑
s=0

e−a(k−s−1)
]2p−1 k−1∑

s=0

e−a(k−s−1)|Z (s)|2p2p

} 1
2p

+ max
1≤i≤n

n∑
j=1

a0c̄ijK l
j

{[ k−1∑
s=0

e−a(k−s−1)
]2p−1

×

k−1∑
s=0

e−a(k−s−1)|Z (s− τij(s))|
2p
2p

} 1
2p

+ max
1≤i≤n

n∑
j=1

a0C
1
2p
2p d̄ij3

l
j

{[ k−1∑
s=0

e−a(k−s−1)
]2p−1

×

k−1∑
s=0

e−a(k−s−1)|Z (s− ηij(s))|
2p
2p

} 1
2p
}
. (III.2)
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By (H2), there exists a constant λ > 0 small enough such
that

sup
k∈Z

max
1≤i≤n

n∑
j=1

eλa0
1− e−(a−2pλ)

r∑
l=1

wl(θ (k))
[
b̄ijL lj

+ eµ0λc̄ijK l
j + e

µ0λC
1
2p
2p d̄ij3

l
j

]
def
= ρ ≤ 1.

Next, we claim that there exists a constant M0 > 1 such
that

|Z (k)|2p ≤ M0γ2pe−λk , ∀k ∈ [−µ0,+∞)Z. (III.3)

If (III.3) is invalid, then there exist k0 ∈ (0,+∞)Z such that

|Z (k0)|2p > M0γ2pe−λk0 (III.4)

and

|Z (k)|2p ≤ M0γ2pe−λk , ∀k ∈ [−µ0, k0)Z. (III.5)

In view of (III.2), it follows from (III.5) that

|Z (k0)|2p
≤ e−ak0γ2p

+ sup
t∈Z

r∑
l=1

wl(θ (t))
{
max
1≤i≤n

n∑
j=1

a0b̄ijL ljM0γ2p

×

{[ k−1∑
s=0

e−a(k0−s−1)
]2p−1 k−1∑

s=0

e−a(k0−s−1)e−2pλs
} 1

2p

+ max
1≤i≤n

n∑
j=1

a0M0γ2p

[
c̄ijK l

j + C
1
2p
2p d̄ij3

l
j

]

×

{[ k−1∑
s=0

e−a(k0−s−1)
]2p−1

×

k−1∑
s=0

e−a(k0−s−1)e−2pλ(s−µ0)
} 1

2p
}

≤ e−ak0γ2p

+ sup
t∈Z

r∑
l=1

wl(θ (t))
{
max
1≤i≤n

n∑
j=1

a0b̄ijL ljM0γ2p

× e−λk0eλ
[
1− e−ak0

1− e−a

]1− 1
2p
[ k0−1∑
s=0

e−(a−pλ)(k0−s−1)
] 1

2p

+ max
1≤i≤n

n∑
j=1

a0M0γ2p

[
c̄ijK l

j + C
1
2p
2p d̄ij3

l
j

]

× e−λk0e(µ0+1)λ
[
1− e−ak0

1− e−a

]1− 1
2p

×

[ k0−1∑
s=0

e−(a−pλ)(k0−s−1)
] 1

2p
}

≤ e−ak0γ2p + sup
k∈Z

r∑
l=1

wl(θ (k)) max
1≤i≤n

n∑
j=1

a0M0γ2p

× e−λk0
[
b̄ijL lj + e

µ0λc̄ijK l
j + e

µ0λC
1
2p
2p d̄ij3

l
j

]
× eλ

[
1− e−ak0

1− e−a

]1− 1
2p
[
1− e−(a−2pλ)k0

1− e−(a−2pλ)

] 1
2p

≤ M0γ2pe−λk0
{

1
M0

e−(a−λ)k0

+ sup
k∈Z

r∑
l=1

wl(θ (k)) max
1≤i≤n

n∑
j=1

a0

[
b̄ijL lj + e

µ0λc̄ijK l
j

+ eµ0λC
1
2p
2p d̄ij3

l
j

]
eλ[1− e−(a−λ)k0 ]
1− e−(a−2pλ)

}
≤ M0γ2pe−λk0

{
e−(a−λ)k0 + ρ[1− e−(a−λ)k0 ]

}
≤ M0γ2pe−λk0 . (III.6)

In the fourth inequality from the bottom of (III.6), we use the
facts [1− e−ak0 ]1−

1
2p [1− e−(a−pλ)k0 ]

1
2p ≤ 1− e−(a−λ)k0 and

[1 − e−a]
1
2p ≥ [1 − e−(a−pλ)]

1
2p . (III.6) contradicts (III.4).

Hence, (III.3) is satisfied. Therefore, Takagi-Sugeno fuzzy
model (II.3) is 2p-th moment globally exponentially stable.
This completes the proof.

IV. MEAN ALMOST PERIODIC OUTPUTS OF
TAKAGI-SUGENO MODEL
Lemma 8 [46]: Assume that 3 is a closed convex

nonempty subset of a Banach space X. Suppose further that
B and C map 3 into X such that

(1) x, y ∈ 3 implies that Bx + Cy ∈ 3;
(2) B is continuous and B3 is contained in a compact set;
(3) C is a contraction mapping.

Then there exists a z ∈ 3 with z = Bz+ Cz.
Definition 9 [8]: A stochastic process X ∈ BC(Z;Lp

(�;Rn)) is said to be p-th mean almost periodic sequence
if for each ε > 0, there exists an integer l(ε) > 0 such that
each interval of length l(ε) contains an integer ω for which

sup
k∈Z

E|X (k + ω)− X (k)|p < ε.

A stochastic process X, which is 2-nd mean almost peri-
odic sequence will be called square-mean almost peri-
odic sequence. Like for classical almost periodic functions,
the number ω will be called an ε-translation of X.
Theorem 10: Assume that (H1)-(H2) and the following

conditions are satisfied:

(H3) All of the coefficients in system (I.3) are almost peri-
odic sequences.

(H4) The known premise variable θ (k)= (θ1(k), . . . , θp(k))T

is almost periodic and membership function Pls(θ ) is
uniformly continuous in θ , k ∈ Z, l = 1, 2, . . . , r,
s = 1, 2, . . . , q.

Then Takagi-Sugeno fuzzy model (II.3) of system (I.3) out-
puts a 2p-th mean almost periodic oscillation X with
‖X‖2p ≤ β2p, p ≥ 1.
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Proof: Let3 ⊆ BC(Z;L2p(�;Rn)) be the collection of
all 2p-th mean almost periodic sequences X = {xi} satisfying
the inequality ‖X‖2p ≤ β2p.

Firstly, X = {xi} is described by

xi(k)

=

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

r∑
l=1

wl(θ (v))

[ n∑
j=1

bij(v)f lj (xj(v))+
n∑
j=1

cij(v)glj(xj(v− τij(v)))

+

n∑
j=1

dij(v)σ lj (xj(v− ηij(v)))1wj(v)+ Ii(v)
]
, (IV.1)

where i = 1, 2, . . . , n, k ∈ Z. By Lemma 3, (IV.1) is well
defined and satisfies (II.4). So we define 8X (k) = BX (k)+
CX (k), where

8X (k) = ((8X )1(k), (8X )2(k), . . . , (8X )n(k))T ,

(8X )i(k) = (BX )i(k)+ (CX )i(k), (IV.2)

(BX )i(k) =
k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

×

r∑
l=1

wl(θ (v))
[ n∑
j=1

bij(v)f lj (xj(v))

+

n∑
j=1

cij(v)glj(xj(v− τij(v)))+ Ii(v)
]
, (IV.3)

(CX )i(k) =
k−1∑
v=∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

r∑
l=1

wl(θ (v))

×

n∑
j=1

dij(v)σ lj (xj(v− ηij(v)))1wj(v), (IV.4)

where i = 1, 2, . . . , n, k ∈ Z.
Let X0

= {x0i } be defined as

x0i (k) =
k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

×

r∑
l=1

wl(θ (v))
[ n∑
j=1

bij(v)f lj (0)+
n∑
j=1

cij(v)glj(0)

+

n∑
j=1

dij(v)σ lj (0)1wj(v)+ Ii(v)
]
,

where i = 1, 2, . . . , n, k ∈ Z. By Minkoswki inequality in
Lemma 1 and Hölder inequality in Lemma 2, we have

‖X0
‖2p

≤ sup
t∈Z

r∑
l=1

wl(θ (t)) max
1≤i≤n

sup
k∈Z

{[
E

∣∣∣∣ k−1∑
v=−∞

k−1∏
s=v+1

×
e−ai(s)[1− e−ai(v)]

ai(v)

n∑
j=1

(
b̄ijf lj (0)+ c̄ijg

l
j(0)

)∣∣∣∣2p] 1
2p

+

[
E

∣∣∣∣ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

n∑
j=1

d̄ijσ lj (0)

×1wj(v)

∣∣∣∣2p] 1
2p

+

[
E

∣∣∣∣ k−1∑
v=−∞

k−1∏
s=v+1

×
e−ai(s)[1− e−ai(v)]

ai(v)
Īi

∣∣∣∣2p] 1
2p
}
. (IV.5)

It gets from (IV.5) that

‖X0
‖2p

≤ sup
t∈Z

r∑
l=1

wl(θ (t)) max
1≤i≤n

sup
k∈Z

{
(1− e−ā)
a(1− e−a)

×

[ n∑
j=1

(
b̄ij|f lj (0)| + c̄ij|g

l
j(0)|

)
+ Īi

]

+

n∑
j=1

d̄ijσ lj (0)
[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

]1− 1
2p

×

[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

E|1wj(v)|2p
] 1

2p
}

≤
(1− e−ā)
a(1− e−a)

max
1≤i≤n

sup
k∈Z

r∑
l=1

wl(θ (k))

×

[ n∑
j=1

(
b̄ij|f lj (0)| + c̄ij|g

l
j(0)|

)
+ Īi +

n∑
j=1

d̄ijσ lj (0)C
1
2p
2p

]
:= α2p. (IV.6)

It follows (IV.2), (IV.3) and (IV.4) that

‖8X − X0
‖2p

≤ sup
t∈Z

r∑
l=1

wl(θ (t)) max
1≤i≤n

sup
k∈Z

n∑
j=1

{
b̄ijL lj

{
E
[ k−1∑
v=−∞

×

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

|xj(v)|
]2p} 1

2p

+ c̄ijK l
j

{
E
[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

× |xj(v− τij(v))|
]2p} 1

2p

+ d̄ij3l
j

{
E
[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

× |xj(v− ηij(v))1wj(v)|
]2p} 1

2p
}
,
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which yields from Lemmas 1 and 2 that

‖8X − X0
‖2p

≤ sup
t∈Z

r∑
l=1

wl(θ (t)) max
1≤i≤n

sup
k∈Z

n∑
j=1

{
b̄ijL lj

{[ k−1∑
v=−∞

×

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

]2p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

E
∣∣xj(v)∣∣2p} 1

2p

+ c̄ijK l
j

{[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

]2p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

×E
∣∣xj(v− τij(v))∣∣2p} 1

2p

+ d̄ij3l
j

{[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

]2p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1− e−ai(v)]
ai(v)

×E
∣∣xj(v− ηij(v))1wj(v)∣∣2p} 1

2p
}
.

Applying Lemma 5 to the above inequality, it derives

‖8X − X0
‖2p ≤

(1− e−ā)
a(1− e−a)

max
1≤i≤n

sup
k∈Z

r∑
l=1

wl(θ (k))

×

n∑
j=1

[
b̄ijL lj + c̄ijK

l
j + d̄ij3

l
jC

1
2p
2p

]
‖X‖2p

= r2p‖X‖2p ≤
r2pα2p
1− r2p

. (IV.7)

Hence, ∀X = {xi} ∈ 3, it leads from (IV.6) and (IV.7) to

‖8X‖2p ≤ ‖X0
‖2p + ‖8X − X0

‖2p

≤ α2p +
r2pα2p
1− r2p

=
α2p

1− r2p
:= β2p. (IV.8)

From (IV.8), B3 is uniformly bounded. Together with
the continuity of B, for any bounded sequence {ϕn}
in 3, we know that there exists a subsequence {ϕnk }
in 3 such that {B(ϕnk )} is convergent in B(3). Therefore,
B is compact on 3. Then condition (2) of Lemma 8 is
satisfied.

The next step is proving condition (1) of Lemma 8. Now,
we consist in proving the 2p-th mean almost periodicity of
BX (·) and CX (·). Since X (·) is a 2p-th mean almost periodic
sequence and all the coefficients in system (I.3) are almost
periodic sequences, for any ε > 0, there exist lε > 0 and

ω in every interval of length lε such that[
E|xi(k + ω)− xi(k)|2p

] 1
2p < ε, |ai(k + ω)− ai(k)| < ε,∣∣∣∣ r∑

l=1

wl(θ (k + ω))−
r∑
l=1

wl(θ (k))

∣∣∣∣ < ε,

|bij(k + ω)− bij(k)| < ε, |cij(k + ω)− cij(k)| < ε,

|dij(k + ω)− dij(k)| < ε, |τij(k + ω)− τij(k)| < ε,

|ηij(k + ω)− ηij(k)| < ε, |Ii(k + ω)− Ii(k)| < ε,

where i, j = 1, 2, . . . , n, k ∈ Z. By (IV.3) and (IV.4),
we could easily find a positive constantM such that[

E|(BX )i(k + ω)− (BX )i(k)|2p
] 1
2p

≤ M max
1≤i≤n

sup
k∈Z

[
E|xi(k + ω)− xi(k)|2p

] 1
2p

< Mε, (IV.9)[
E|(CX )i(k + ω)− (CX )i(k)|2p

] 1
2p

≤ M max
1≤i≤n

sup
k∈Z

[
E|xi(k + ω)− xi(k)|2p

] 1
2p

< Mε, (IV.10)

where i = 1, 2, . . . , n, k ∈ Z. From (IV.9) and (IV.10), BX (·)
and CX (·) are 2p-th mean almost periodic processes. Further,
by (IV.8), it is easy to obtain that BX + CY ∈ 3, ∀X ,Y ∈ 3.
Then condition (1) of Lemma 8 holds.

Finally, ∀X = {xi},Y = {yi} ∈ 3, from (IV.4), it yields

‖CX − CY‖2p

≤ sup
t∈Z

r∑
l=1

wl(θ (t))
[1− e−ā]

a
max
1≤i≤n

sup
k∈Z

×

{
E
[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
n∑
j=1

dij(v)
(
σ lj (xj(v− ηij(v)))

− σ lj (yj(v− ηij(v))))1wj(v)
]2p} 1

2p

≤ sup
t∈Z

r∑
l=1

wl(θ (t))
[1− e−ā]

a
max
1≤i≤n

sup
k∈Z

n∑
j=1

d̄ij3l
j

×

{[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
]2p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−aE
∣∣[xj(v− ηij(v))

− yj(v− ηij(v))]1wj(v)
∣∣2p} 1

2p

≤ max
1≤i≤n

sup
k∈Z

r∑
l=1

wl(θ (k))

×

n∑
j=1

d̄ij3l
j

C
1
2p
2p (1− e

−ā)

a(1− e−a)
‖X − Y‖2p

≤ r2p‖X − Y‖2p.
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In view of (H2), C is a contraction mapping. Hence
condition (3) of Lemma 8 is satisfied. Therefore, all the con-
ditions in Lemma 8 hold. By Lemma 8, Takagi-Sugeno fuzzy
model (II.3) outputs a 2p-th mean almost periodic oscillation.
This completes the proof.

Together with Theorems 7 and 10, we have
Theorem 11: Assume that all conditions in Theorem 10

hold, then Takagi-Sugeno fuzzy model (II.3) outputs
a 2p-th mean almost periodic oscillation, which is 2p-th
moment globally exponentially stable.

Proof: By Theorem 7, the solution of model (II.3) is
2p-th moment globally exponentially stable. By Theorem 10,
model (II.3) has a 2p-th mean almost periodic solution.
Together with them, so we get Theorem IV.2. This completes
the proof.
Remark 12: In view of Theorems 7 and 10, the bounded

information transmission delays in (II.3) have no effect on
the existence of 2p-th mean almost periodic oscillations and
moment global exponential stability of Takagi-Sugeno fuzzy
model (II.3). The results of this paper can also apply to the
systems with other types of bounded delays.
Remark 13: It is worth mentioning that Minkoswki

inequality in Lemma 1, Hölder inequality in Lemma 2
and Lemma 5 are crucial to the computing processes of
Theorems 7 and 10. It can be viewed from the computations
of (III.2) and (IV.5) in Theorems 7 and 10, respectively.

V. ILLUSTRATIVE EXAMPLES WITH NUMERICAL
SIMULATIONS
Example 14: In the last decades, the following cellular

neural networks were employed for the studies of image
detection [48], [49], image encryption [50], skull stripping
in brain [51], and template decomposition [52] etc.

dxij(t)
dt
= −xij(t)+

∑
k,l∈Sij(r)

akl fkl(xkl(t))+ Iij, (V.1)

where xij, fkl and Iij denote the state, output and input, respec-
tively;

Sij(r) = {xkl : max{|k − i|, |l − j|} ≤ r,

1 ≤ k ≤ M , 1 ≤ l ≤ N },

i, k = 1, 2, . . . ,M, j, l = 1, 2, . . . ,N.
The output ykl = fkl(x) (also known as activation function)

usually has different types as follows:
For example, Italcura et al. [53] considered the prob-

lem of image reconstruction via CNNs with linear function.
Cuevas et al. [48] studied a issue of image detection by CNNs
with triangular function. Mosa et al. [49] discussed a problem
of truck detection by CNNs with sigmoid, tangent sigmoid
and radial basis functions. These applications mainly depend
on the property of stablity of CNNs. Therefore, the stability
of CNNs received widespread attentions in the last decades,
see [2]–[4], [20]–[22], [54]. In [54], Mo et al. studied the
stability of CNNs with linear, sigmoid and tangent sigmoid
functions.

TABLE 1. Different types of activation function.

Tomake it to easily understand for readers, we consider the
following simple CNNs with radial basis function:

dx11(t)
dt

= −x11(t)+ 0.1e−x
2
12(t) + 0.2,

dx12(t)
dt

= −x12(t)+ 0.2e−x
2
11(t) + 0.1,

(V.2)

where t ∈ R.
(1) Semi-discrete model: By the semi-discrete method in
Section I, it obtains from (V.2) that

x11(k + 1) = e−1x11(k)

+ (1− e−1)
[
0.1e−x

2
12(k) + 0.2

]
,

x12(k + 1) = e−1x12(k)

+ (1− e−1)
[
0.2e−x

2
11(k) + 0.1

]
,

(V.3)

where k ∈ Z.
(2) Takagi-Sugeno fuzzy model: Corresponding to system
(V.1), f11 = e−x

2
11 and f12 = e−x

2
12 in model (V.3) are non-

linear. By numerical calculation of Matlab, x11 ∈ [−0.3, 0.3]
and x12 ∈ [−0.3, 0.3]. Let θ1(k) = x11(k), θ2(k) = x12(k),
∀k ∈ Z. Then θ1, θ2 ∈ [−0.3, 0.3]. θ1 and θ2 can be
represented by membership functions M1, M2, N1 and N2 as
follows:

θ1(k) = M1(θ1(k)) · 0.3+M2(θ1(k)) · (−0.3),

θ2(k) = N1(θ2(k)) · 0.3+ N2(θ2(k)) · (−0.3),

where M1(θ1) + M2(θ1) = 1, N1(θ2) + N2(θ2) = 1. Hence,
the membership functions can be obtained as follows:

M1(θ1(k)) =
θ1(k)+ 0.3

0.6
, M2(θ1(k)) =

0.3− θ1(k)
0.6

,

N1(θ2(k)) =
θ2(k)+ 0.3

0.6
, N2(θ2(k)) =

0.3− θ2(k)
0.6

.

Let P11 = P21 = M1, P31 = P41 = M2, P12 = P32 = N1,

P22 = P42 = N2. Therefore, the nonlinear functions f11 and
f12 are modeled by the following IF-THEN rules:
Model Rule 1: IF θ1 is P11 and θ2 is P12, THEN

[
f 111(x11(k))
f 112(x12(k))

]
=


e−0.3

2

0.3+ 1.3
(x11(k)+ 1.3)

e−0.3
2

0.3+ 1.3
(x12(k)+ 1.3)

 .
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FIGURE 1. Square-mean global exponential stability of state variable
x11(k) of model (V.4).

Model Rule 2: IF θ1 is P21 and θ2 is P22, THEN

[
f 211(x11(k))
f 212(x12(k))

]
=


e−0.3

2

0.3+ 1.3
(x11(k)+ 1.3)

e−(−0.3)
2

−0.3+ 1.3
(x12(k)+ 1.3)

 .
Model Rule 3: IF θ1 is P31 and θ2 is P32, THEN

[
f 311(x11(k))
f 312(x12(k))

]
=


e−(−0.3)

2

−0.3+ 1.3
(x11(k)+ 1.3)

e−0.3
2

0.3+ 1.3
(x12(k)+ 1.3)

 .
Model Rule 4: IF θ1 is P41 and θ2 is P42, THEN

[
f 411(x11(k))
f 412(x12(k))

]
=


e−(−0.3)

2

−0.3+ 1.3
(x11(k)+ 1.3)

e−(−0.3)
2

−0.3+ 1.3
(x12(k)+ 1.3)

 .
Then the following linear model can be derived out of

defuzzification process:

x11(k + 1) = e−1x11(k)+ (1− e−1)
4∑
l=1

wl(θ (k))
[
0.1f l12(x12(k))+ 0.2

]
,

x12(k + 1) = e−1x12(k)+ (1− e−1)
4∑
l=1

wl(θ (k))
[
0.2f l11(x11(k))+ 0.1

]
,

(V.4)

wherew1 = M1 N1,w2 = M1 N2,w3 = M2N1,w4 = M2 N2.

Taking the known premise variables θ1 = 0.1 and θ2 = 0.2,
then M1(θ1) = 0.67, M2(θ1) = 0.33, N1(θ2) = 0.83,
N2(θ2) = 0.17. And w1(θ ) = 0.56, w2(θ ) = 0.11, w3(θ ) =
0.27,w4(θ ) = 0.06. Let p = 1, by simple calculation, r2 < 1.
It is easy to verify that all conditions in Theorem 10 are valid.
According to Theorem 10, Takagi-Sugeno fuzzy model (V.4)
is square-mean globally exponentially stable, see Figures 1-2.
Remark 15: Takagi-Sugeno fuzzy model (V.4) is the

approximate model for non-fuzzy model (V.3) via 4 fuzzy
rules. Figures 3-4 depict the time responses of solution
(x11, x12)T of (V.3) and (V.4), respectively. By computation of

FIGURE 2. Square-mean global exponential stability of state variable
x12(k) of model (V.4).

FIGURE 3. Time responses of x11(k) of non-fuzzy model (V.3) and
Takagi-Sugeno fuzzy model (V.4).

FIGURE 4. Time responses of x12(k) of non-fuzzy model (V.3) and
Takagi-Sugeno fuzzy model (V.4).

Matlab, the absolute error of x11 between (V.3) and (V.4) is
0.0258, and the absolute error of x12 between (V.3) and (V.4)
is 0.0426. If more fuzzy rules are used, one could obtain a
more precise fuzzy model for model (V.3).
Example 16: Considering the following two-neuron

stochastic cellular neural networks:

dx1(t) =
[
− x1(t)+ 0.1 sin(

√
5t) sin(x1(t))x1(t)

+ 0.2 sin(
√
7t)x2(t − 1)

+ 0.01 cos2(
√
17t)

]
dt + 0.1dw1(t),

dx2(t) =
[
− x2(t)+ 0.2 cos(

√
5t) cos(x2(t))x2(t)

+ 0.1 cos(
√
2t)x1(t − 1)

− 0.02| sin(
√
33t)|

]
dt + 0.2dw2(t),

(V.5)

where t ∈ R.
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(1) Semi-discrete model:

x1(k + 1)
= e−1x1(k)

+ (1− e−1)
[
0.1 sin(

√
5k) sin(x1(k))x1(k)

+ 0.2 sin(
√
7k)x2(k − 1)+ 0.11w1(k)

+ 0.01 cos2(
√
17k)

]
,

x2(k + 1)
= e−1x2(k)

+ (1− e−1)
[
0.2 cos(

√
5k) cos(x2(k))x2(k)

+ 0.1 cos(
√
2k)x1(k − 1)+ 0.21w2(k)

− 0.02| sin(
√
33k)|

]
,

(V.6)

where k ∈ Z. Corresponding to system (I.3), we have[
a1
a2

]
=

[
1
1

]
,[

b11 b12
b21 b22

]
=

[
0.1 sin(

√
5k) 0

0 0.2 cos(
√
5k)

]
,[

I1
I2

]
=

[
0.01 cos2(

√
17k)

−0.02| sin(
√
33k)|

]
,[

c11 c12
c21 c22

]
=

[
0 0.2 sin(

√
7k)

0.1 cos(
√
2k) 0

]
,[

d11 d12
d21 d22

]
=

[
0.1 0
0 0.2

]
,

[
σ1
σ2

]
=

[
1
1

]
,[

f1(x1(k))
f2(x2(k))

]
=

[
sin(x1(k))x1(k)
cos(x2(k))x2(k)

]
,[

g1(x1(k))
g2(x2(k))

]
=

[
x1(k)
x2(k)

]
, k ∈ Z.

(2) Takagi-Sugeno fuzzy model: Clearly, f1 and f2 in model
(V.6) are nonlinear. They need to be linearized by using
Takagi-Sugeno fuzzy method. With the help of Matlab, x1 ∈
[−0.3057, 0.3144] and x2 ∈ [−0.4656, 0.5733]. Let θ1(k) =
x1(k), θ2(k) = x2(k), ∀k ∈ Z. Then θ1 ∈ [−0.3057, 0.3144]
and θ2 ∈ [−0.4656, 0.5733]. θ1 and θ2 can be represented by
membership functionsM1, M2, N1 and N2 as follows:

θ1(k) = M1(θ1(k)) · 0.3144+M2(θ1(k)) · (−0.3057),

θ2(k) = N1(θ2(k)) · 0.5733+ N2(θ2(k)) · (−0.4656),

where M1(θ1) + M2(θ1) = 1, N1(θ2) + N2(θ2) = 1. Hence,
the membership functions can be obtained as follows:

M1(θ1(k)) =
θ1(k)+ 0.3057

0.6201
,

M2(θ1(k)) =
0.3144− θ1(k)

0.6201
,

N1(θ2(k)) =
θ2(k)+ 0.4656

1.0389
,

N2(θ2(k)) =
0.5733− θ2(k)

1.0389
.

FIGURE 5. Square-mean almost periodicity of (x1(k), x2(k))T of
model (V.7).

FIGURE 6. Square-mean global exponential stability of state variable
x1(k) of model (V.7).

FIGURE 7. Square-mean global exponential stability of state variable
x2(k) of model (V.7).

Let P11 = P21 = M1, P31 = P41 = M2, P12 = P32 = N1,

P22 = P42 = N2. Therefore, the nonlinear functions f1 and f2
are modeled by the following IF-THEN rules:

Model Rule 1: IF θ1 is P11 and θ2 is P12, THEN[
f 11 (x1(k))
f 12 (x2(k))

]
=

[
sin(0.3144)x1(k)
cos(0.5733)x2(k)

]
.

Model Rule 2: IF θ1 is P21 and θ2 is P22, THEN[
f 21 (x1(k))
f 22 (x2(k))

]
=

[
sin(0.3144)x1(k)
cos(−0.4656)x2(k)

]
.

Model Rule 3: IF θ1 is P31 and θ2 is P32, THEN[
f 31 (x1(k))
f 32 (x2(k))

]
=

[
sin(−0.3057)x1(k)
cos(0.5733)x2(k)

]
.

Model Rule 4: IF θ1 is P41 and θ2 is P42, THEN[
f 41 (x1(k))
f 42 (x2(k))

]
=

[
sin(−0.3057)x1(k)
cos(−0.4656)x2(k)

]
.
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FIGURE 8. Time responses of x1(k) of model (V.6) and fuzzy model (V.7).

FIGURE 9. Time responses of x2(k) of model (V.6) and fuzzy model (V.7).

Then the following linear model can be derived out of
defuzzification process:

x1(k + 1) = e−1x1(k)+ (1− e−1)
4∑
l=1

wl(θ (k))[
0.1 sin(

√
5k)f l1 (x1(k))

+ 0.2 sin(
√
7k)x2(k − 1)+ 0.11w1(k)

+ 0.01 cos2(
√
17k)

]
,

x2(k + 1) = e−1x2(k)+ (1− e−1)
4∑
l=1

wl(θ (k))[
0.2 cos(

√
5k)f l2 (x2(k))

+ 0.1 cos(
√
2k)x1(k − 1)+ 0.21w2(k)

− 0.02| sin(
√
33k)|

]
,

(V.7)

where wi is defined as that in Example 14,
i = 1, 2, 3, 4.

Taking the known premise variables θ1 = 0.1 and
θ2 = 0.2, then M1(θ1) = 0.6542, M2(θ1) = 0.3458,
N1(θ2) = 0.6407, N2(θ2) = 0.3593. And w1(θ ) = 0.4192,
w2(θ ) = 0.2351, w3(θ ) = 0.2215, w4(θ ) = 0.1242. Let
p = 1, by simple calculation, r2 < 1. It is easy
to verify that all conditions in Theorems 7 and 10 hold.
By Theorems 7 and 10, Takagi-Sugeno fuzzy model (V.7)
outputs a square-mean almost periodic sequence solution,
which is square-mean globally exponentially stable, see
Figures 5-7. Figures 8-9 compare the time responses of
the original model (V.6) with its fuzzy approximation
model (V.7).

VI. CONCLUSION AND FUTURE DEVELOPMENTS
In recent years, the semi-discrete method [20] of differential
equations has been applied into the investigations of deter-
minant neural networks [20], [21]. But few people employ
this method to study stochastic neural networks. In this paper,
we formulate a kind of discrete analogue of stochastic CNNs
by using semi-discrete method, which gives a more accu-
rate characterization for continuous-time stochastic CNNs
than that by Euler scheme [16], [17]. Based on the above
semi-discrete model, a class of discrete-time stochastic fuzzy
CNNs is obtained with the help of Takagi-Sugeno fuzzy
method, which gives an approximate version of the above
semi-discrete stochastic CNNs. Next, we investigate the
2p-th mean almost periodic outputs and moment global expo-
nential stability of a semi-discrete stochastic Takagi-Sugeno
fuzzy CNNs with the help of Minkowski inequality, Hölder
inequality, Krasnoselskii’s fixed point theorem and the proof
of contradiction.

Looks over the entire paper, the major achievements of this
paper are detailedly summarized below.

(1) A kind of discrete analogue of stochastic CNNs is
derived by using semi-discrete method, which gives
a more accurate characterization of continuous-
time model than that by Euler scheme, see
model (I.3).

(2) A class of semi-discrete stochastic fuzzy CNNs
is obtained with the help of Takagi-Sugeno fuzzy
method, which gives an approximate version of the
above semi-discrete stochastic CNNs, see model
(II.3). By applying Takagi-Sugeno fuzzy method,
a nonlinear model can be approximated by a cor-
responding Takagi-Sugeno fuzzy model.

(3) Theorems 7 and 10 provide possible technique
to study 2p-th mean almost periodic oscillations
and moment global exponential stability of semi-
discrete stochastic Takagi-Sugeno fuzzy CNNs.
They can be applied to research the other realistic
models described by the discrete stochastic Takagi-
Sugeno fuzzy systems, see Sections 3-4.

(4) In Section 5, a two-neuron stochastic CNNs is con-
sidered. By means of semi-discrete and Takagi-
Sugeno fuzzy methods, we obtained the corre-
sponding semi-discrete stochastic Takagi-Sugeno
fuzzymodel (V.7).With the help of numerical simu-
lations ofMatlab, Takagi-Sugeno fuzzymodel (V.7)
gives a better approximate version of the semi-
discrete model (V.6), see Figures 8-9.

Of course, there are some developments in this article to
explore further. For instance,

(1) In semi-discrete model (I.3), the discrete analogue
of stochastic part is obtained by Euler scheme, but
not by semi-discrete method.

(2) In fuzzy model (II.3), wl is defined by product of
membership functions. One could consider wl by
minimum of membership functions.
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(3) Other dynamic behaviours of fuzzy model (II.3)
need further discussion.

(4) Other realistic models described by the semi-
discrete stochastic Takagi-Sugeno fuzzy models
need further study.
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