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ABSTRACT One of the most challenging problems in unattended ground sensor (UGS) systems is to
distinguish human footstep signals from noise sources. As the distance between the sensor and the moving
target increases, the signal-to-noise ratio (SNR) decreases rapidly. Many methods have been proposed to
solve this problem, but most of them suffer from unacceptably high false alarm rate or omissive report rate
in practical applications. In this paper, a novel approach based on parallel recurrent neural network (PRNN) is
proposed to improve the seismic target recognition performance. The PRNN is composed of a time domain
feature network and a frequency spectrum feature network. The time domain feature network is used to
handle the running signals, and the frequency spectrum feature network is used to handle the walking signals.
The output of the PRNN is a fusion of the two networks. Experimental results show that the proposed
approach can improve the human recognition accuracy up to 98.3% and has a remarkable performance
compared with other machine learning methods.

INDEX TERMS Data fusion, parallel recurrent neural network, signal-to-noise ratio, unattended ground
sensor.

I. INTRODUCTION
Unattended Ground Sensor (UGS) was first used to mon-
itor Viet Cong activity along the Ho Chi Minh Trail in
the 1960s [1]. Nowadays UGS is widely used to mon-
itor human activities, such as pedestrian movement and
intruder detection in safe areas [2], [3]. The most com-
monly used sensor devices in UGS systems aremicro-electro-
mechanical-systems (MEMS) accelerometers [4], MEMS
microphone array [5], quartz MEMS vibrating beam seis-
mometer [6] and other seismic sensors [7]–[12]. The MEMS
technology can integrate signal processing circuit and sen-
sor element into a single chip, providing us with the
control mechanism of sensor calibration and initial signal
processing [4].

In UGS systems, the detection of human activities has been
paid more and more attention [13]–[18]. Most methods for
detecting human activities employ footstep seismic signal
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detection. Nevertheless, distinguishing human footstep sig-
nals from noise sources is a challenging problem, because
the signal-to-noise ratio (SNR) decreases rapidly as the dis-
tance between the sensor and the moving target increases.
In addition, the footstep signals have different features for
different people, which makes the problem of target detection
and classification more challenging [19]. Therefore, we need
to find common features. The analysis of the human footstep
seismic signals is an important part of UGS systems.

Current feature extraction methods for seismic signals can
be divided into three categories: time domain [20], [21],
frequency domain [4] and time-frequency domain [19], [22].
On the one hand, due to the interference noise, complex signal
waveforms and changes in terrain, the time domain method
may not be able to identify targets very accurately [22].
On the other hand, due to the potential non-stationary in the
observed signal, the accuracy of frequency domain approach
may be reduced [3]. Therefore, recent research has focused
on time-frequency domain methods (e.g., wavelet transform)
because of denoising and localization properties [3].
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The conventional seismic target recognition methods
mainly include wavelet packet manifold (WPM) [23], sym-
bolic dynamic filtering (SDF) [9], [19], multi-axial seis-
mic fusion [24], dynamic data-driven application system
(DDDAS) [25], multimodal sensor fusion [26], etc. WPM
proposes the neighborhood preserving embedding algorithm
of manifold learning on the wavelet packet node energy of
seismic signals [23]. SDF contains wavelet-transformed pre-
processing of signals to improve time-frequency localization
and denoising [19]. In addition, BP neural network is used
to extract the features of seismic signals, which has achieved
better results [13]. However, the problem is that system per-
formance is often limited by high false alarm rate or omissive
report rate, which may be a lack of underlying algorithms for
extracting features from sensory data and subsequent pattern
classification.

In this paper, the parallel recurrent neural network (PRNN)
is proposed for seismic target recognition. Specifically,
the target recognition system is produced by the four fol-
lowing steps. First, the time-frequency analysis of the seis-
mic signals of the human footsteps (including walking and
running) obtained by seismic sensor device is conducted.
The features of running signals in the time domain are more
obvious, while the features of the walking signals in the
frequency domain are more obvious. Second, there are some
feature extractions need to be taken. The time domain signals
use fast bandpass filter and peak value region extraction,
while the frequency domain signals are obtained by Welch
algorithm. Third, the PRNN for target recognition applica-
tions is designed, which consists of two Long Short-term
Memory networks (LSTMs). The input to an LSTM is time
series data and this LSTM is used to determine whether
someone is running; the input to another LSTM is frequency
spectrum data and this LSTM is used to determine whether
someone is walking. Fourth, the network output data is used
for data fusion, performing OR operation, thereby effectively
identifying ground human activities. Experiments show that
PRNN achieves high recognition accuracy. Because the pro-
posed PRNN can improve the accuracy of classification up to
98.3%, it may be widely used in UGS.

This paper is organized as follows. In Section II, data
acquisition and feature extractions such as fast bandpass
filter, peak value region extraction, and Welch algorithm are
presented in detail. In Section III, the PRNN for seismic
target recognition and proof of accuracy formulas are elab-
orated. In Section IV, time-frequency analysis, experiments
and results are presented in detail. Finally, Section V dis-
cusses conclusions and future research.

II. DATA ACQUISITION AND FEATURE EXTRACTIONS
A. DATA ACQUISITION
The seismic sensor device collects the continuous time signal
x (t) from the environment and samples according to the
time interval 1t = 1ms, thereby obtaining a discrete time
signal x (n ◦1t) ≡ xn, n = 0, 1, 2, · · · ,N − 1, where

FIGURE 1. Diagram of data acquisition.

N is the length of the signal (The following is denoted as
{xn}). Finally, the sensor device sends the signal {xn} to the
workstation (see Fig. 1). The environment and scene for data
acquisition are detailed in Section IV.

B. FEATURE EXTRACTIONS
In the UGS system, the personnel target moves on the ground.
For the ground soil layer, the target gives a certain incentive
to the ground. From the perspective of geophysics, since
the earth medium is non-rigid, this kind of incentive will
definitely cause tiny deformation of the earth medium, which
will propagate in the earth medium and form seismic waves.
In order to effectively detect the seismic signal caused by the
target motion, it is necessary to extract the signal features
(see Fig. 2).

FIGURE 2. Diagram of feature extractions.

1) FAST BANDPASS FILTER
As the distance between the human target and the seismic
sensor device increases, the SNR drops rapidly. In order to
effectively remove the noise, the original signal {xn} is per-
formed by a fast bandpass filter. Let1ω be 2π

N◦1t . According
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to [27], the Discrete Fourier Transform (DFT) of {xn} is given
as:

Xm = X (m ◦1ω) =
N−1∑
n=0

xne−i2πmn/N

(m = 0, 1, 2, · · · ,N − 1) (1)

Discrete-time ‘‘analytic’’ signal ξn = xn + ixn(n = 0, 1,
2, · · · ,N−1) of {xn} is introduced from [28]. Hence, the DFT
of ξn = xn + ixn is given as:

Zm =

{
2Xm mj ≤ m ≤ mk
0 others

(m = 0, 1, 2, · · · ,N − 1)

(2)

where {Zm} is the DFT of {ξn}. When subscript m is beyond
the range mj ≤ m ≤ mk , the sequence {Zm} is equal to 0.
The discrete fourier inverse transform of {Zm} is x̃n + ixn,
where {x̃n} is a real part of {ξn}. Hence, {x̃n} is the filtered
signal of the original signal {xn} passing the frequency band
mj ≤ m ≤ mk .

2) PEAK VALUE REGION EXTRACTION
Seismic signals caused by personnel movements have peri-
odicity feature, that is, peaks occur at intervals. In order to
extract the peak value region signal, let the region width be
W (take an even number), let the step length l, and let the
peak region sequence be Pu , u = 1, 2, · · · ,

∐
(N/l). In step

u, the subscript corresponding to the maximum value in {x̃n}

is index
(

max
(u−1)l≤i<ul

(x̃i)
)
, where index () is the subscript

corresponding to value. The sequence of peak value region
in step u is given as:

Pu = norm ({x̃i}) , index
(

max
(u−1)l≤i<ul

(x̃i)
)
−
W
2
≤ i

< index
(

max
(u−1)l≤i<ul

(x̃i)
)
+
W
2

(3)

where norm () is the normalization of the sequence, and the
normalization range is from 0 to 1000.

3) WELCH ALGORITHM
In order to effectively extract the frequency domain features,
the original signal {xn} needs to be estimated by power spec-
tral density (PSD). This paper employs the Welch algorithm,
which is an improved method of the periodogram [29], [30].
The length N of {xn} is divided into P segments and each of
them has M data. The correction periodogram in segment p
is given as:

Jp (ω) =
1
MU

∣∣∣∣∣
M−1∑
n=0

xp (n)w (n) e−jωn
∣∣∣∣∣
2

(4)

where U (ω) = 1
M

M−1∑
n=0

w2 (n) is the normalization factor and

w (n) is the added window function. The periodograms of P

segments are averaged to obtain an estimation B̂x (ω) of the
PSD of the whole signal, as shown in Eq. (5):

B̂x (ω) =
1
P

P∑
p=0

Jp (ω) (5)

III. PARALLEL RECURRENT NEURAL NETWORK
Target recognition is a key factor in the UGS system. This
paper proposes the PRNN for target detection and classifica-
tion. The whole process of the system from acquiring data
to building a target recognition system is shown in Fig. 3.
The first step is data acquisition: seismic sensor device is
used to obtain environmental information, and the acquired
information is transmitted to the workstation. The second step
is feature extractions: In the time domain, fast bandpass filter
and peak value region extraction are implemented to extract
time domain feature. In the frequency domain, Welch algo-
rithm is implemented to extract frequency domain feature.
The third step is target recognition: the time series data and
the frequency spectrum data are respectively trained using
different LSTMs. Outputs of the two LSTMs are fused by
performing OR operation. The seismic sensor device and data
acquisition scene are elaborated in the experiment. Feature
extractions have been described in Section II. This section
elaborates on the proposed PRNN for target recognition.

FIGURE 3. Overall structure of the proposed method.

A. PRNN BUILDING AND TRAINING
In this subsection, we propose the PRNN in target recognition
system (see Fig. 4). The inputs to the PRNN are time series
data Pu and frequency spectrum data B̂x (ω). The output
is the result of the classification. The time series data Pu

is obtained by fast bandpass filter and peak value region
extraction, the frequency spectrum data B̂x (ω) is obtained by
Welch algorithm.
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FIGURE 4. PRNN structure in the target recognition system.

FIGURE 5. Diagram of PRNN training.

In order to improve the generalization ability of the net-
work, the PRNN needs to be trained by large amounts of data.
The PRNN consists of two LSTMs [31], one is a time domain
feature network and the other is a frequency spectrum feature
network. Each network employs an LSTM architecture that
uses purpose-built memory cells to store information and is
better at discovering and exploiting long-term dependencies
in the data [31]. The training data of the time domain feature
network is time series data Pu, wherein the data is acquired
only in the background and the running scenes; the training
data of the frequency spectrum feature network is the fre-
quency spectrum data B̂x (ω), wherein the data is acquired
only in the background and the walking scenes. The training
samples of both LSTMs contain labels, where label 0 rep-
resents no one (background signal) and label 1 represents
someone (walking or running signal). Therefore, the network
belongs to supervised learning. Diagram of PRNN training is
shown in Fig. 5.

B. TARGET CLASSIFICATION
Target classification of PRNN is shown in Fig. 6, where
PRNN has been trained. PRNN has two inputs: Pu and
B̂x (ω). Pu includes three types of signals: background, walk-
ing and running. B̂x (ω) also includes three types of signals:
background, walking and running. The time domain feature

FIGURE 6. Target classification of PRNN.

network is used to accurately identify the running signal, and
the frequency spectrum feature network is used to accurately
identify the walking signal. The output data of the two are
fused. The data fusion is OR operation, which accurately
identifies the moving personnel target (the relevant formula
is proved below).

C. DERIVATION OF TARGET RECOGNITION
ACCURACY FORMULA
According to the test accuracy of two LSTMs, the test accu-
racy range of the PRNN can be calculated. The derivation
process is given below.

Assume that the test accuracy of the time domain feature
network is P1. Assume that the test accuracy of the frequency
spectrum feature network is P2. The number of samples used
for training and testing is very large, and the test accuracy
of the network converges in training. The generated network
test results are basically consistent with the final results of
the training network, so P1 and P2 are representative to some
extent.

Assume that the number of test samples of the background
signal after fast bandpass filter and peak value region extrac-
tion is x1. Similarly, the number of test samples of the walking
signal is x2, and the number of test samples of the running
signal is x3. Assume that the number of the test samples of
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the background signal after Welch algorithm process is x̂1.
Similarly, the number of test samples of the walking signal
is x̂2, and the number of test samples of the running signal
is x̂3. Since the proposed PRNN judges the type of input data
of different forms for the same signal, the following equation
is given as:

x1 = x̂1, x2 = x̂2, x3 = x̂3 (6)

In the time domain feature network, it is assumed that
among the x1 samples of the background signal, x11 samples
are recognized as no one, and x13 samples are recognized
as someone. It is assumed that among the x2 samples of the
walking signal, x21 samples are recognized as no one, and
x23 samples are recognized as someone. It is assumed that
among the x3 samples of the running signal, x31 samples
are recognized as no one, and x33 samples are recognized
as someone. In the frequency spectrum feature network, it is
assumed that among the x̂1 samples of the background signal,
x̂11 samples are recognized as no one, and x̂12 samples are
recognized as someone. It is assumed that among the x̂2
samples of the walking signal, x̂21 samples are recognized
as no one, and x̂22 samples are recognized as someone. It is
assumed that among the x̂3 samples of the running signal,
x̂31 samples are recognized as no one, and x̂32 samples are
recognized as someone. According to the above assumption,
the following equation is given as:

x1 = x11 + x13
x2 = x21 + x23
x3 = x31 + x33
x̂1 = x̂11 + x̂12
x̂2 = x̂21 + x̂22
x̂3 = x̂31 + x̂32

(7)

Since the test accuracy P1 of the time domain feature
network is obtained by the background signal and the running
signal test, and the test accuracy P2 of the frequency spectrum
feature network is obtained by the background signal and the
walking signal test, so the following equations are given as:

P1 =
x11 + x33
x1 + x3

(8)

P2 =
x̂11 + x̂22
x̂1 + x̂2

(9)

In the PRNN, the outputs of the time domain feature net-
work and the frequency spectrum feature network perform
OR operation, and the result is the output of the PRNN.
In two separate networks, the output 0 represents no one and
the output 1 represents someone. The output of the PRNN
has the same meaning as above. Their relationship is shown
in Table 1.

As can be seen from Table 1, the PRNN output is recog-
nized as no one if and only if both the time domain feature
network and the frequency spectrum feature network are
recognized as no one. Assume that the test accuracy of the

TABLE 1. Output relationship between networks.

PRNN is P, and the test error rate is P′, so the following
equation is given as:

P = 1− P′ (10)

Three cases of test errors in the PRNN are given as:

• Any network in the time domain feature network and the
frequency spectrum feature network recognizes samples
of the background signal as someone. Suppose the set
X13 contains all samples that misidentify the background
signals as someone in the time domain feature network.
Suppose the set X̂12 contains all samples that misidentify
the background signals as someone in the frequency
spectrum feature network. Therefore, the set X13 ∪ X̂12
contains all samples that misidentify background signals
as someone in any network.

• The time domain feature network and the frequency
spectrum feature network simultaneously recognize
samples of the walking signals as no one. Suppose the
set X21 contains all samples that misidentify the walking
signals as no one in the time domain feature network.
Suppose the set X̂21 contains all samples that misidentify
the walking signals as no one in the frequency spectrum
feature network. Therefore, the set X21 ∩ X̂21 contains
all samples that simultaneously misidentify the walking
signals as no one in two networks.

• The time domain feature network and the frequency
spectrum feature network simultaneously recognize
samples of the running signals as no one. Suppose the
set X31 contains all samples that misidentify the running
signals as no one in the time domain feature network.
Suppose the set X̂31 contains all samples that misidentify
the running signals as no one in the frequency spectrum
feature network. Therefore, the set X31 ∩ X̂31 contains
all samples that simultaneously misidentify the running
signals as no one in two networks.

According to the above three cases, the following equation
is given as:

P′

=

num
(
X13 ∪ X̂12

)
+num

(
X21 ∩ X̂21

)
+num

(
X31 ∩ X̂31

)
x1 + x2 + x3

(11)

where num () is the number of the set elements. According
to the relationship between the sets, the following equation is
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given as:
num

(
X13 ∪ X̂12

)
≤ num (X13)+ num

(
X̂12

)
= x13 + x̂12

num
(
X21 ∩ X̂21

)
≤ num

(
X̂21

)
= x̂21

num
(
X31 ∩ X̂31

)
≤ num (X31) = x31

(12)

According to Eqs. (11) and (12), the following equation is
given as:

P′ ≤
x13 + x̂12 + x̂21 + x31

x1 + x2 + x3
(13)

The transformation is done as follows:

x13 + x̂12 + x̂21 + x31
x1 + x2 + x3

=
x13 + x31

x1 + x2 + x3
+

x̂12 + x̂21
x1 + x2 + x3

(14)

According to Eqs. (6), (13) and (14), the following equa-
tion is given as:

P′ ≤
x13 + x31

x1 + x2 + x3
+

x̂12 + x̂21
x1 + x2 + x3

≤
x13+x31
x1+x3

+
x̂12+x̂21
x̂1+x̂2

(15)

According to Eqs. (7), (8), (9) and (15), the following
equation is given as:

P′ ≤ 1−
x11 + x33
x1 + x3

+ 1−
x̂11 + x̂22
x̂1 + x̂2

= 1− P1 + 1− P2

= 2− P1 − P2 (16)

According to Eqs. (10) and (16), the test accuracy of the
PRNN is given as:

P = 1− P′ ≥ 1− (2− P1 − P2) = P1 + P2 − 1 (17)

In the experiment, the values of P1 and P2 are close to 1,
so the test accuracy P of the PRNN is also close to 1.

IV. EXPERIMENTS AND RESULTS
A. DATA COLLECTING SYSTEM
As can be seen from Fig. 7(a), the seismic sensor device
contains a power supply, a printed circuit board (PCB),
and a Micro-Electro-Mechanical-Systems (MEMS) sensor.
The device acquires ground seismic information through the
MEMS sensor, and then wirelessly transmits it to the work-
station after simple processing. The seismic sensor device
uploads data packet every 5milliseconds through the wireless
network, and 1000 data can be collected per second.

The environment selected in this paper is on hard soil,
as shown in Fig. 8(a). As can be seen from Fig. 8(a),
the MEMS sensor is buried underground and the depth is
about 10 cm. Someone on the ground moves within 30 meters
of the seismic sensor device. In order to enable the seismic
sensor device to collect seismic data at different distances,
we adopt the diameter method. The illustration of the data
collecting scene is shown in Fig. 8(b).

FIGURE 7. (a) Instance diagram of the seismic sensor device.
(b) Schematic diagram of circuit design principle.

FIGURE 8. (a) Diagram of the data acquisition environment.
(b) Illustration of data acquisition scene.

The seismic sensor device transmits the collected data to
the workstation in real time. The CPU of the workstation
is an Intel Core i7-5960X. The GPUs are two NVIDIA
GeForce GTX 1080Ti 11GB. The RAM size is 32GB.
We implemented PRNN using Tensorflow 1.2.0 in Ubuntu
14.04 LTS and experimented with the open-source neural
network library written in Python 2.7.13.

B. FEATURE EXTRACTION RESULTS
1) ORIGINAL SIGNALS
The time domain diagram of original signal is shown in Fig. 9.
The signal in Fig. 9(a) is the data acquired without humans,
i.e. the background signal. The signal in Fig. 9(b) is the data
collected in a walking scene, i.e. the walking signal. The
signal in Fig. 9(c) is the data collected in a running scene,
i.e. the running signal.
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FIGURE 9. (a) Time domain diagram of the background signal. (b) Time
domain diagram of the walking signal. (c) Time domain diagram of the
running signal.

From Fig. 9, it can be seen that the background time series
data is a random signal. The time series signals of walking
and running have large vibration amplitudes when the per-
son is close to the seismic sensor device. On the contrary,
the vibration amplitudes are small when the person is away
from the sensor device. From the longitudinal axis of the three
figures in Fig. 9, it can be seen that the vibration amplitude
of the background signal is small overall, while that of the
walking and running signals is generally large. From the time
axis, it can be found that the walking and running signals
have periodicity feature, i.e., peaks occur at intervals. From
the point of view of noise interference, SNR of the walking
and running signals is obviously small when the human target
is far away from the seismic sensor device.

2) PRELIMINARY EXTRACTION OF TIME DOMAIN FEATURE
According to Section II, the frequency band of fast bandpass
filter is [mj, mk ], where mj is less than mk . As can be seen
in Fig. 10(b), rhythm features of the running signal mainly
concentrate in the frequency band from 25 Hz to 50 Hz.
So here the frequency mj is 25 Hz and the frequency mk is
50 Hz.

Fig. 11(a) is the original time series running signal, and
Fig. 11(b) is an enlarged view of the first 3 seconds of the

FIGURE 10. (a) Diagram of the spectrogram of the running signal.
(b) Enlarged view of the red area of (a).

FIGURE 11. (a) Original time series running signal. (b) Enlarged view of
the red area of (a).

signal. Fig. 12(a) is the fast bandpass filtered time series
running signal, and Fig. 12(b) is an enlarged view of the first
3 seconds of the signal. As can be seen from Fig. 11 and
Fig. 12, the rhythm features of the fast bandpass filtered run-
ning signal are very obvious. Meanwhile, the SNR increases
significantly in Fig. 12(b). The peak of the running signal
appears approximately every 0.375 seconds in Fig. 12(b).

3) FURTHER EXTRACTION OF TIME DOMAIN FEATURE
Region width W is 500, and step length l is 400. The peak
region sequence Pu is shown in Fig. 13. The difference in
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FIGURE 12. (a) Fast bandpass filtered time series running signal.
(b) Enlarged view of the red area of (a).

features between the running signal and the background sig-
nal is very obvious.

4) EXTRACTION OF FREQUENCY DOMAIN FEATURE
The frequency domain diagrams of the background, walk-
ing and running signals using Welch algorithm are shown
in Fig. 14.

As can be seen from Fig. 14(a) and Fig. 14(b), the fre-
quency domain features of the background signal and the
walking signal are significantly different. Especially in the
150-350 Hz band, the PSD curve of the walking signal is
relatively smooth.

C. TARGET CLASSIFICATION RESULTS
The PRNN consists of two LSTMs, whose training samples
are different. The training samples for the time domain fea-
ture network are time series data for the background and
running signals. The training samples for the frequency spec-
trum feature network are the frequency spectrum data for
the background and walking signals. When all networks are
training, the training samples are divided into 80% training
set and 20% test set. In order to make the network more
general, the experiment collected the footstep seismic data
of 5 people. In order to effectively test the generalization
ability of the network, only 4 people’s data are used for
training, and 5 people’s data are used for testing.

The sample grouping of the time domain feature network
is shown in Table 2. The human activity data in Table 2 were
collected in the running scene.

From the data in Table 2, the total number of training
samples of the time domain feature networks is 5389, and the
number of test samples is 931. The loss function graph and
the test accuracy graph of the time domain feature network
training are shown in Fig. 15. It can be seen from Fig. 15 that
when the time domain feature network training is iterated

FIGURE 13. Peak value region extraction of the signals at different
moments. (a) The effect diagram of the running signal in 3.8-4.3s. (b) The
effect diagram of the running signal in 4.5-5.0s. (c) The effect diagram of
the background signal in 4.45-4.95s. (d) The effect diagram of the
background signal in 5.76-6.26s.

450 times, both the accuracy and the loss function value
of the test set converge. The accuracy of the test set of
800 training iterations is 98.52%, and the loss function value
is 0.3274.

The sample grouping of the frequency spectrum feature
network is shown in Table 3. The human activity data
in Table 3 were collected in the walking scene.

From the data in Table 3, the total number of training
samples of the frequency spectrum feature network is 9228,
and the number of test samples is 1225. The loss function
graph and the test accuracy graph of the frequency spectrum
feature network training are shown in Fig. 16. It can be
seen from Fig. 16 that when the frequency spectrum feature
network training is iterated 1400 times, both the accuracy and
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TABLE 2. The sample grouping of the time domain feature network.

TABLE 3. The sample grouping of the frequency spectrum feature network.

FIGURE 14. (a) Frequency domain diagram of the background signal.
(b) Frequency domain diagram of the walking signal. (c) Frequency
domain diagram of the running signal.

the loss function value of the test set converge. The accuracy
of the test set of 1800 training iterations is 98.65%, and the
loss function value is 0.3268.

A large number of samples are tested on the two trained
LSTMs. The test accuracy P1 of the time domain feature
network is 98.06%, and the test accuracy P2 of the frequency
spectrum feature network is 98.41%. According to the math-
ematical derivation in Section III, the theoretical accuracy of
the PRNN is not less than 96.47%.

FIGURE 15. Time domain feature network training results. (a) Loss
function graph of training set (blue line) and test set (black dot
drawing line). (b) Test accuracy graph of training set (blue line) and test
set (black dot drawing line).

D. COMPARATIVE EXPERIMENTS
In this paper, two groups of comparative experiments were
conducted. One group is the proposed PRNN target recog-
nition experiment, and the other group is the single LSTM
target recognition experiment. Both groups of experimental
methods use LSTM for target recognition, but the difference
between the network structure and the data set processing
method determines the final different recognition effects.

1) LSTM EXPERIMENTS
Before putting forward the PRNN, we have done a lot of
experiments, trying to train an LSTM. The training samples of
an LSTM contain three types of signals: background, walking
and running. We found that it was difficult to train an LSTM
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TABLE 4. The sample grouping of a LSTM with time series data as training data.

TABLE 5. The sample grouping of a LSTM with frequency spectrum data as training data.

FIGURE 16. Frequency spectrum feature network training results. (a) Loss
function graph of training set (blue line) and test set (black dot drawing
line). (b) Test accuracy graph of training set (blue line) and test set (black
dot drawing line).

with high recognition rate whether the training samples were
time series data or frequency spectrum data. The LSTM
training results of time series data and frequency spectrum
data are given below. The sample grouping of an LSTM with
time series data as training data is shown in Table 4. The
human activity data in Table 4 were collected in walking and
running scenes.

From the data in Table 4, the total number of training sam-
ples of the LSTM (time series data) is 5296, and the number
of test samples is 3979. The loss function graph and the test
accuracy graph of the LSTM training are shown in Fig. 17.
It can be seen from Fig. 17 that when the LSTM training is
iterated 500 times, both the accuracy and the loss function
value of the test set converge. The accuracy of the test set
of 800 training iterations is 93.3%, and the loss function value
is 0.3794.

FIGURE 17. LSTM training results with time series data as training data.
(a) Loss function graph of training set (blue line) and test set (black dot
drawing line). (b) Test accuracy graph of training set (blue line) and test
set (black dot drawing line).

The sample grouping of an LSTMwith frequency spectrum
data as training data is shown in Table 5. The human activity
data in Table 5 were collected in walking and running scenes.

From the data in Table 5, the total number of training
samples of the LSTM (frequency spectrum data) is 11232,
and the number of test samples is 2953. The loss function
graph and the test accuracy graph of the LSTM training are
shown in Fig. 18. It can be seen from Fig. 18 that when the
LSTM training is iterated 100 times, both the accuracy and
the loss function value of the test set converge. The accuracy
of the test set of 800 training iterations is 85.36%, and the loss
function value is 0.4597.

Two trained LSTMs are tested with large samples. The test
accuracy of LSTM (time series data) is 91.68%, and that of
LSTM (frequency spectrum data) is 73.78%.
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TABLE 6. The test sample sources.

FIGURE 18. LSTM training results with frequency spectrum data as
training data. (a) Loss function graph of training set (blue line) and test
set (black dot drawing line). (b) Test accuracy graph of training set (blue
line) and test set (black dot drawing line).

TABLE 7. False alarm rate.

2) COMPARISON OF TEST RESULTS
In order to compare the recognition accuracy of the PRNN
and the two LSTMs, we use the same test sample for detec-
tion. The test sample sources are shown in Table 6. The
human activity data in Table 6 were collected in walking and
running scenes.

The PRNN and the two LSTMs are tested with three test
samples in Table 6. The false alarm rate and omissive report
rate are shown in Table 7 and Table 8, and test accuracy results
are shown in Fig. 19.

As shown in Table 7 and Table 8, the false alarm rate and
the omissive report rate of PRNN are very low. It can be
seen from Fig. 19 that the PRNN has the highest accuracy
in all three tests. The average test accuracy of the PRNN

TABLE 8. Omissive report rate.

FIGURE 19. The tests results of the PRNN and the LSTMs.

obtained by experiments is 98.3%, which obviously satisfies
Eq. (17). Based on the experimental results, the LSTM is
not suitable for target recognition in UGS systems. On the
contrary, the proposed PRNN proves that its high recognition
rate will have an absolute advantage in the application of UGS
systems.

V. CONCLUSION
Accurate recognition of human target is especially important
in UGS systems. The PRNN proposed in this paper has a very
high accuracy of target recognition, low false alarm rate, and
low omissive report rate. The PRNN consists of two LSTMs
with different training samples. The training samples of the
time domain feature network are time series data, and the
training samples of the frequency spectrum feature network
are frequency spectrum data. Meanwhile, the test accuracy of
each network is above 98%. According to Eq. (17), the the-
oretical test accuracy of the PRNN is above 96.47%. This
paper also illustrates the shortcoming of LSTM in the target
recognition of UGS systems. The innovation of PRNN is
to connect one LSTM in parallel with another LSTM and
recognize human target effectively through data fusion. The
PRNN can be applied not only to UGS systems but also to
other pattern recognition systems.
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