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ABSTRACT In this paper, we investigate the energy-efficient power allocation for downlink distributed
antenna system (DAS) with buffer size constraint in high-speed railway (HSR) scenarios. We design the
power allocation at different times for HSR communications, utilizing the characteristics of fixed moving
path of trains. A key issue we discuss is the matching problem between the data arrival process and instan-
taneous wireless transmission process under the buffer size constraint. We formulate the energy-efficient
power allocation problem with the requirement of buffer size as a non-convex optimization problem. By a
parameterized transformation and an iterative algorithm, we derive the optimal solution at different time
phases. Then, to reduce complexity of the multiple iterations, we present a low-complexity algorithm by
analyzing the feasible region of the optimal solution. Simulation results demonstrate that the proposed power
allocation schemes can achieve the optimal energy efficiency (EE) and avoid data overflow. Moreover, with
a smaller number of iterations, the low-complexity algorithm can achieve the same EE performance as the
optimal algorithm based on the bisection method.

INDEX TERMS Power allocation, buffer constraint, low-complexity, high-speed railway, energy efficiency.

I. INTRODUCTION
High-speed railway (HSR) has been becoming more and
more popular with people for its superiority such as
high mobility, time saving and reliability. Meanwhile,
the demands for broadband services and applications in
HSR are growing strictly, and the quality-of-service (QoS)
requirements of information transmission have significantly
increased [1]. However, they lead to high power consump-
tion, which is inconsistent with the development trend of
green communications [2], [3]. Particularly, the HSR has
been a high energy-consuming industry. The high power cost
restricts the sustainable development of the railways and
leads to serious environmental problems [4]–[6]. Therefore,
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energy efficiency (EE) has become an important issue for
HSR communications due to its profits of the economy and
society [7]–[9].

In HSR communications, a two-hop relay architecture is
usually adopted to combat the serious penetration loss of car-
riages. Base station (BS) communicates with the passengers
in the train through mobile relays (MRs) on the train [10].
In the hop from the BS and theMRs, severe large-scale fading
and Doppler spread bring special challenges for efficient
utilization of radio resources. A practical solution to these
challenges is to dynamically optimize the allocation of power
on the basis of channel states along with the railway. For
instance, Xiong et al. in [11] presented a power allocation
method to achieve the tradeoff between the proportional and
water-filling power allocations. Li et al. in [12] derived the
optimal power allocation and obtained the largest achievable
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rate region for hybrid streams with diverse QoS demands.
Ahmad et al. in [13] investigated the co-channel interference
management and resource allocation for coexistence of pub-
lic safety and railway networks based on the performance
metrics of throughput, interference and outage. Particularly,
for orthogonal frequency division multiple access (OFDMA)
system in HSR communications, some work of resource allo-
cation has been done [14]–[18]. Among the research work,
Qiu et al. in [14] studied a joint subcarrier pairing, subcarrier
assignment and power allocation in HSR communications
with the inter-carrier interference. Zhang et al. in [15] investi-
gated the resource allocation problem for OFDMA HSR sys-
tems coexisting with local users. Sheng et al. in [16] proposed
a power allocation scheme between pilot and data symbols
which achieved a trade-off between channel estimation and
data transmission in HSR scenarios. Gao et al. in [17] pro-
posed an adaptivemodulation and power allocation scheme to
maximize normalized average throughput of the HSR system.
Ghazzai et al. in [18] proposed a resource allocation scheme
to minimize the total power consumption and presented a
planningmethod to optimally determine the inter-BS distance
according to given QoS parameters.

Additionally, adopting multiple antennas at both trans-
mitter side and receiver side in the HSR communication
system, has been recognized as a good way to improve the
transmission rate and the EE performance. Wang et al. in [7]
studied the millimeter wave communication with directional
beamforming in HSR, and they proposed an energy-efficient
power control scheme with a power minimization algorithm.
Zhao et al. in [19] and [20] proposed joint resource alloca-
tions of subcarriers, antennas, time slots and power in down-
link multi-antenna OFDM HSR communication system,
to minimize total transmit power and maximize through-
put respectively. Literatures [21] and [22] investigated beam-
forming schemes to maximize the information transmission
rate for the HSR scenarios of co-existing low-mobility users
and encountering trains respectively. And in [23] and [24],
the authors studied the angle-domain Doppler shifts com-
pensation and beam tracking scheme, considering massive
multiple-input multiple-output (MIMO) in HSR scenarios.
Particularly, distributed antenna system (DAS) that is a
promising multi-antenna architecture based on radio over
fiber, can further increase throughput and avoid frequent
handover [25]–[28]. In DAS, remote access units (RAUs) are
geographically distributed in cells (or along with railways)
and connected to baseband processing unit via optical fiber
or cable, which can reduce the access distances between the
mobile stations (or trains) and BS. Literatures [29] and [30]
studied the power allocation problem on maximizing EE
and the trade-off relation between the EE and spectral effi-
ciency in DAS. For HSR, Liu et al. in [31] proposed an
effective handover scheme in DAS for ground-train com-
munication. In [32] and [33], the authors investigated the
HSR communication system with distributed RAUs and pro-
posed joint optimal power allocation and antenna selection
methods.

However, most of the existing works are insufficient in
considering the matching problem of the data arrival process
and wireless transmission process.We know that the channels
between the RAUs and the MRs are time-varying, so the
wireless channel service ability and the data arrival process
may be always different, i.e., mismatching. When the trains
move to some positions, channel conditions may be able to
support the transmission of the arrival data well enough, but
at other positions they may not be. Fortunately, the trains run
only on the rails and the channels change regularly. If setting
a data buffer in the central unit (CU), we can design the
power allocation to optimize the performance of HSR com-
munication with a tolerable delay of users. In [34], Zafer and
Modiano studied a rate control policy to minimize the total
energy expenditure over a time-varying channel, where they
considered a deadline-constrained transmission similar to the
matching problem. Literatures [35] and [36] proposed power
optimization schemes in uplink HSR communication sys-
tem, and considered the buffer constraint at the access point
by matching data arrival process and wireless transmission
process under single-antenna point-to-point communication.
However, the study of the power allocation with the matching
problem in the multi-antenna HSR communication system
has not been appeared in existing literatures.

In this paper, we propose an optimal power allocation
scheme to achieve maximum EE of downlink DAS in HSR
communications with buffer constraint. We first analyze
the dynamic matching process of data arrival and wireless
transmission at the CU and formulate a power optimization
problem based on the analysis. Then, to solve the formu-
lated non-convex optimization problem, we present a trans-
forming method and an iterative algorithm. Based on this,
we can obtain the energy-efficient optimal power allocation
scheme under the buffer constraint. In addition, we analyze
the all cases of the optimal solution in feasible region of
constraints, and propose a low-complexity power allocation
algorithm.

The main contributions of this paper can be summarized as
follows:
• We formulate the energy-efficient power allocation
problem in the multi-antenna HSR communication sys-
tem with buffer constraint as a non-convex optimization
problem.

• We derive the energy-efficient optimal power alloca-
tion in different time phases as the movement of the
high-speed train. Meanwhile, it ensures the matching
of the data arrival process and wireless transmission
process.

• We propose a low-complexity energy-efficient power
allocation algorithm which can achieve the same perfor-
mance to the optimal method.

The rest of this paper is organized as follows.
Section II introduces the system model and formulates the
energy-efficient power allocation problem. Section III pro-
poses the transforming method and the iterative algorithm
to solve the optimization problem. In Section IV, we discuss
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FIGURE 1. Two-hop architecture system model with distributed antenna
in the HSR scenario.

the optimal solution cases and provide the low-complexity
algorithm. Section V presents the simulation results. Finally,
we draw the conclusions in section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a downlink HSR mobile communication sys-
tem, where the RAUs are positioned along the railway and
connected to the central unit by optical fibers [26], [27].
As shown in Fig. 1, two RAUs are responsible for the com-
munication between the core Internet and the train in each
cell. The CU with data buffer sends signals to corresponding
RAUs, and then the RAUs transmit signals to MRs installed
on the carriage.

Suppose that dh is the horizontal distance between two
adjacent RAUs, dv is the vertical distance from RAUs to
the railway line and dr is the distance between MRs. Let
dij denote the distance between RAU i and MR j. Assume
that the train moves with uniform speed of v, and the time
is zero (i.e., beginning of the time period) when the train
moves to the point O located at the middle of two RAUs as
shown in Fig. 1. Since the distance betweenMRs and RAUs is
symmetrical aboutO and then the path loss between the two is
periodic, we only need to design power allocation scheme in
half of a period, i.e. t ∈ [0, T2 ], where t is the time index and
T = dh/v.

Since most HSR scenarios are viaducts (occupying more
than 70%), the impact of large-scale fading far exceeds
small-scale fading. Thus, we focus on the path-loss in this
paper. The small-scale fading will be tested in simulations.
The channel gain at time t between the RAUj and MRi is
expressed as

hij(t) =

((
dh − (−1)i+jdr

2
− (−1)ivt

)2

+ d2v

)− α2
, (1)

FIGURE 2. Instantaneous wireless transmission rate and constant data
arrival rate, where v = 100 m/s, dh = 1000 m, dv = 100 m, dr = 400 m,
α = 3.6, u = 8 bits/s/Hz, P = 30 W.

where α is the path-loss exponent. The channel fading matrix
of system is

H(t) =
[
h11(t) h12(t)
h21(t) h22(t)

]
. (2)

Denote total transmit power of the system at time t as P(t)
and transmit power of each RAU as P(t)2 . Thus the correspond-
ing instantaneous channel capacity can be expressed as

C(t) = log2 det
(
I+

1
N0

[
P(t)/2 0

0 P(t)/2

]
HT (t)H(t)

)
,

(3)

where N0 is the noise power, I denotes the identical matrix,
(·)T and det(·) represent the conjugate transpose and determi-
nant of (·), respectively. Substituting (1) into (3), the system
capacity is rewritten as

C(t) = log2

(
1+

A(t)P2(t)

4N 2
0

+
B(t)P(t)
2N0

)
, (4)

where

A(t) = (h11(t)h22(t)− h21h12(t))2, (5)

B(t) =
2∑
i=1

2∑
j=1

h2i,j. (6)

The data arrival rate at the CU is denoted by u, which is
simplified as a constant.When the channel condition is worse,
the instantaneous wireless transmission rate is less than the
arrival rate, then there will be data buffering. We take the
case where the RAUs transmit with constant power P as an
example. From Fig. 2, we can see that the total channel gain
between RAUs and MRs becomes better at first and then
worse. Furthermore, the instantaneous wireless transmission
rate is less than u in the time periods [0, t1] and (t2, T2 ]. Then
it will be data buffering, while the cached data will gradually
be transmitted all over because the instantaneous wireless

VOLUME 7, 2019 113869



X. Wang et al.: Low-Complexity Energy-Efficient Power Allocation With Buffer Constraint in HSR Communications

transmission rate is larger than u from t1 to t2. To avoid
data overflow and infinite delay during the time period [35],
the buffer size should satisfy

Qm
2
≥

∫ t1

0
(u− C(t))dt +

∫ T
2

t2
(u− C(t))dt, (7)

where Qm denotes the buffer size. t1 is the time that the
transmission rate begins to be larger than the data arrival rate,
while t2 represents the cached point that it begins to store data
again.

B. ENERGY EFFICIENCY OPTIMIZATION PROBLEM
FORMULATION
Improving EE is a concern point for the design of wireless
communication system in HSR scenarios, which plays an
important role in green communications. The EE is usually
defined as the average data volume transmitted per unit
of energy consumption [9], [29], [30], [36]–[38]. The total
power consumption in a DAS can be expressed as [30],

Ptotal = Pt + Pc = Pt + 2Pd + Pb + Po, (8)

where Pt is the radio frequency power consumption, i.e.∫ T
2
0 P(t)dt in this paper. Pc is constant power consumption
at CU and RAUs, consisting of the circuit power Pd of each
RAU, the basic power Pb and the power dissipated by the
optical fiber transmission Po respectively.

However, the constant power allocation may not be the
most energy-efficient scheme. Moreover, as shown in Fig. 2,
the constant power allocation can not always meet the buffer
size constraint, because a lot of data will be cached during
0 ≤ t ≤ t1 and t2 < t ≤ T

2 . We aim to maximize the EE of
the HSR system while satisfying the buffer constraint of CU
by an appropriate power control. Therefore, the optimization
problem in the downlink HSR system can be formulated as

max
P(t)

∫ T
2
0 C(t)dt∫ T

2
0 P(t)dt + Pc

, (9a)

s.t.
2
T

∫ T
2

0
P(t)dt ≤ Pmax , (9b)

2
T

∫ T
2

0
C(t)dt ≥ u, (9c)∫ t1

0
(u− C(t))dt +

∫ T
2

t2
(u− C(t))dt ≤

Qm
2
, (9d)

where Pc is a constant power consumption at RAUs and CU
given by (8). Constraint (9b) is the average transmit power
constraint of RAUs. Constraint (9c) means that the average
wireless channel capacity is no less than the data arrival rate
u in order to avoid infinite delay. Constraint (9d) shows that
the total amount of cached data can not exceed the buffer
size in the time period [0, T2 ], otherwise it will lead to data
overflow and loss. t1 and t2 are the time points of consuming
and accumulating cached data. t1 is the point based on optimal
power allocation at which the C(t) is no less than the u. And

t2 is the point based on optimal power allocation where the
buffer begins to store data again. Obviously, this optimization
problem is a non-convex problem with multiple constraints.

III. OPTIMAL ENERGY-EFFICIENT POWER ALLOCATION
IN HSR WITH BUFFER CONSTRAINT
The optimization problem (9a)-(9d) is a non-linear fractional
program. We can transform it into a parametric optimization
problem with a more tractable non-fractional form as

max
P(t)

∫ T
2

0
C(t)dt − r

(∫ T
2

0
P(t)dt + Pc

)
s.t. (9b)− (9d), (10)

where r is an introduced auxiliary parameter for transforming
the original problem. It can be computed by Dinkelbach
method or the bisection method [37]. Problem (10) is convex
with respect to P(t) for a given r . We can adopt Lagrangian
dual method to obtain its optimal solution. The Lagrangian
function is

LOPT(P(t), λ, η, κ)

= −

∫ T
2

0
C(t)dt + r

(∫ T
2

0
P(t)dt + Pc

)

+ λ

∫ T
2

0
(P(t)− Pave)dt − η

∫ T
2

0
(C(t)− u)dt

− κ

∫ t1

0

(
C(t)− u+

Qm
2t1

)
dt − κ

∫ T
2

t2
(C(t)− u) dt.

(11)

From (11), we divide the power allocation during the time
period into three phases. Since channel condition becomes
better gradually and then worsen from the time period [0,
T
2 ], the instantaneous channel capacity C(t) may be less than
the data arrival rate u in the first phase and the third phase.
To avoid the data loss, it must be ensure that the amount
of data buffered in these two phases should be less than the
buffer size at the CU.

In the first phase from 0 to t1, we have

LOPT
1 = (r + λ)

∫ t1

0
P(t)dt

− (1+ η + κ)
∫ t1

0
C(t)dt + Cons, (12)

where Cons means a constant independent of P(t). Deriving
(12) with respect to P(t) and making the result be zero,
we have

∂LOPT
1

∂P(t)
= r + λ− (η + κ)

∂C(t)
∂P(t)

= 0, (13)

where

∂C(t)
∂P(t)

=
2A(t)P(t)+ 2B(t)N0

(A(t)P2(t)+ 2B(t)P(t)N0 + 4N 2
0 ) ln 2

. (14)
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Thus, the optimal solution for power allocation for a given r
during this period can be given by

POPT1 (t) =
2N 2

0

(r + λ)A(t)

(
2OPT

1 (t)

+

√
2OPT

1 (t))2 −8OPT
1 (t)+�OPT

1 (t)
)
, (15)

where

2OPT
1 (t) =

(1+ η + κ)A(t)− (r + λ)B(t)N0 ln 2

2N 2
0 ln 2

, (16)

8OPT
1 (t) =

A(t)(r + λ)2

N 2
0

, (17)

�OPT
1 (t) =

(r + λ)(1+ η + κ)A(t)B(t)

2N 3
0 ln 2

. (18)

The parameters λ, η and κ are the Lagrange multipliers cor-
responding to the constraints of power consumption, average
rate and buffer size respectively. Note that, these Lagrange
multipliers need to be computed to guarantee global con-
straints in [0, T2 ] but not in any single phase. They can be
computed by the bisection method or the subgradient method
iteratively [39].

In the second phase t1 < t ≤ t2, c(t) should be no less than
u since the wireless channel condition is better than that in
the rest two phases. Therefore, for the second phase, we get

LOPT
2 = (r + λ)

∫ t2

t1
P(t)dt

− (1+ η)
∫ t2

t1
ηC(t)dt + Cons. (19)

Similar to the first phase, deriving the (19) with respect to
P(t) and setting the result be zero, we have

∂LOPT
2

∂P(t)
= (r + λ)− (1+ η)

∂C(t)
∂P(t)

= 0. (20)

Substituting (14) into (20), the optimal power allocation with
a given r in the second phase is

P2(t) =
2N 2

0

(r + λ)A(t)

(
2OPT

2 (t)

+

√
2OPT

2 (t))2 −8OPT
1 (t)+�OPT

2 (t)
)
, (21)

where

2OPT
2 (t) =

(1+ η)A(t)− (r + λ)B(t)N0 ln 2

2N 2
0 ln 2

, (22)

�OPT
2 (t) =

(r + λ)(1+ η)A(t)B(t)

2N 3
0 ln 2

. (23)

Since C(t) ≥ u for t1 < t ≤ t2, we have

POPT2 (t) = max {P2(t),Pth(t)} , (24)

where

Pth(t) =
2N 2

0

A(t)

[√
B2(t)

4N 2
0

+
A(t)(2u − 1)

N 2
0

−
B(t)
2N0

]
. (25)

The optimal power allocation for the third phase is similar
to the first phase, so

POPT3 (t) = POPT1 (t), t2 < t ≤
T
2
. (26)

In summary, the optimal power allocation for a given r is

POPT*(t) =


POPT1 (t), 0 ≤ t ≤ t1,
POPT2 (t), t1 < t ≤ t2,

POPT3 (t), t2 < t ≤
T
2
,

(27)

where t1 and t2 should satisfy∫ t1

0
C∗(t)dt +

∫ T
2

t2
C∗(t)dt ≥

(
t1 +

T
2
− t2

)
uQm
2
, (28)

and

lim
t→t1

C∗(t) = u, lim
t→t2

C∗(t) = u. (29)

We determine t1 and t2 using the following method. First,
assuming there exist t1 and t2, we compute the power allo-
cation in three phases as POPT1 (t), POPT2 (t) and POPT3 (t). From
the expressions of POPT1 (t), POPT2 (t) and POPT3 (t), we note that
their main difference is with different Lagrange multipliers
corresponding to the buffer constraint. That is, the buffer con-
straint exists only during [0, t1] and (t2, T2 ]. This is because
the cached data in buffer cumulatively increases in the two
periods of time. And the cached data decreases from t1
to t2. Second, according to the form of the optimal solu-
tions, we can obtain the form of optimal C∗(t), although we
do not get the value of t1 and t2 yet. Third, we compare
instantaneous C∗(t) with data arrival rate u. We obtain t1 by
limt→t−1

C∗(t) = u,∀t , where t → t−1 means t approaches
t1 from t < t1. It is the starting time point of consuming
cached data. And we obtain t2 by limt→t+2

C∗(t) = u,∀t ,

where t → t+2 means t approaches t2 from t > t2. It is the
starting time point of accumulating cached data again. Our
proposed algorithm is based on the position of train, so we
can compute the optimal power allocation and obtain t1 and
t2 before the train moving into the coverage area, if the train
moves with a uniform speed.

We provide an iterative algorithm as shown in Algorithm 1,
to compute the auxiliary parameter r and get the optimal
energy-efficient power allocation. We update r based on the
bisection method, and

F(r) = max
P(t)

{∫ T
2

0
C(t)dt − r

(∫ T
2

0
P(t)dt + Pc

)}
. (30)

IV. LOW-COMPLEXITY ENERGY-EFFICIENT POWER
ALLOCATION IN HSR COMMUNICATIONS
In the Section III, we have obtained an optimal power
allocation by solving the transformed problem (10) and
achieved the maximum EE by the iterative algorithm. How-
ever, Algorithm 1 needs multiple iterations where the intro-
duced auxiliary parameter r is updated in outer iteration
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Algorithm 1 Energy-Efficient Power Allocation Algo-
rithm in HSR Communications With Buffer Constraint

Initialization
1. Initialize tolerance ε and index n = 1.
2. Initialize r (0)d and r (0)u with F(r (0)d ) > 0 and F(r (0)u ) < 0.
Iterative Algorithm
3. repeat
4. Update r by r (n) = (r (n−1)d + r (n−1)u )/2.
5. Compute P(t) for the given r (n) by (27).
6. if F(r (n)) > 0
7. Update r (n)d = r (n) and r (n)u = r (n−1)u ;
8. else
9. Update r (n)d = r (n−1)d and r (n)u = r (n);
10. endif
11. Set n = n+ 1;
12. endwhile converge to the optimal P∗(t) with ε.

and the Lagrangian multipliers (i.e., the dual variables) are
updated in inner iterations, which leads to a high compu-
tational complexity. In this section, we discuss the feasible
region of the optimal solution, and based on it we propose
a low-complexity algorithm to obtain the optimal power
allocation.

A. FEASIBLE REGION ANALYSIS THE OPTIMAL SOLUTION
We now consider all the cases of the optimal solution with the
constrains, especially the constraints (9b) and (9c).
Case I: Assume that the optimal solution is located out of

the feasible region of Constraint (9c). In other words, the opti-
mal EE can not satisfy Constraint (9c). In this case, from the
trade-off between EE and spectral efficiency, the achievable
maximum EE is located at the boundary of feasible region of

Constraint (9c). In other words, we have 2
T

∫ T
2
0 C(t)dt = u.

Then, the objective function in (9a) becomes

max
P(t)

uT/2∫ T
2
0 P(t)dt + Pc

, (31)

where the numerator is constant with respect to variable P(t).
The optimization problem (9a)-(9d) is equivalent to a average
power minimization problem as

min
P(t)

∫ T
2

0
P(t)dt

s.t. (9b), (9d),

2
T

∫ T
2

0
C(t)dt = u. (32)

From Appendix A, we obtain the optimal power allocaiton as
follows.

In the first phase, 0 ≤ t ≤ t1, the power allocation can be
expressed as

PC-out1 (t) =
2N 2

0

(1+ λ)A(t)

(
2C-out

1 (t)

+

√
(2C-out

1 (t))2 −8C-out
1 (t)+�C-out

1 (t)
)
, (33)

where

2C-out
1 (t) =

(η + κ)A(t)− (1+ λ)B(t)N0 ln 2

2N 2
0 ln 2

, (34)

8C-out
1 (t) =

A(t)(1+ λ)2

N 2
0

, (35)

�C-out
1 (t) =

(1+ λ)(η + κ)A(t)B(t)

2N 3
0 ln 2

. (36)

For the second phase, t1 < t ≤ t2, the power allocation can
be expressed as

PC-out2 (t) = max
{
Pth(t),

2N 2
0

(1+ λ)A(t)

(
2C-out

2 (t)

+

√
(2C-out

2 (t))2 −8C-out
1 (t)+�C-out

2 (t)
)}
,

(37)

where Pth is given by (25), and

2C-out
2 (t) =

ηA(t)− (1+ λ)B(t)N0 ln 2

2N 2
0 ln 2

, (38)

�C-out
2 (t) =

(1+ λ)ηA(t)B(t)

2N 3
0 ln 2

. (39)

The optimal power allocation for the third phase is
PC-out3 (t) = PC-out1 (t), t2 < t ≤ T

2 .
In conclusion, the optimal power allocation scheme for

Case I is

PC-out∗(t) =


PC-out1 (t), 0 ≤ t ≤ t1,
PC-out2 (t), t1 < t ≤ t2,

PC-out3 (t), t2 < t ≤
T
2
.

(40)

We can see from (40) that no auxiliary parameter r needs
to be computed iteratively. In this case, outer iteration is not
needed.
Case II: Assume that the optimal solution is located out

of the feasible region of maximum power constraint (9b).
That is, the optimal EE can not satisfy Constraint(9b). In this
case, from the trade-off between EE and spectral efficiency,
the achievable maximum EE is located at the boundary of
feasible region of maximum power constraint. In other words,

we have 2
T

∫ T
2
0 P(t)dt = Pmax . Then, the objective function in

(9a) becomes

max
P(t)

∫ T
2
0 C(t)dt

2Pmax/T + Pc
, (41)

where the denominator is constant. The optimization problem
(9a)-(9d) is equivalent to a average rate maximization prob-
lem as

max
P(t)

∫ T
2

0
C(t)dt

s.t. (9c), (9d),
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2
T

∫ T
2

0
P(t)dt = Pmax . (42)

From Appendix B, we have the optimal power allocation as
follows.

For the first phase, 0 ≤ t ≤ t1, the power allocation is

PP-out1 (t) =
2N 2

0

λA(t)

(
2P-out

1 (t)

+

√
(2P-out

1 (t))2 −8P-out
1 (t)+�P-out

1 (t)
)
, (43)

where

2P-out
1 (t) =

(1+ η + κ)A(t)− λB(t)N0 ln 2

2N 2
0 ln 2

, (44)

8P-out
1 (t) =

A(t)λ2

N 2
0

, (45)

�P-out
1 (t) =

λ(1+ η + κ)A(t)B(t)

2N 3
0 ln 2

. (46)

For the second phase, t1 < t ≤ t2, the power allocation is

PP-out2 (t) = max
{
Pth(t),

2N 2
0

λA(t)

(
2P-out

2 (t)

+

√
(2P-out

2 (t))2 −8P-out
1 (t)+�P-out

2 (t)
)}
, (47)

where Pth is also given by (25), and

2P-out
2 (t) =

(1+ η)A(t)− λB(t)N0 ln 2

2N 2
0 ln 2

, (48)

�P-out
2 (t) =

(1+ η)λA(t)B(t)

2N 3
0 ln 2

. (49)

The optimal power allocation for the third phase isPP-out3 (t) =
PP-out1 (t), t2 < t ≤ T

2 .
In conclusion, the optimal power allocation in Case-I is

PP-out∗(t) =


PP-out1 (t), 0 ≤ t ≤ t1,
PP-out2 (t), t1 < t ≤ t2,

PP-out3 (t), t2 < t ≤
T
2
.

(50)

We can see from (50) that no auxiliary parameters r needs to
be computed iteratively. Similarly to Case I, outer iteration is
also not needed in this case.
Case III: Assume that the optimal solution is located in

the feasible regions of maximum power and minimum rate.
In this case, the optimal EE can always satisfy Constraint (9b)
and Constraint (9c). The original problem is equivalent to a
optimization problem without these two constraints as

max
P(t)

∫ T
2
0 C(t)dt∫ T

2
0 P(t)dt + Pc

s.t.
∫ t1

0
(u− C(t))dt +

∫ T
2

t2
(u− C(t))dt ≤

Qm
2
. (51)

We can transform this optimization problem by a similar
method used in Section III into

max
P(t)

∫ T
2

0
C(t)dt − r

(∫ T
2

0
P(t)dt + Pc

)

s.t.
∫ t1

0
(u− C(t))dt +

∫ T
2

t2
(u− C(t))dt ≤

Qm
2
. (52)

The optimal solution can be obtained by (27) with the
Lagrangianmultipliers corresponding to themaximum power
constraint and minimum rate constraint being zeros, i.e.,

PIN*(t) = POPT*(t)|λ=0,η=0, 0 ≤ t ≤
T
2
. (53)

Lagrangian multipliers λ and η do not need to be computed
iteratively, although the outer iterations still exist in this
case.

B. LOW-COMPLEXITY ALGORITHM FOR
ENERGY-EFFICIENT POWER ALLOCATION
We have discussed all the cases of the optimal solution in
feasible region in the above subsection. In any of the above
cases, we can solve the optimization problem with a lower
complexity. However, before solving the original problem
(9a)-(9d), we generally do not know which case the optimal
solution belongs to.

For convenience, we denote fR =
∫ T

2
0 C(t)dt and fP =∫ T

2
0 P(t)dt + Pc. According to (30), we have F(r) =
maxP(t){fR − rfP}. From [37], [40], the optimal solution of
(9a)-(9d) is obtained at

F(r∗) = max
P(t)
{fR(P(t))− r∗fP(P(t))}

= fR(P∗(t))− r∗fP(P∗(t)) = 0. (54)

The optimization problem (10) can be regard as a
multi-objective optimization problem where fR is to be max-
imized while fP is to be minimized. And the optimal power
P∗(t) in (27) is a Pareto-optimal solution for an r . The set
of these Pareto optimal values is called the optimal trade-off
curve between the two objectives, as shown in Fig. 3. The
parameter r is the slope of the trade-off curve, i.e. fR

fP
, and

F(r) is the intersection of the tangent with the vertical axis.
The point of tangency is Pareto optimal solution P(t), and the
global optimal r∗ is obtained at F(r∗) = 0.
To derive a low-complexity algorithm, we analysis the

upper and lower bounds in the bisection method and find
the relationship between the optimal solution and the bounds.
From Fig. 3, we can see that fR(P(n)(t)) with iteration index n
is monotonically decreasing with the updated lower bound of
rd . In other words, if fR(P(n)(t)) does not satisfy (9c), neither
do fR(P(n+1)(t)) and the optimal fR(P∗(t)), i.e.,

2
T
fR(P(n)(t)) < u ⇒

2
T
fR(P(n+1)(t)) < u

⇒
2
T
fR(P∗(t)) < u. (55)
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FIGURE 3. The optimal trade-off curve between fR and fP .

In addition, we can see that fP(P(n)(t)) with iteration index n
is monotonically increasing with the updated upper bound of
ru. In other words, if fP(P(n)(t)) does not satisfy (9d), neither
do fP(P(n+1)(t)) and the optimal fP(P∗(t)), i.e.,

2
T
(fP(P(n)(t))− PC ) > Pmax

⇒
2
T
(fP(P(n+1)(t))− PC ) > Pmax

⇒
2
T
(fP(P∗(t))− PC ) > Pmax . (56)

Based on the above discussions, we propose a low-
complexity algorithm for maximizing EE in HSR commun-
ciations, as shown in Algorithm 2.

V. SIMULATION RESULTS AND DISCUSSIONS
Numerical simulation results are presented in this section to
evaluate the performance of the proposed low-complexity
energy-efficient power allocation in HSR communications
with buffer constraint. The advantages of the proposed algo-
rithm are mainly reflected in two aspects. First, the pro-
posed algorithm can reduce the complexity of traditional
bisection method without degrading system performance.
Second, the proposed algorithm can meet the buffer con-
straint by comparing several conventional power alloca-
tion methods. Note that the common simulation parameters
[9], [33], [35], [36], are listed in Table 1.

A. ENERGY EFFICIENCY AND ITERATION PERFORMANCE
Fig. 4 shows the EE performance of the proposed algorithms
versus the minimum data rate requirements of the system.
In this figure, we also consider the water-filling algorithm
and channel inversion algorithm as comparisons. We can
see that the proposed optimal method based on bisection
algorithm (i.e., Algorithm 1) can achieve the highest EE
performance. And the low-complexity algorithm (i.e., Algo-
rithm 2) has a same EE performancewith bisection algorithm,
and is superior to the water-filling and channel inversion

Algorithm 2 Low-Complexity EE Power Allocation Algo-
rithm in HSR Communications With Buffer Constraint
Initialization
1. Initialize tolerance ε and index n = 1.
2. Initialize r (0)d and r (0)u with F(r (0)d ) > 0 and F(r (0)u ) < 0.
Iterative Algorithm
3. while
4. Update r by r (n) = (r (n−1)d + r (n−1)u )/2.
5. Compute P(n)(t) for the given r (n) by PIN∗(t) in (53).
6. if F(r (n)) > 0
7. Update r (n)d = r (n) and r (n)u = r (n−1)u .

8. if 2
T

∫ T
2
0 C(t)dt < u

9. Go to step 17.
10. endif
11. else
12. Update r (n)d = r (n−1)d and r (n)u = r (n).

13. if 2
T

∫ T
2
0 P(t)dt > Pmax

14. Go to step 18.
15. endif
16. endif
17. Set n = n+ 1.
18. endwhile converge to the optimal P∗(t) with ε.
19. Compute the optimal P∗(t) by PC-out∗ in (40).
20. Compute the optimal P∗(t) by PP-out∗ in (50).

TABLE 1. Parameter settings.

algorithms. In addition, except for the water-filling method,
the achievable EE decreases with the increase of data arrival
rate. This is because that more power should be consumed
to guarantee the transmission of arrival data, which narrows
the feasible region of the solution and results in a lower EE.
The performance of water-filling method keeps invariable
with increasing u since it always aims at the maximum data-
rate. Moreover, we also see that as the fixed circuit power
consumption Pc increases, the EE performance decreases.
Fig. 5 shows the EE performance of the proposed algorithm

versus the maximum transmit power of the RAUs. Similar
to the data arrival rate requirements, the optimal EE can be
achieved when the maximum of transmit power Pmax allowed
by the RAUs is large enough. The EE that can be achieved
increases with the increases of Pmax when the maximum
transmit power limitation of the RAUs can not meet the
optimal EE. Therefore, the reduction of algorithm complexity
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FIGURE 4. Average EE versus the minimum data rate requirement of the
system.

FIGURE 5. Average EE versus the maximum transmit power of the RAUs.

does not bring the loss of EE performance, which shows the
effectiveness of the proposed low-complexity algorithm. Fur-
thermore, the proposed algorithms (i.e., bisection algorithm
and low-complexity algorithm) can achieve the highest EE
when maximum power is large. The water-filling method can
not satisfy the buffer limitation, although it has a higher EE
when transmit power is small. The channel inversion method
is limited by the arrival data rate and its EE keeps invariable
with increasing Pmax .
Fig. 6 depicts the iterations of the proposed algorithms

over different data arrival rate requirements. It can be seen
that the low-complexity algorithm can greatly reduce the
iterations, especially when the rate requirement is really
strict. As the data rate requirement increases, the iteration
of low-complexity algorithm decreases. This is because that
the rate constraint is more difficult to be satisfied when
it becomes strict, which leads to jumping out of the loop
and ending of the iteration process. Additionally, as the

FIGURE 6. Average number of iterations versus the minimum data rate
requirement of the system.

FIGURE 7. Average number of iterations versus the maximum transmit
power of the RAUs.

requirement of convergence accuracy increases, the disadvan-
tage of bisection algorithm is more obvious since the larger
number of iteration is needed.

Fig. 7 shows the iterations versus the maximum of transmit
power allowed Pmax by the RAUs. It shows that, as the Pmax
decreases, the number of iterations decreases. This is due to
that when the power constraint becomes strict, they are more
difficult to be satisfied, which leads to jumping out of the
loop and ending of the iteration process. More importantly,
the proposed algorithm not only reduces iterations, but also
reduces the constraints to be solved in each iteration. How-
ever, traditional methods need to solve more constraints of
optimization.

Note that, combining the results in Fig. 6 and Fig. 7, we get
that when both the transmit power limitation and data rate
requirement exist, the iteration number of low-complexity
algorithm is the smallest one of that for the two constraints.
On the other hand, we also see that when the two constraints
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FIGURE 8. Transmit SNR versus time at RAUs under different power
allocation schemes.

FIGURE 9. Instantaneous transmission rate versus time at RAUs under
different power allocation schemes.

are not strict (i.e., smaller data rate requirement or larger
transmit power), the iteration number of the low-complexity
method is the same with the bisection method. However,
in this case, the bisection method needs inner iterations to
update the Lagrange multipliers corresponding to the two
constraints, but the low-complexity algorithm needs not do it.
That is, the low-complexity method has a lower computing
complexity than bisection method, and gets the optimal EE
performance.

B. BUFFER AND DELAY PERFORMANCES
To demonstrate the effectiveness of the proposed power allo-
cation method more clearly, we provide some performance
results versus time in Fig. 8. We also give the results of con-
stant power allocation method and energy-efficient method
without considering buffer constraint. As shown in this figure,
for a given buffer size, the low-complexity energy-efficient
power allocation is actually divided into five parts. The
water-filling method with a certain water level is adopted
in the first part from 0 to 1.11s and the final part from

FIGURE 10. Service surplus versus data arrival rate under different
schemes.

3.96s to 5s. The channel inversion is adopted in the second
part from 1.11s to 1.51s and the fourth part 3.77s to 3.96s.
The energy-efficient method without considering buffer con-
straint is adopted in the third part from 1.51s to 3.77s.

Fig. 9 shows the wireless transmission rate over time under
four different schemes. According to observation, we can see
the combination of water-filling algorithm, channel inversion
method and EE without buffer method more intuitively. From
(27), we have known that the power allocation is divided into
three phases. In Fig. 8 and Fig. 9, we can see t1 = 1.11 and
t2 = 3.96. The two figure also show that the power allocation
in t1 < t ≤ t2 is further divided into three part. This is because
the optimal power allocation should guarantee C(t) is large
than u in this period of time according to (24).
Fig. 10 illustrates the change in service surplus (SS) over

time of our proposed scheme compared to water-filling,
channel inversion, constant power and the method without
buffer constraint. The SS means the cumulative difference
between the wireless transmission rate and the data arrival
rate, i.e.,

∫ t
0 (C(τ ) − u)dτ . In other words, the larger the SS

is, the faster the buffer is emptied. Since the SS capability
is related to the instantaneous wireless transmission rate of
the transmitter, the SS process can also be divided into five
parts. For the first part, C(t) is smaller than u, there will be
data buffering. Therefore, the SS is negative at the time 0 and
will continue to decrease. Next, the SS gradually increases
and then decreases as the channel conditions get better first
and then worse. Furthermore, the amount of SS decline can
be seen as data buffering. As shown in Fig. 10, the maximum
amount of buffered data, ss1 + ss2 = 0.40 + 1.44 = 1.84,
which is less than buffer size limitation Qm

2 = 2. However,
the constant power, water-filling and EEwithout buffer meth-
ods (with maximum amount of buffered data 2.15, 2.07 and
2.73 respectively) would not satisfied the buffer constraint
because surplus decline under these three methods surpasses
the buffer constraint. In this case, data overflow exists in these
methods, which will influence the communication between
the CU and the train.
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FIGURE 11. Impact of small-scale fading on average EE performance of
proposed algorithm.

C. IMPACT OF SMALL-SCALE FADING
In above sections, we designed our work based on the posi-
tions of the train without regard to the small-scale fading, due
to its unpredictability. The main advantage of this desgin is
that no channel estimation is required in our algorithm with
an almost uniform movement speed of the train.

Here, we test the performance of the proposed algorithm
under the practical channel condition with both path loss and
Rician fading (i.e., small-scale fading). In the simulation,
we consider different Rician factors f κ , which denotes the
ratio of line-of-sight (LOS) signal power and multi-path com-
ponent power. From Fig. 11, we can see that the small-scale
fading degrades the EE performance. This is because that
our algorithm is designed based on only the pass loss and
has some performance penalty under the small-scale fading.
However, it is worth noting that the achievable average EE is
closer to the performance with only large-scale fading when
f κ is large (i.e., strong LOS). Fortunately, the HSR scenario
is just such an environment with the strong LOS, especially
the viaduct scenarios.

VI. CONCLUSION
In this paper, two energy-efficient power allocation methods
are studied for DAS in HSR communications with data buffer
constraint. First, we analyze the relationship between the data
arrival rate and wireless transmission rate at RAUs by taking
constant power transmitted as an example. Then, we formu-
late the non-convex power allocation optimization problem
and solve it by two iterative algorithms, i.e., the optimal
algorithm based on bisection method and the low-complexity
algorithm based on feasible domain of the solution. Simu-
lation results have demonstrated the superiority of proposed
power allocation scheme. Compared to existing methods,
the proposed power allocation schemes can achieve the opti-
mal EE and avoid data overflow. Particularly, in the pro-
posed low-complexity scheme, the reduction of algorithm
complexity does not bring any loss of EE performance. In the
future, small-scale fading should be considered in the design
of power allocation algorithm.

APPENDIX A
The optimization problem in (32) is convex, and the corre-
sponding Lagrangian function is given by

LC-out(P(t), λ, η, κ)

=

∫ T
2

0
P(t)dt + λ

∫ T
2

0
(P(t)− Pave)dt

− η

∫ T
2

0
(C(t)− u)dt − κ

∫ t1

0
(C(t)− u+

Qm
2t1

)dt

− κ

∫ T
2

t2
(C(t)− u+

Qm
T − 2t2

)dt. (57)

For the first phase, 0 ≤ t ≤ t1, we have

LC-out
1 = (1+ λ)

∫ t1

0
P(t)dt − (η + κ)

∫ t1

0
C(t)dt + Cons.

(58)

Deriving (58) with respect to P(t), we have

∂LC-out
1

∂P(t)
= 1+ λ− (η + κ)

∂C(t)
∂P(t)

= 0, (59)

where ∂C(t)
∂P(t) is given by (14). Thus, we obtain the power

allocation PC-out1 (t) as (33).
Then, for the second phase, t1 < t ≤ t2, we get

LC-out
2 = (1+ λ)

∫ t2

t1
P(t)dt − η

∫ t2

t1
C(t)dt + Cons. (60)

Deriving (60) with respect to P(t), we have

∂L2

∂P(t)
= 1+ λ− η

∂C(t)
∂P(t)

= 0. (61)

Because C(t) ≥ u for t1 < t ≤ t2, the power allocation
PC-out2 (t) in the second phase can be given by (37). The
optimal power allocation in the third phase is similar to the
first phase, so we have PC-out3 (t) = PC-out1 (t), t2 < t ≤ T

2 .

APPENDIX B
The optimization problem in (42) is also convex, and the
corresponding Lagrangian function is

LP-out(P(t), λ, η, κ)

= −

∫ T
2

0
C(t)dt + λ

∫ T
2

0
(P(t)− Pave)dt

− η

∫ T
2

0
(C(t)− u)dt − κ

∫ t1

0
(C(t)− udt

− κ

∫ T
2

t2
(C(t)− u+

Qm
T − 2t2

)dt. (62)

For the first phase, 0 ≤ t ≤ t1, we have

LP-out
1 = −(1+ η + κ)

∫ t1

0
C(t)dt + λ

∫ t1

0
P(t)dt + Cons.

(63)
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Deriving (63) with respect to P(t), we have

∂LP-out
1

∂P(t)
= λ− (1+ η + κ)

∂C(t)
∂P(t)

= 0, (64)

where ∂C(t)
∂P(t) is given by (14). We can obtain PP-out1 (t) in (43).

Then, for the second phase, t1 < t ≤ t2, we get

LP-out
2 = −(1+ η)

∫ t2

t1
C(t)dt + λ

∫ t2

t1
P(t)dt + Cons. (65)

Deriving (65) with respect to P(t), it can be found

∂L2

∂P(t)
= λ− (1+ η)

∂C(t)
∂P(t)

= 0. (66)

Because C(t) ≥ u for t1 < t ≤ t2, we obtain PP-out2 (t) in (47).
The optimal power allocation for the third phase is similar to
the first phase, so we have PP-out3 (t) = PP-out1 (t), t2 < t ≤ T

2 .
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