
Received July 23, 2019, accepted August 11, 2019, date of publication August 14, 2019, date of current version August 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2935304

A New Matrix Projective Synchronization and
Its Application in Secure Communication
WENHAO YAN AND QUN DING
Electronic Engineering College, Heilongjiang University, Harbin 150080, China

Corresponding author: Qun Ding (qunding@aliyun.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61471158 and Grant 61571181.

ABSTRACT In this paper, a new matrix projective synchronization for chaotic (hyperchaotic) maps is
proposed. The novel scheme called P-M synchronization is presented in this paper, since it combines two
matrix projective synchronization schemes (one is based on the invertible matrix P, and the other is based on
matrix M ). Compared to the regular matrix projection synchronization, the required matrix of the proposed
scheme don’t change with different master systems. Under the framework of classical Lyapunov stability
theory, a state feedback controller is selected to realize global synchronization. In addition, simulation
results are reported, to highlight the capabilities of the P-M synchronization proposed in this paper. Finally,
a speech secure communication scheme based on the P-M synchronization is implemented, implying the
P-M synchronization can be applied into secure communication filed.

INDEX TERMS Chaotic dynamical systems, Lyapunov stability theory, matrix projective synchronization,
secure communication, state feedback controller.

I. INTRODUCTION
Chaos theory is an attractive subject with some excellent
characteristics, including sensitivity to initial values, intrinsic
randomness, ergodicity, topological transitivity and positive
Lyapunov exponent [1]–[3]. These characteristics make
chaotic systems widely used in secure communications, data
encryption, flow dynamics and so on [4]–[11].

Chaotic synchronization refers to two chaotic systems
starting from different initial values. As time goes on,
the orbit of one system will converge to the same value
as the orbitals of the other system. The study of chaotic
synchronization started in the 1990s. The idea of synchro-
nization with two identical initial conditions was introduced
by Pecora and Carroll [12], [13]. In 2015, Pal et al. pro-
posed a design method for coupling to achieve target syn-
chronization for a chaotic discrete dynamic system with two
parameters not matching [14]. In 2016, Wu et al. proposed
the Riemann-Liuerville type fractional logic map and the
fractional Lorentz map [15]. Ouannas et al. studied discrete-
time chaotic (hyperchaotic) systems and studied several
new methods for simultaneous coexistence between differ-
ent dimensional mappings [16]. Azarang et al. proposed a
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new four-term nonlinear fractional-order chaotic system [17].
In 2017, Megherbi et al. studied the pulse synchroniza-
tion problem of fractional-order discrete-time chaotic sys-
tems [18]. Gam et al. extended the stability conditions of
continuous chaotic systems to discrete chaotic systems [19].
Ouannas et al. studied the problem of reliable universal
synchronization between two coupled chaotic discrete sys-
tems [20]. In 2018, Ouannas et al. proposed a new discrete-
time system chaotic synchronization method [21]. In 2019,
Berber pointed out that the problem of sequence synchroniza-
tion has been extensively studied in direct sequence spread
spectrum system and code division multiple access system
based on chaos. All signals are expressed in discrete time
domain. In order to represent finite and random discrete delay
between sequences, the uniform distribution probability den-
sity function is expressed in discrete form [22].

In this paper, a new matrix projection synchronization,
P-M synchronization, is proposed. Compared with the con-
ventional matrix projection synchronization, if an invertible
matrix P and an arbitrary matrix M are selected, in addi-
tion, as long as a matrix F is constructed, the eigenvalue
of the matrix (E-F) is strictly less than 1, then for any
two generalized chaotic systems, the P-M synchronization
can be achieved. However, in regular matrix projection syn-
chronization, the required matrix changes with different
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master systems [23]–[29]. In order to improve matrix pro-
jection synchronization, this paper proposes a new matrix
projection synchronization: the P-M synchronization.

The main purpose of this paper is to realize the syn-
chronization of two generalized chaotic systems by the P-M
synchronization and apply the synchronization system to
chaotic secure communication. The paper is arranged as fol-
lows. In section 2, a new discrete state feedback controller
and new matrix projective synchronization are introduced.
Section 3 illustrates that the new matrix projective syn-
chronization was applied into the coupled identical chaotic
dynamical systems, the different dimension chaotic dynami-
cal systems and two different chaotic dynamical systems of
the same dimension, respectively. A secure communication
scheme based on the synchronization was implemented in
Section 4. In section 5, some discussions were proposed, and
Section 6 summarized the conclusions of the presented paper.

II. P-M SYNCHRONIZATION CRITERIONS
The master(driver) and slave(response) chaotic maps consid-
ered in the presented paper are in the following forms

X (i+ 1) = DX (i)+ ϕ(X (i)) (1)

Y (i+ 1) = EY (i)+ φ(Y (i))+ U , (2)

where X (i) ∈ Rs and Y (i) ∈ Rt are state vectors of
the driver and response maps, respectively, D ∈ Rs×s and
E ∈ Rt×t are the linear sections of the driver and response
maps, respectively, map ϕ : Rs

→ Rs and φ : Rt
→ Rt

are the nonlinear sections of the driver and response maps,
respectively, and U ∈ Rt is a vector controller. Many chaotic
maps can be written under the form of the of the map (1), such
as 2-D generalized Henon map, Fold map, 3-D generalized
Henon map, Chen map, Arnold’s cat map, and Wang map,
etc.

Our aim is to realize synchronization between system (1)
and system (2) for arbitrary matrixD ∈ Rs×s, E ∈ Rt×t , map
ϕ : Rs

→ Rs and φ : Rt
→ Rt , and to determine the

controller U ∈ Rt , which stabilize the synchronization error.
The synchronization error is that the difference between the
states will converge to 0 as i goes to +∞.
Definition 2.1 The drive maps (1) and response map (2)

with state vectors X (i) and Y (i), respectively, achieve P-M
synchronization if there exists a controller U ∈ Rt , an invert-
ible matrix P ∈ Rt×t and a matrix M ∈ Rt×s so
that the synchronization error (3) satisfies the condition
limk→∞ ‖e (i)‖ = 0, which indicates that the map (1) and
map (2) can achieve complete synchronization.

e (i) = PY (i)−MX (i) (3)

Furthermore, in order to achieve the goal synchronization, the
controller U in map (2) is derived as follows:

U = −EY (i)− φ(Y (i))+ QR, (4)

where matrix Q is the inverse of matrix P, and the matrix R
is derived as follows:

R = (E − F) e (i)+M (DX (i)+ ϕ (X (i))) . (5)

Theorem 2.2 The map, which is described by (3), can be
stabilized by the controller (4) along with (5), provided that
F ∈ Rs×s is chosen such that the eigenvalues of the matrix
(E − F) are placed strictly inside the unit disk.

Proof. According that definition 2. 1, the error system
between the drive map (1) and the response map (2) can be
derived as follows:

e (i+ 1) = (E − F) e (i)

+Q (EY (i)− φ (Y (i))+ U)+ R. (6)

By substituting the controller (4) along with (5), the error
system (6) reduces to

e (i+ 1) = (E − F) e (i) . (7)

The Lyapunov function is constructed with the form
V (e (i)) = eT (i) e (i), it follows that

1V (e (i)) = eT (i+ 1) e (i+ 1)− eT (i) e (i)

= eT (i) (E − F)T (E − F) e (i)− eT (i) e (i)

= eT (i)
[
(E − F)T (E − F)− I

]
e (i) .

Since the eigenvalues of the matrix (E − F) are placed
strictly inside the unit disk, so

(
(E − F)T (E − F)− I

)
is a negative definite matrix, and we can obtain the fact
1V (e (i)) < 0.Thus, from the Lyapunov stability theory, the
error system (7) is globally asymptotically stable, that is to
say, limk→∞ ‖e (i)‖ = 0.

III. EXAMPLES BASED ON P-M SYNCHRONIZATION
In the section, we are going to validate the theoretical results
illustrated above. Some typical chaotic maps such as the 2-D
generalized Henonmap, the 3-D generalized Henonmap, and
Wang map are considered [30]–[32]. The 2-D generalized
Henon map can be described as follows:{

x1(i+ 1) = 1− ax21 (i)+ x2 (i)
x2 (i+ 1) = bx1 (i) .

(8)

When a = 1.4 and b = 0.3, system (8) is chaotic system,
and the chaotic attractor of the 2-D generalized Henon map
with initial valuables x1(0) = 0.5 and x2(0) = 0.6 is shown
in Fig.1. In addition, the linear section and the nonlinear
section of map (8) are given by

D =
[
0 1
b 0

]
and ϕ (X (i)) =

[
1− ax21 (i)

0

]
.

The 3-D generalized Henon map can be described as
equation (9), when a = 1.07 and b = 0.3, system (8) is
chaotic system and the chaotic attractor of themapwith initial
valuables x1(0) = 0.2, x2(0) = 0.6, x3(0) = −0.3 is shown
in Fig.2. 

x1(i+ 1) = −ax2 (i)
x2 (i+ 1) = 1− ax22 (i)+ x3 (i)
x3 (i+ 1) = x1 (i)+ bx2 (i)

(9)
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FIGURE 1. x-y phase space of the 2-D generalized Henon map.

FIGURE 2. x-y-z phase space of the 3-D generalized Henon map.

FIGURE 3. x-y-z phase space of Wang map.

In addition, the linear section and the nonlinear section of
map (9) are given by

D =

 0 −a 0
0 0 1
1 b 0

 and ϕ (X (i)) =

 0
1− ax22

0
(i)

 .

Wang map can be described as equation (10), when a1 =
0.5, a2 = 1.3, a3 − 1.9, a4 = 0.2, a5 = −0.9, a6 = −0.6,
a7 = 2, system (10) is chaotic system and the chaotic attractor
of the map with initial valuables x1(0) = 1.3, x2(0) = 0.5 and
x3(0) = 3 is shown in Fig.3.

x1(i+ 1) = a1x2(i)− a2x1(i)
x2(i+ 1) = a3x1(i)+ x2(i)+ a4x3(i)
x3(i+ 1) = a5x3(i)+ a6x2(i)x3(i)+ a7

(10)

In addition, the linear section and the nonlinear section of
map (10) are given by

D =

−a2 a1 0
a3 1 a4
0 0 a5

 andϕ (X (i)) =
 0

0
a6x2 (i) x3 (i)+ a7

 .
A. SYNCHRONIZATION OF THE IDENTICAL CHAOTIC MAP
The 3-D generalized Henon map is adapted to P-M Synchro-
nization. The master system is map (9), and the slave system
is given by:

y1(i+ 1) = −ay2 (i)+ u1
y2 (i+ 1) = 1− ay22 (i)+ y3 (i)+ u2
y3 (i+ 1) = y1 (i)+ by2 (i)+ u3,

(11)

where U = [u1, u2, u3]T is the vector controller; a = 1.07
and b = 0.3 . In addition, the linear section and the nonlinear
section of map (9) are given by

D =

 0 −a 0
0 0 1
1 b 0

 and φ (Y (i)) =

 0
1− ay22

0
(i)

 .
In this case, an invertible matrix P1 and a matrix M1 are

selected as follows:

P1 =

 1 0 0
0 1 0
0 0 1

 , M1 =

 1 2 3
4 5 6
7 8 9

 . (12)

Then, the error system is defined as
e1 (i) = y1 (i)− x1 (i)− 2x2 (i)− 3x3 (i)
e2 (i) = y2 (i)− 4x1 (i)− 5x2 (i)− 6x3 (i)
e3 (i) = y3 (i)− 7x1 (i)− 8x2 (i)− 9x3 (i) .

(13)

If the state feedback controllerU is selected as in equation (4)
along with equation (5). Then, the matrix F1 yields error
system (15), and with eigenvalues of the matrix (E − F1)
controlled in the unit disk.

F1 =

−0.1 −a 0
0 0 0.5
1 0.2 0

 (14)


e1 (i+ 1) = 0.1e1 (i)
e2 (i+ 1) = 0.5e2 (i)
e3 (i+ 1) = 0.1e3 (i) .

(15)

According to Theorem2.2, synchronization is achieved
between the identical chaotic system. Let the initial values
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FIGURE 4. The synchronization error of the discrete-time system.

of the systems (9) and (11) be: X1 (0) = (0.4, 0.7, 0.5)T ,
Y (0) = (0.2, 0.3, 0.1). The simulation results of the syn-
chronization error are shown in Fig.4. The synchronization
error quickly approaches 0, and the transceiver system is
synchronized.

B. SYNCHRONIZATION OF CHAOTIC MAPS WITH
DIFFERENT DIMENSIONS
The 2-D generalized Henon map and the 3-D generalized
Henon map are adapted to P-M Synchronization. The master
system is map (8), and the slave system is map (11).

In this case, an invertible matrix P2 and a matrix M2 are
selected as follows:

P2 =

 2 0 0
0 3 0
0 0 4

 , M2 =

 1
3
5

2
4
6

 . (16)

Then, the error system is defined as
e1 (i) = 2y1 (i)− x1 (i)− 2x2 (i)
e2 (i) = 3y2 (i)− 3x1 (i)− 4x2 (i)
e3 (i) = 4y3 (i)− 5x1 (i)− 6x2 (i) .

(17)

If the state feedback controllerU is selected as in equation (4)
along with equation (5). Then, the matrix F2 yields error
system (19), and with eigenvalues of the matrix (E − F2)
controlled in the unit disk.

F2 =

−0.1 −a −0.5
−0.3 −0.3 1
0.7 b −0.2

 (18)


e1 (i+ 1) = 0.1e1 (i)+ 0.5e2 (i)
e2 (i+ 1) = 0.3e1 (i)+ 0.3e3 (i)
e3 (i+ 1) = 0.3e1 (i)+ 0.2e3 (i)

(19)

According to Theorem2.2, synchronization is achieved
between the identical chaotic system. Let the initial values of
the systems (8) be:X2 (0) = (0.4, 0.2)T ,and the initial values
of the system (11) remains the same. The simulation results

FIGURE 5. The synchronization error of the discrete-time system.

FIGURE 6. The synchronization error of the discrete-time system.

of the synchronization error are shown in Fig.5. The syn-
chronization error quickly approaches 0, and the transceiver
system is synchronized.

C. SYNCHRONIZATION OF THE DIFFERENT CHAOTIC MAP
IN THE SAME DIMENSION
The 3-D generalized Henon map and Wang map are adapted
to P-M Synchronization. The master system is map (10), and
the slave system is map (11).

In this case, an invertible matrix P1 and a matrix M1
are selected as ‘‘(12)’’. Then, the error system is defined
as ‘‘(13)’’. If the state feedback controller U is selected as
in equation (4) along with equation (5). Then, the matrix
F1 yields error system (15), and with eigenvalues of the
matrix (E − F1) controlled in the unit disk.
According to Theorem2.2, synchronization is achieved

between the identical chaotic system. Let the initial values
of the systems (9) and (11) be:X (0) = (0.4, 0.7, 0.5)T , and
the initial values of the system (11) remains the same. The
simulation results of the synchronization error are shown
in Fig.6. The synchronization error quickly approaches 0, and
the transceiver system is synchronized.
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FIGURE 7. Discrete chaotic secure communication scheme.

It can be seen from Fig.4, Fig.5 and Fig.6 that three
types of chaotic systems can achieve synchronization by
the P-M synchronization. However, the convergence time
in Fig.4 and Fig.5 is different, while the convergence
time of Fig.4 is approximately the same as that of Fig.6.
Since the P-M synchronization proposed in this paper is
based on the construction method, and it only relies on
an invertible matrix P, matrix M , and a matrix (E − F)
with an eigenvalue less than 1. If the three matrices are
the same, the synchronization results are the same. If one
of the matrices changes, the synchronization results will be
different.

IV. A SECURE COMMUNICATION SCHEME
Synchronous chaotic communication can be classified into
three major security technologies: chaotic masking technol-
ogy, chaotic parameter modulation technology and chaotic
keying technology. Chaos masking technology belongs to
chaos analog communication, chaos parameter modulation
and chaos keying technology belongs to chaos digital com-
munication technology. This speech encryption scheme is
mainly based on chaos masking, and the block diagram of
encryption is shown in Fig.8.

In this section, a secure communication scheme based on
P-M synchronization is presented. We will use the discrete
time chaotic map (8) as master system, and map (11) is used
as slave system. Since we wanted to show that the matrix
projection map can synchronize chaotic systems of different
dimensions. In addition, the three synchronization examples
in Section 3 can be applied to the speech secure communica-
tion scheme. It’s just that the expressions for En andm′ (t) are
different. In this section, the second synchronization scheme
was adopted for the speech secure communication.

Speech signal m (t) and state variable x1 (i) , x2 (i) are
masked into the signal En, then, the signal En is sent to
the receiver end via the public channel. At receiver end,
the recovered signalm′ (t) can be obtained through the signal

m (t) and state variable y1 (i).

En = m (t)+ x1 (i)+ 2x2 (i) (20)

m′ (t) = En − 2y1 (i) (21)

Let the initial values of the systems (8) and (11) be:
X (0) = (0.4, 0.2)T ,Y (0) = (0.2, 0.3, 0.1)T . The original
speech signal at the transmitting end, the spectrum of original
speech signal, the speech signal after chaos masking, the
spectrum of encrypted speech signal, the restored speech
signal, the spectrum of restored speech signal, and the error
of the recovered speech signal and the original speech signal
are simulated, respectively. The simulation results are shown
in Fig.8.

Fig.8 proves that P-M synchronization proposed in this
paper can be applied into secure communication field from
time domain and frequency domain, respectively. The robust-
ness of this scheme is poor, since the chaotic system is
sensitive to the initial value and system parameters. If the
system parameters are changed, the output of the chaotic
system will change. Furthermore, from the perspective of
secure communication, if the system has better robustness,
it will lose confidentiality. Finally, this scheme can resist
the phase space reconstruction attack. Because mixed signal
En is transmitted in the common channel, the phase space
reconstructed from a series of values of En is not completely
topologically equivalent to the real chaotic system.

V. DISCUSSION
In this section, some comparisons, between the proposed
P-M synchronization method and similar synchronization
method in the literature, will be made, aimed to focus on
the difference between the presented paper and the available
researches. First, compared to conventional matrix projection
synchronization [23]–[29], the required matrices of the P-M
synchronization don’t change with different master systems.
In order to improve matrix projection synchronization, this
paper proposed a new matrix projection synchronization: the
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FIGURE 8. Speech signal encryption based on the scheme.

P-M synchronization. In addition, attention was centered on
some interesting synchronization method based on control

laws. Taking literature [21] for example, the author proposed
a new type of synchronization in discrete time systems, which
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combines the inverse generalized synchronization (based on
a functional relationship F) with matrix projective synchro-
nization (based on a matrix M ). However, it is for us dif-
ficult to construct an invertible functional relationship F :
Rn
→ Rn, which just right meet scheme requirements. Fur-

thermore, it is not easy to find the right invertible function F
and matrixM . Compared to the new type of synchronization,
we only need, according to the controller (4) along with (5),
to construct an invertible matrix P ∈ Rt×t and an arbitrary
matrix M ∈ Rt×s, both which fit the dimensions with the
proposed method. Moreover, as long as a matrix F is con-
structed, the eigenvalue of the matrix (E − F) is strictly less
than 1, then for any two generalized chaotic systems, the P-
M synchronization can be achieved. In the end, compared
with other literatures, this paper proposed a speech secure
communication scheme based on P-M synchronization.

VI. CONCLUSION
In this paper, we proposed a new type of matrix projective
synchronization, called P-M synchronization. The technique
exploits the state feedback controller and Lyapunov stability
theory so that it is easy to synchronize the coupled identical
chaotic dynamical systems, the different dimension chaotic
dynamical systems and two different chaotic dynamical sys-
tems of the same dimension, respectively. Then, simulation
results involving the2-D generalized Henon map, 3-D gener-
alized Henon map, and Wang map are provided to highlight
the capabilities of the proposed new matrix projective syn-
chronization. Finally, A Secure communication scheme based
on P-M synchronization was implemented, whose simulation
results imply P-M synchronization can be applied in secure
communications.

ACKNOWLEDGMENT
The authors would like to thank two researchers
Chuanfu Wang and Chunlei Fan, both who come from
Heilongjiang University. for technical support on database
inquiry and paper review the simulation computing envi-
ronment and computer equipment provided by Heilongjiang
University and the Nanjing 321 innovative talents program.

REFERENCES
[1] E. N. Lorenz, ‘‘Deterministic nonperiodic flow,’’ J. Atmos. Sci., vol. 20,

no. 2, pp. 130–141, 1963.
[2] E. N. Lorenz, The Essence of Chaos. NewDelhi, India: Meteorology Press,

1997, pp. 7–11.
[3] T.-Y. Li and J. A. Yorke, ‘‘Period three implies chaos,’’ Amer. Math.

Monthly, vol. 82, no. 10, pp. 985–992, Oct. 1975.
[4] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, ‘‘Synchronization of

lorenz-based chaotic circuits with applications to communications,’’ IEEE
Trans. Circuits Syst. II. Analog Digit. Signal Process., vol. 40, no. 10,
pp. 626–633, Oct. 1993.

[5] L. O. Chua, M. Komuro, and T. Matsumoto, ‘‘The double scroll family,’’
IEEE Trans. Circuits Syst., vol. 33, no. 11, pp. 1072–1118, Nov. 1986.

[6] T. Yang, C. W. Wu, and L. O. Chua, ‘‘Cryptography based on chaotic
systems,’’ IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44,
no. 5, pp. 469–472, May 1997.

[7] Q. Ding and J. Wang, ‘‘Design of frequency-modulated correlation delay
shift keying chaotic communication system,’’ IET Commun., vol. 5, no. 7,
pp. 901–905, May 2011.

[8] L. Jin, Y. Zhang, and L. Li, ‘‘One-to-many chaotic synchronization with
application in wireless sensor network,’’ IEEE Commun. Lett., vol. 17,
no. 9, pp. 1782–1785, Sep. 2013.

[9] R. Martínez-Guerra, J. J. M. García, and S. M. D. Prieto, ‘‘Secure commu-
nications via synchronization of Liouvillian chaotic systems,’’ J. Franklin
Inst., vol. 353, no. 17, pp. 4384–4399, 2016.

[10] E.-F. Wang, Y.-S. Zheng, X.-W. Chen, and X.-Z. Liu, ‘‘Chaotic masking
of speech signal and its positive definite blind extraction algorithm,’’
J. Commun., China, vol. 37, no. 8, pp. 171–178, 2016.

[11] W.-H. Liu, K.-H. Sun, and C.-G. Zhu, ‘‘A hyperchaotic digital speech
encryption algorithm for mobile communication,’’ J. Cryptol., China,
vol. 4, no. 1, pp. 85–98, 2017.

[12] L. M. Pecora and T. L. Carroll, ‘‘Synchronization in chaotic systems,’’
Phys. Rev. Lett., vol. 64, no. 8, pp. 821–824, 1990.

[13] L. M. Pecora and T. L. Carroll, ‘‘Driving systems with chaotic signals,’’
Phys. Rev. A, Gen. Phys., vol. 44, no. 4, pp. 2374–2383, 1991.

[14] P. Pal, S. Debroy, M. K. Mandal, and R. Banerjee, ‘‘Design of coupling
for synchronization in chaotic maps,’’ Nonlinear Dyn., vol. 79, no. 4,
pp. 2279–2286, 2015.

[15] G.-C. Wu, D. Baleanu, H.-P. Xie, and F.-L. Chen, ‘‘Chaos synchronization
of fractional chaotic maps based on the stability condition,’’ Phys. A, Stat.
Mech. Appl., vol. 460, pp. 374–383, Oct. 2016.

[16] A. Ouannas and G. Grassi, ‘‘A new approach to study the coexistence of
some synchronization types between chaotic maps with different dimen-
sions,’’ Nonlinear Dyn., vol. 86, no. 2, pp. 1319–1328, 2016.

[17] A. Azarang, S. Kamaei, M. Miri, and M. H. Asemani, ‘‘A new fractional-
order chaotic system and its synchronization via Lyapunov and improved
Laplacian-based method,’’ Optik, vol. 127, no. 24, pp. 11717–11731,
2016.

[18] O. Megherbi, H. Hamiche, S. Djennoune, and M. Bettayeb, ‘‘A new
contribution for the impulsive synchronization of fractional-order discrete-
time chaotic systems,’’ Nonlinear Dyn., vol. 90, no. 3, pp. 1519–1533,
2017.

[19] R. Gam and A. Sakly, ‘‘Discrete-time chaotic systems synchronization
based on vector norms approach,’’ J. Syst. Sci. Complex., vol. 30, no. 5,
pp. 1012–1026, 2017.

[20] A. Ouannas, Z. Odibat, N. Shawagfeh, A. Alsaedi, and B. Ahmad, ‘‘Uni-
versal chaos synchronization control laws for general quadratic discrete
systems,’’ Appl. Math. Model., vol. 45, pp. 636–641, May 2017.

[21] A. Ouannas, G. Grassi, A. Karouma, T. Ziar, X. Wang, and V.-T. Pham,
‘‘New type of chaos synchronization in discrete-time systems: The F-M
synchronization,’’ Open Phys., vol. 16, no. 1, pp. 174–182, 2018.

[22] S. M. Berber, ‘‘Discrete time domain analysis of chaos-based wireless
communication systems with imperfect sequence synchronization,’’ Signal
Process., vol. 154, pp. 198–206, Jan. 2019.

[23] S. Lee, M. Park, and J. Baek, ‘‘Robust adaptive synchronization of a class
of chaotic systems via fuzzy bilinear observer using projection operator,’’
Inf. Sci., vol. 402, pp. 182–198, Sep. 2017.

[24] A. Ouannas and M. M. Al-Sawalha, ‘‘A new approach to synchronize
different dimensional chaotic maps using two scaling matrices,’’Nonlinear
Dyn. Syst. Theory, vol. 15, no. 4, pp. 400–408, 2015.

[25] A. Ouannas, ‘‘A new generalized-type of synchronization for discrete-time
chaotic dynamical systems,’’ J. Comput. Nonlinear Dyn., vol. 10, no. 6,
2015, Art. no. 061019.

[26] A. A. Koronovskii, O. I.Moskalenko, V. I. Ponomarenko,M.D. Prokhorov,
and A. E. Hramov, ‘‘Binary generalized synchronization,’’ Chaos, Solitons
Fractals, vol. 83, pp. 133–139, Feb. 2016.

[27] A. Ouannas, A. T. Azar, and S. Vaidyanathan, ‘‘New hybrid synchroni-
sation schemes based on coexistence of various types of synchronisation
between master-slave hyperchaotic systems,’’ Int. J. Comput. Appl. Tech-
nol., vol. 55, no. 2, pp. 112–120, 2017.

[28] M. Han, M. Zhang, and Y. Zhang, ‘‘Projective synchronization between
two delayed networks of different sizes with nonidentical nodes and
unknown parameters,’’ Neurocomputing, vol. 171, pp. 605–614, Jan. 2016.

[29] X. He, C. Li, J. Huang, and L. Xiao, ‘‘Generalized synchroniza-
tion of arbitrary-dimensional chaotic systems,’’ Optik, vol. 126, no. 4,
pp. 454–459, 2015.

[30] M. Hénon, ‘‘A two-dimensional mapping with a strange attractor,’’ Com-
mun. Math. Phys., vol. 50, no. 1, pp. 69–77, 1976.

[31] Z. Yan, ‘‘Q-S synchronization in 3D Hénon-like map and generalized
Hénon map via a scalar controller,’’ Phys. Lett. A, vol. 342, no. 4,
pp. 309–317, 2005.

[32] X.-Y. Wang, Chaos in Complex Nonlinear Systems. Beijing, China: House
of Electronics Industry, 2003, pp. 35–65.

VOLUME 7, 2019 112983



W. Yan, Q. Ding: New Matrix Projective Synchronization and Its Application in Secure Communication

WENHAO YAN received the B.S. degree in infor-
mation and computing science from Northeast
Petroleum University, China, in 2018. He is cur-
rently pursuing theM.S. degree in information and
communication engineering with Heilongjiang
University, Harbin. His research interests include
nonlinear dynamics, chaos synchronization, and
chaotic secure communication.

QUN DING received the Ph.D. degree in instru-
ment science and technology from the Harbin
Institute of Technology, China. She is currently
a Professor with the College of Electronic Engi-
neering, Heilongjiang University, China. She has
published two books and over 100 scientific papers
in refereed journals and proceedings. Her research
interests include nonlinear dynamics and control,
chaos pseudo-random sequence generator, and
chaotic secure communication.

112984 VOLUME 7, 2019


	INTRODUCTION
	P-M SYNCHRONIZATION CRITERIONS
	EXAMPLES BASED ON P-M SYNCHRONIZATION
	SYNCHRONIZATION OF THE IDENTICAL CHAOTIC MAP
	SYNCHRONIZATION OF CHAOTIC MAPS WITH DIFFERENT DIMENSIONS
	SYNCHRONIZATION OF THE DIFFERENT CHAOTIC MAP IN THE SAME DIMENSION

	A SECURE COMMUNICATION SCHEME
	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	WENHAO YAN
	QUN DING


