
Received July 15, 2019, accepted August 4, 2019, date of publication August 14, 2019, date of current version August 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2935375

Real-Time Order Acceptance and Scheduling
Problems in a Flow Shop Environment
Using Hybrid GA-PSO Algorithm
HUMYUN FUAD RAHMAN1, MUKUND NILAKANTAN JANARDHANAN 2,
AND IZABELA EWA NIELSEN3
1School of Engineering and IT, University of New South Wales, Canberra, ACT 2620, Australia
2Mechanics of Materials Research Group, Department of Engineering, University of Leicester, Leicester LE1 7RH, U.K.
3Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark

Corresponding author: Mukund Nilakantan Janardhanan (mj251@le.ac.uk)

ABSTRACT With the emergence of new Industry 4.0 technologies, real-time order acceptance and schedul-
ing is a key problem in a make-to-order (MTO) production system where customers place orders in real-time
and the decision maker has to make acceptance or rejection decisions based on the available resources at
that point in time. This paper focuses on simultaneously accepting orders and scheduling decisions in real-
time, as is required for the operation of an MTO flow shop production system, a topic that has received
little attention in academia due to the complexity of the problem. This paper presents a hybrid genetic
algorithm and particle swarm optimization algorithm (GA-PSO) to solve the considered problem. A detailed
computational study based on realistic problem instances has been conducted. In this study, the hybrid
GA- and PSO-based approach performed better than other state-of-the-art approaches reported in the
literature.

INDEX TERMS Order acceptance and scheduling, particle swarm optimization, real-time order arrival,
genetic algorithm, flow shop scheduling.

I. INTRODUCTION
The permutation flow shop scheduling problem (PFSP) is
one of the most challenging scheduling problems that arises
in manufacturing industries such as pharmaceuticals, food
processing, steel, automobiles, and semiconductors [1], [2].
In a traditional PFSP, a set of n jobs is scheduled in a set of m
machines, where each job has to follow the same processing
order in all machines. For solving PFSPs, makespan mini-
mization is a common measure of performance. In flow shop
manufacturing systems, the production system can be either
make-to-order (MTO) or make-to-stock (MTS) production
systems [1]. Over the last decade, a huge volume of research
has been reported on PFSPs that considers static situations
where an order (consisting of a set of jobs) is processed by
the set of machines and scheduling is performed only once.
In static single and multiple order PFSPs, the production
managers receive a single order (for single order PFSPs) or a
pool of orders (for multiple orders) at the beginning of

The associate editor coordinating the review of this article and approving
it for publication was Jagdish Chand Bansal.

production, along with a due date which is known in advance.
For static problems, both single and multiple order PFSPs are
expected to be solved only once. Johnson [3] introduced the
idea of the static single order or traditional PFSP, proposing
an optimal algorithm for two and special three machine sin-
gle order PFSPs. Until then single order PFSPs have been
widely studied by researchers. To solve single order PFSPs
with more than two machines, many researchers proposed
detailed algorithms, such as the branch and bound (B&B) [4],
and integer programming [5] algorithms. However, as the
problem is classified as NP Hard [6], these algorithms can
only find optimal solutions for small-sized problems. To solve
bigger-sized PFSPs, researchers have focused on developing
heuristics [7] and meta-heuristic algorithms [8]–[17]. The
next level of complexity of the order acceptance and schedul-
ing problem is static multiple order PFSP, where the manu-
facturers receive a pool of customer orders at the beginning
of production [18]. In this case, arrival time, due date and
composition of each order are known in advance. Static order
acceptance and scheduling problems have been studied for
single and multiple machine environments [18]–[24].

112742 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-8170-2738

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

Although static single and multiple order PFSPs have
been widely studied in the literature, static scheduling prob-
lems have limited real-life applications since new orders
arrive randomly in the system [25] and production capacity
varies with time [26]. With the fourth generation industrial
revolution (Industry 4.0) [27], multiple order PFSPs have
become dynamic and customer oriented, whereby customers
can place their orders with the desired order compositions
(such as product specifications) and due dates into the system
in real-time. In this case, the decision makers have to make
two decisions sequentially. First, they must accept or reject
the order while considering available machine capacity and
the customer-specified due date. Second, the jobs involved in
each new order must be scheduled with the existing accepted
orders, which are either already being processed by the
machines or are waiting in the processing queue. These deci-
sions can be taken more effectively if the jobs are scheduled
properly. Accordingly, the decision maker has to accept a set
of orders that are feasible to complete when taking the pro-
duction capacity available at that point in time into account, in
addition to scheduling and assigning the jobs of the selected
orders to the m machines on the shop floor. Therefore, for
this class of problem, order acceptance decisions have to be
made instantly, i.e. once the order is placed in the system.
The considered problem is practical but more complex than
the reported static PFSPs (static single order PFSPs and static
multiple order PFSPs). To the best of the authors’ knowledge,
very few studies have been reported on real-time multiple
order PFSPs, and the reported ones oversimplify the problem
and are very challenging to implement in real-world MTO
environments.

Due to these limited assumptions, there is a significant
gap between theoretical flow shop scheduling research and
practical manufacturing environments. This gap provides an
opportunity to exploit the potential of advanced MTO flow
shop environments arising due to the application of advanced
manufacturing technology such as Industry 4.0 elements by
developing novel scheduling algorithms for finding effective
solutions for real-time multiple order PFSPs. In multiple
order PFSPs, individual orders can be considered as a single
order PFSP, but with no prior information about the order’s
arrival time, due date and composition of the order. Due to the
high level of complexity, classical optimization techniques
are not suitable for solving the problem under study. There-
fore, it is essential to develop an efficient search technique to
achieve a fast and feasible solution in near real-time. Meta-
heuristic algorithms have a good track record of solving
complex combinatorial optimization problems similar to the
scheduling problem under study. To solve this problem, this
paper proposes a hybrid approach by integrating a genetic
algorithm (GA) and particle swarm optimization (PSO),
referred to hereafter as a GA-PSO-based real-time strategy
for solving real-time multiple order PFSPs. The objective of
the problem is to maximize the number of accepted orders.
Researchers have been proposing hybrid algorithms for the
last few years [28], and they are gaining popularity because

of their ability to combine the strengths of different methods
under a common scheme. By hybridizing two metaheuristics,
the resulting algorithm reduces each individual metaheuristic
algorithm’s weaknesses and improves overall performance
for several complex optimization problems [29], [30], similar
to the problem under study. Despite of its real-industrial
applications, these problems are hardly studied and reported
in the literature. To the authors’ best knowledge, real-time
multiple order problem was first studied Rahman, et al. [31].
They proposed a GA based real-time approach for solving
the problem. As real-time multiple-order PFSP is a complex
scheduling problem, there is still room for improvement to
find better schedules for a newly arrived order and therefore,
increase the chance of its acceptance. Motivated by this fact,
major contribution of this present study is to propose and
test hybrid GA-PSO based approach for solving the real-
time multiple order PFSPs. By hybridizing GA and PSO,
better solutions are obtained than those obtained using indi-
vidual algorithms (e.g. only GA or only PSO based approach)
in short computational time which is critical in real time
scheduling. For comparison, PSO based approach is also
developed. Based on the experimental results it can be seen
that the proposed hybrid GA-PSO-based real-time approach
show superior performancewhen compared to the PSO-based
real-time approach and the state-of-the-art approach reported
in Rahman, et al. [31] based on the same set of problem
instances generated in [31]. Finally, performance of the pro-
posed approaches has been evaluated based on a real-world
sanitaryware production system [31]. The proposed approach
will be advantageous for real time decision making that can
help production managers to ensure profitability and provide
higher customer satisfaction.

The remainder of the paper is organized as follows: the
relevant literature is discussed in Section II, and Section III
formally defines the problem under study. The proposed algo-
rithms for solving real-time multiple PFSPs are described in
Section IV. An experimental analysis and an assessment of
the effectiveness of the proposed approaches are presented in
Section V. Finally, Section VI presents the conclusion of this
study and possible future research directions.

II. LITERATURE REVIEW
In MTO systems, production managers have to manage
order acceptance and scheduling decisions for a single
order or stream of orders that dynamically enter either a
single or multiple machine production system [18]. This
section provides a brief literature review about dynamic
order acceptance and scheduling problems in both single
and multiple machine environments. Dynamic order accep-
tance and scheduling problems in single [32] and multi-
machine [31], [33]–[37] environments produce practical and
realistic solutions; however, it is significantly more compli-
cated than static order acceptance and scheduling problems.

The considered problem in this paper is similar to dynamic
order acceptance and scheduling problems [32]. The relation-
ships between four different order-acceptance strategies are

VOLUME 7, 2019 112743

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

reported: 1) accepting orders based on workload estimation,
2) order selection based on aggregated load profile, 3) order
acceptance based on the effect of tardiness of previous
accepted orders, and 4) order selection based on the current
state of the production schedule to maximize the utilization.
Of the three order selection strategies, using available infor-
mation on the current state of production is widely considered
to be superior to the other two approaches. Duenyas and
Hopp [33] considered stochastic order arrival and extended
the problem for a job shop environment with customer toler-
ance limits based on order acceptance or rejection policies
to maximize expected profit. Duenyas [34] extended this
study by consideringmultiple customer classes and customer-
quoted due dates. For multiple machine environments,
Nandi and Rogers [35] proposed a simulation-based order
acceptance and scheduling strategy. To solve this problem,
they set profit maximization as the objective and considered
two different types of customer order (regular and urgent).
Later, they proposed another approach based on a simulation
tool [36], which considered the resources required to process
the order and its load on the busiest machine. They also pro-
posed a priority rules (earliest due date, minimum slack per
operation, and first come, first served) -based approach for
scheduling the orders in the system. Moreira and Alves [37]
used simulations to minimize lateness penalties and improve
workload performance in a job shop environment. They also
utilized priority rules to schedule the orders. Tang et al. [38]
studied a dynamic order acceptance and scheduling problem,
considering the minimization of average flow time, number
of tardy jobs, and tardiness as their objectives. To solve
the problem, they developed a neural network approach that
integrates six priority rules. For real-time multiple order
PFSPs the only study available in the literature is presented
in [31]. They propose an order acceptance heuristic and GA-
based real-time strategy to solve the problem. Since real-
time multiple order PFSPs are classified as NP Hard, there
is scope to improve order acceptance and scheduling deci-
sions in real-time multiple order PFSPs. Another approach
is proposed by .Eriksen and Nielsen [39], who investigated
the number of incoming customer order requests that need
to be aggregated in order to establish a stable inflow of
orders.

From the above mentioned literature review, it can be
summarized that order acceptance and scheduling problems
have been studied with some restrictive assumptions, which
are: (1) as with typical order acceptance and scheduling prob-
lems, most of the studies, when formulating their problems,
considered static conditions, such as order arrival, due date,
and composition, to be known. However, in practice, orders
enter the systems in a dynamic fashion; (2) most of the
studies considered order acceptance/rejection decisions and
scheduling separately and sequentially; (3) most of the stud-
ies of dynamic order acceptance and scheduling considered
small-sized problems (with a small number of machines);
and (4) when scheduling complex orders, most of the stud-
ies considered only simple priority rule-based approaches.

These assumptions isolates the above mentioned studies from
real-life manufacturing scenarios. Hence, this paper aims to
derive an approach for solving real-time PFSPs in an efficient
manner, which is more realistic and relevant.

Over the last few years bio-inspired optimization tech-
niques have become popular in solving wide range of solving
real world complex decision making problems [40]. Like
other optimization domains, there has been a growing liter-
ature in the field of bio-inspired techniques for solving dif-
ferent types of scheduling problems, e.g. job shop [41], flow
shop [1], single machine [42], assembly line production [43],
resource constrained project scheduling [44].

Among these scheduling problems, real-time or dynamic
scheduling problem is more challenging than the static
scheduling. Since real-time events may cause a change
in scheduling, the initial feasible and good schedule may
turn into infeasible after uncertain event occurs [45]. Hence,
real-time scheduling problem is a complex decision-making
process considering two factors: (1) difficulty in finding
an optimal or near-optimal solution for the problems and
(2) finding that solution within reasonable amount of time
due to real-time decision process. Considering these fac-
tors, bio-inspired algorithms are excellent choice for solving
such problems, as they can meet these criteria. Furthermore,
these algorithms are easy to implement. A good number
of research studies have been published on solving real-
time scheduling problems by efficient bio-inspired optimiza-
tion techniques. For example, Rossi and Dini [46] proposed
a genetic algorithm based approach for solving job shop
scheduling problem (JSSP) considering the following real-
time events: dynamic batch arrival, unavailability of parts in
production floor, and machine breakdowns. Souier, et al. [47]
proposed sixmetaheuristic-based optimization techniques for
solving the real-time alternative route selection problem in
flexible manufacturing environment with the objective of
reduction of the congestion in the system. Among them three
meta-heuristic techniques are bio-inspired algorithms. The
study was extended by [48] by considering uncertainty in the
problem and the authors proposed a genetic algorithm based
approach for solving the problem. Tang, et al. [49] proposed
an improved differential evolution algorithm for solving
dynamic or real-time scheduling in steelmaking-continuous
casting production problems. Similarly, Lu, et al. [50] pro-
posed a grey wolf optimizer for solving dynamic or real-
time scheduling problems in a real-world welding industry.
Sama, et al. [51] proposed an ant colony-based approach for
solving real-time train scheduling and routing problems in
a railway network. Based on our preliminary research and
the literature review, it can be seen that researchers have
focused on developing and utilizing bio-inspired optimiza-
tion techniques for solving real-time complex scheduling
problems from different real-life environments (e.g. manufac-
turing and transportation), which motivate us to propose effi-
cient GA-PSO (bio-inspired optimization technique) based
approach for solving real-time multiple order permutation
flow shop scheduling problem.

112744 VOLUME 7, 2019

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

III. PROBLEM DEFINITION AND ASSUMPTIONS
This section briefly describes the formulation of real-time
multiple order PFSPs similar to the one reported in [31]. Due
to dynamic or real-time behavior of the problem, this problem
is the more complex than the single order or static multi-
ple order PFSPs. The problem is defined as the ‘real-time
scheduling problem’ since in the shop floor environment,
customers place orders in the system in real-time and deci-
sion makers do not have prior information about the orders
(e.g. arrival time, number of jobs per order, and due date).
While scheduling and processing orders on the production
floor, the decision makers requires to make order acceptance
and scheduling decisions for newly arrived orders. The fol-
lowingmeasures of performance and constraints of a multiple
order PFSP are described as follows.
j− index of a machine from flow shop
m− total number of machines on the production floor
g− the index of an order
i− the index of a job from the order g
G− total number of customer orders arriving during a

single production shift
pgij− processing time of ith job from order g in jth machine
Sgj − start time of the first job from order g in jth machine
Fgj − completion time of the last job from order g in jth

machine
Cg
max− makespan of order g

Cg
com− completion time of order g

dg− delivery time or due date of order g
The completion time for each order can be expressed as:

Cg
com = Sgj + C

g
max for g = 1, 2G (1)

Maximum completion time or makespan, Cg
max (equivalent to

makespan of a static single order PFSP), of an order g is the
time difference between the start time of the first job at the
first machine and the end time of the last job from the same
order.

At the beginning of production, completion time of the first
accepted order is equal to its makespan, since all machines are
available to process the job:

Cg=1
com = Cg=1

max (2)

The start time of the first job from the first accepted order in
the first machine is 0.

where, Sg=1j=1 = 0 (3)

Tardiness (lateness) of an order is

Tg = Cg
com − dg for g = 1, 2,G and dg ≥ 0 (4)

The objective function of the real-timemultiple order PFSP
is to maximize the total number of accepted orders (TAO) in
the production shift. This function is presented in Equation 5.

TAO =
∑G

g=1
Ag (5)

where,

Ag =

{
Ag, Tg ≤ 0 order is accepted ï£¡
0, order is rejected

(6)

In formulating the real-time multiple order PFSPs the follow-
ing assumptions are held.
• Order composition (e.g. number of jobs per order and
processing time), arrival times, and due dates are not
known in advance.

• The manufacturer rejects the order if it is tardy (late).
• Throughout production, the production process is unin-
terrupted.

• Setup and transportation times are included in the
processing time.

• If an order is accepted, it cannot be rejected.

FIGURE 1. A framework for multiple order PFSPs.

IV. SOLUTION APPROACH
This section presents the proposed GA-PSO-based real-time
strategy for solving multiple order PFSPs. A framework of
the proposed real-time multiple order PFSP is presented
in Figure 1. Based on Figure 1, first the order accep-
tance and rejection approach is presented. Following this,
a description of the procedure of implementing GA and PSO
algorithm for the hybrid GA-PSO algorithm for solving real-
time multiple order PFSPs is described. The idea behind
hybridizing GA-PSO is to combine the advantages of both
of these algorithms and simultaneously overcome their disad-
vantages [52]. By combining the genetic algorithm operation
and PSO operations, exploration and exploitation ability are
further improved [29].

A. ORDER ACCEPTANCE AND REJECTION DECISIONS
The decision to accept or reject an order is made when
the order enters the system. The decision depends on the

VOLUME 7, 2019 112745

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

arrival time of the order, the availability of machines in the
shops at that time, and the due date. It is to be noted that
here machine availability means whether the machines are
busy or unavailable for certain periods of time due to process-
ing previously accepted orders. An order is accepted only if it
can be completed before its due date. Therefore, to calculate
the completion time of an order, a hypothetical schedule is
generated based on machine availability or unavailability.
In this study, order acceptance and rejection decisions are
based on the order acceptance/rejection heuristic described
in [31]. The schedule or completion time is calculated based
on a metaheuristic algorithm which is presented in the next
section.

B. SCHEDULING DECISIONS
Once an order is placed by a customer, a hypothetical sched-
ule of that order is generated, considering machine avail-
ability/unavailability constraints at that point in time and the
orders currently under process. On the basis of that hypo-
thetical schedule, an order acceptance or rejection decision
is made, if jobs of that order can be completed within its due
date. Otherwise, the order is rejected. Therefore, generating
an effective schedule within a reasonable time is critical in
order acceptance/rejection decisions.

When an order is registered in the production system,
a hypothetical schedule of that order is generated, since
there is a likelihood that it cannot be processed immediately
due to machine availability constraints. However, if the first
machine is free when the job arrives, the job can be imme-
diately processed into the first machine without violating the
machine availability constraints, and without interrupting the
other accepted orders which are already being processed by
othermachines. If the first machine or the followingmachines
are not immediately free, then the orders need to wait in a
queue for processing until the next machine is free. Schedul-
ing the jobs of each order while considering the current state
of availability at that time may reduce the completion time
of each order and therefore increase the possibility of its
acceptance. Therefore, on basis of that hypothetical sched-
ule, an order acceptance or rejection decision is made on
basis of local view of whether all jobs of that order can
be completed within its due date or not. This approach is
called real-time strategy for multiple order PFSPs. A simple
example of 3 machine flow shop and 2 orders (e.g. order X
and order Y), with Gantt charts in Figure 2 illustrates the
overall process. Each of the order contains 5 jobs. In Figure 2,
the top Gantt chart represents the order X . This order has
the static single order makespan (and completion time) is
30 and the sequence: 2-5-3-4-1. The order X is accepted
since it has the due date of 48 units of time (> completion
time, 30). Assume that order Y arrives in the production
floor after 15 units of time from the start of processing the
order X . Hence, the order Y arrives in the system while order
X is in process. The due date for order Y is 57. The second
Gantt chart of Figure 2 shows that the static single order
makespan for order Y is also 30 and sequence: 2-5-3-4-1.

FIGURE 2. Real-time strategy for real-time multiple order PFSP.

In the worst-case scenario, order Y starts to process its first
job just after finishing the last job of order X . It gives the
completion time of order Y is 60 (= 30+30). The third Gantt
chart shows the worst-case scenario. This scenario refers
to the upper bound of the problem and it will be referred
later. Now if the order Y starts to process as soon as the
first machine completes order X and schedule the jobs of
order Y while taking into consideration of availability of
some machines for only certain time windows. For conve-
nience of understanding, this approach is referred as Real-
time approach for solving real-time multiple order PFSP. It is
important to note that static single order schedule is generated
assuming all machines are available at any time. Hence,
the new schedule generated by real-time strategy varies from
the static single order schedule. As shown in the last Gantt

112746 VOLUME 7, 2019

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

chart of Figure 2, after applying the real-time strategy, the job
sequence for order Y is 5-1-4-3-2, which is different from its
static schedule. The completion time is 55 and it can also be
accepted (<due date 57).

In this study a GA-PSO based real-time approach is pro-
posed for solving multiple order PFSPs. The motivation
for selecting GA and PSO algorithms for making critical
scheduling decisions is to use the strength of both algorithms,
since they have been developed with the aim of carrying
out a global search with two main purposes: solving large
problems in a reasonable time and obtaining robust algo-
rithms. However, both the algorithms have strengths and
weaknesses. In GA, if an individual is not selected from
the information contained, that individual is lost, but PSOs
keep this information in memory. On the other hand, PSOs
waste computation time on poor individuals since they do
not have a selection operator. By hybridizing GA and PSO
one can combine the advantages of these algorithms, capable
of reaching a global region (for GA) and group interaction
boost in the search for optimum solutions (for PSO). In the
following section, the proposed GA and PSO algorithms for
the hybridized GA-PSO algorithm for solving multiple order
PFSPs are presented.

C. GENETIC ALGORITHM
GA is a popular bio-inspired metaheuristic algorithm for
finding optimal or near optimal solutions for complex combi-
natorial optimization problems [41], [53], [54]. The structure
of GAs for solving multiple order PFSPs is described in
this section. For solving different types of PFSPs, permu-
tation representation of job sequences is widely accepted;
a non-random initialization is proposed where the first
member/individual of the initial generation starts with an
NEH heuristic [7]. A certain percentage of members in the
population is generated either by the random swapping of two
jobs or by randomly inserting a job into a randomly selected
position. Finally, the remaining members are generated ran-
domly. A tournament selection technique [53] is applied to
select parents to go through the crossover process to generate
new offspring.

To maintain both quality and diversity in each generation,
a new generational scheme is proposed whereby each popu-
lation contains two sets of population – one set is the 80%
of the population with high-quality solutions and remaining
20% is the diversified solutions. No duplication is allowed.
Here, duplication refers to individuals with the same job
sequence. Next, each of the oth offspring will replace the
existing member of the population in the same oth position
only if it is more diversified than the (o -1)th member in the
population. Exact position-based diversity measures [55] are
applied for obtaining diversity. To avoid this situation a restart
mechanism [11], [14], [15] is applied, where if the algorithm
is unable to find better solutions after a certain number of
generations, all individuals are sorted into three segments: the
top 5% (the best individuals), the next best 45% (of medium
quality), and the remaining 50% (the worst individuals).

We apply an elitism strategy to preserve the best individuals
from the current generation and transfer them to the next gen-
eration. In this algorithm, block order crossover (SBOX) [14]
and shift mutations [11], [14], [56] have been selected as the
reproduction operators as they generate promising candidate
solutions. In SBOX, both parents’ job sequence positions are
checked one by one. Finally, to enhance the performance
of the proposed algorithm, an insertion neighborhood-based
[10], [14], [57] local search approach has been incorporated
into the algorithm to enhance its performance.

D. PARTICLE SWARM OPTIMIZATION ALGORITHM
Particle Swarm Optimization (PSO) is a well-known meta-
heuristic algorithm which is based on the social behavior
of flocks of birds or schools of fish [58]–[60]. PSO consists
of a number of particles (a swarm) which represents a job
sequence in the considered problem, where these particles
move around in the search space and evolve, continuously try-
ing to find a good feasible solution. Each particle is assigned
with a velocity and moves around in the search space based
on this velocity. Each particle keeps track of the best fitness
they encounter, referred to as local best, and this information
is passed between particles in order to determine the global
best in the swarm. PSO is initiated with a set of solutions,
referred to as a swarm, and each of the solutions is called
a particle. The population of a PSO evolves with velocity
and position updates, as shown in Equations 7 and 8. The
algorithm terminates once the stopping conditions are met.
The structure of a PSO for solving multiple order PFSPs is
described below:

Pt+1i = Pti + v
t+1
i (7)

vt+1i = c1vti + c2U1
(ePti − Pti)+ c3U2

(
Gt − Pti

)
(8)

where U1 and U2 are the velocity coefficients (random num-
bers between 0 and 1), vti is the initial velocity,

ePti is the local
best, Gt is the global best, Pti is the current particle position,
and c1,c2 and c3 are the learning coefficients. ePti refers to the
best position of the ith particle at generation ‘t’. Gt refers to
the best position of all particles at generation ‘t’.

1) POPULATION INITIALIZATION
To enhance the performance of PSO, it is essential to have a
good set of initial particles, all of which are generated ran-
domly. However in this study, we adopt a procedure similar
to the one utilized in the population generation of GA. This is
done to improve the quality of the solutions obtained during
the search process. In this study, the number of particles is
equal to the population in GA. In the initial population of the
PSO, the solutions generated by the GA are copied directly
to the PSO.

2) VELOCITY UPDATE
By using the velocity vector the position of each particle
is updated towards the good solution. Local best (personal
best) and global best (best solution among the population)

VOLUME 7, 2019 112747

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

are used to find better solutions using Equation 8. In the first
iteration, each particle is randomly assigned with a velocity
pair based on the size of the problem considered, where
the velocity pair represents the position of the tasks in the
sequence or particles and it is referred to as transposition.
In this study, velocity pairs are randomly generated based on
the utilized concept [61].

FIGURE 3. Flowchart of the proposed GA-PSO algorithm.

E. HYBRID GA-PSO ALGORITHM
In this section, the developed hybridized GA-PSO algo-
rithm is described and a flowchart is presented in Figure 3.
The balance between exploration and exploitation is further
improved by combining GA with PSO algorithms. The idea
of combining these two algorithms is to combine the social
thinking ability of PSO with the global search ability of
GA. The procedure starts by generating the initial population
followed by the execution of genetic algorithm operations
such as selection, crossover and mutation. A local search is
also embedded to enhance the performance of the GA algo-
rithm. The procedure is repeated for a certain set number of
iterations, which is considered as one of the parameters dur-
ing the experimentation process. The population is obtained
after performing the GA operations after a set of iterations.

The PSO algorithm starts with the generated population and
randomly generates velocity for these populations, referred
to as swarms. Using the velocity and position to update
Equations 7 and 8, a new set of particles (swarm) is generated
with a new velocity and a local search procedure is also
embedded to improve the performance. This procedure keeps
on repeating for a certain number of iterations and the best
solution is obtained based on its fitness value in relation to
the considered problem. The procedures for GA and PSO
mentioned in Sections 4.3 and 4.4 are used for the proposed
hybrid GA-PSO algorithm.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, experimental results conducted for a multi-
ple order PFSP with the proposed approaches are presented
and analyzed. All the algorithms were implemented in C++
using a personal computer with an Intel core i7 processor
(2.70 GHz) and 16 GB RAM, and Windows 7 OS. In the
following section, a sensitivity analysis and obtained com-
putational results are presented.

TABLE 1. Combinations of parameter values for experimental study.

A. SENSITIVITY ANALYSIS
The performance of the proposed approaches is sensitive to
their parameter settings. In this paper, parameters are cali-
brated based on Taguchi’s method of experiment design [62]
to achieve good solutions within reasonable computational
times. Following the preliminary experiments, the parameters
listed in Table 1 were considered for experimental study.
Since there are 9 parameters and each of the parameters has
3 levels, we employ the orthogonal array L27(93). The total
number of treatments was set to 27 and for each combina-
tion algorithms are executed 5 times independently and the
stopping criterion for each run is set as a function of the
number of machines, m, and the number of jobs per order,
n, as: m × n× 100 milliseconds. To test the parameters,
all instances {20 × 10, 50 × 10, 100 × 10, 200 × 10}
from Taillard’s benchmark [57] were chosen. The reason for
performing this parameter testing in the benchmark for single
order PFSP [57] is that the schedule generated by GA-PSO
helps to reduce the makespan (or completion time) of an
order. As a result, the shop floor may require less time to

112748 VOLUME 7, 2019

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

TABLE 2. Response value and significance rank for PSO.

complete an order. If this increases, there is the possibility
to accept more customer orders in real-time multiple-order
PFSPs. For the PSO algorithm, 5 parameters are considered
with 3 levels for each, and an L27 orthogonal arraywas used to
tune the parameters of the PSO algorithm. Each treatment was
run 5 times. To evaluate the performance of the GA-PSO and
PSO algorithms in each run, an average relative performance
of deviation (ARPD) is used and is expressed as follows:

ARPD =
1
5

∑5

r=1
(
f ri − fbest
fbest

× 100) (9)

where f ri denotes the makespan obtained by an algorithm
i in its r th run and fbest indicates the best makespan value
available in the literature. ARPD values for each treatment
are omitted due to space constraints. However, ARPD values
are available on request andwill be uploaded to ResearchGate
for the reader’s benefit. Based on ARPD values, the response
value and significance rank of each parameter for each level
are presented in Tables 2 and 3. These tables also show delta
values of each parameter, which is the difference between the
highest and lowest average response values for each factor.
For example, in Table 2, c2 has the delta value of 0.0390
(=0.7779 − 0.7390). It is important to note that a parameter
is more significant that the other if it has higher delta value.
For example, based on the delta value, from Table 3, it can
be concluded that the tournament size parameter is the most
significant parameter while the restart interval is the least
significant parameter for the GA-PSO algorithm. For the PSO
algorithm, c2 (learning coefficient for local best) is the most
significant parameter and the number of particles is the least
significant parameter. Finally, each parameter is set to the
level which gives the minimum response value. For example,
from Table 3, it is clear that the population size for GA-PSO
algorithm is set to 40 (or level 2) since it has the minimum
response values among all response values for the population
size. Based on Taguchi analysis the following parameters for
GA-PSO were selected for solving the considered problem:
Tournament size = 5, Crossover rate = 0.6, Mutation rate =
0.15, c2 = 3, c3 = 3, Interval between GA and PSO = 60,
Restart interval= 15, Probability of local search= 11%, and
Population size (number of individuals or particles)= 40. For
the PSO algorithm the following parameters were selected:
c2 =2, c3 = 3, Restart interval = 15, Probability of local
search = 9%, and Number of particles = 40.

B. COMPUTATIONAL RESULTS AND STATISTICAL ANALYSIS
Based on the size of an order (i.e. number of jobs) an
algorithm (PSO and GA-PSO) was allowed to run for same
amount of time. In order to ensure fair comparison, the fol-
lowing requirements need to be met: (1) implementation in
the same programming language, (2) same termination crite-
ria, and (3) same computational power. Thus, all algorithms
were coded in C++. To address points 2 and 3, the GA-PSO-
based RT and PSO-based RT algorithms were allowed to run
on converted CPU times, while considering the same CPU
architecture presented in [31]. The CPU time was converted
using Equation 10 [63]. It is to be noted that as mentioned
in the introduction and literature review sections, real-time
multiple is a complex scheduling problem with may need
large CPU time to achieve good schedules. On the other
hand, decision makers need to make a decision in real-time.
To address this challenge, the CPU times are scaled based on
the size of the problem, i.e. number of jobs per order and it
is negligible with respect to time window between an order
arrival and its delivery time. Recall that our proposed PSO
based real-time strategy and GA-PSO based real-time strat-
egy were implemented in Intel Core i7, 2.70 GHz processor.
Since the state-of-the-art method reported in [31] were the
implemented in Intel Core i7, 2.80 GHz processor, the given
CPU time is the 2.80GHz. The converted CPU times for each
order is available in Table 9 (Appendix).

Converted CPU time (sec)

=
2.7 GHz

given CPU speed (GHz)
x given CPU time (sec) (10)

In the experimental study, scenarios I, II, and III from [31]
were considered. To compare the proposed techniques against
the state-of-the-art methods [31], 46 test instances reported
in [31] (40 problem instances for scenario I, 4 instances for
scenario II and 2 instances for scenario III) and the same
upper bound (UB) (the worst case) and lower bound (LB) (the
best case) for the accepted orders as derived in [31] were used.
Simulation results for scenario I (identical orders arrive),
where each order contains 50 jobs (as in problem instance
Ta056), are presented in Table 4. From Table 4 it can been
seen that a total of 10 orders arrived in the production shift
at different points in production, and they all had customer-
specified due dates. The first column shows the order number,
the following columns show the arrival time and due date of
each order, which were generated randomly [31]. The fourth
column shows the completion time of each order i.e. time
taken to complete all jobs in an order in all machines. The
column headed ‘tardiness’ shows the tardiness or earliness of
each order. If the tardiness value of an order is positive, then
the order can be completed before it is accepted for process-
ing. Otherwise, the order is tardy and is rejected. Considering
both the completion time of each order and the number of
accepted orders, the proposed PSO based RT strategy per-
forms better than the GA-based RS strategy [31], as the PSO
based strategy allows 9 orders to be accepted. However, it was
outperformed by the GA based [31] RT. On the other hand,

VOLUME 7, 2019 112749

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

TABLE 3. Response value and significance rank for GA-PSO.

TABLE 4. Comparison between algorithms for Scenario I.

like the RT strategy [31], the proposed GA-PSO based RT
strategy allowed all 10 orders that arrived on the production
floor to be accepted, and enhanced the completion time of 9
orders. Computational results for scenario II and scenario III
are presented in Table 10 and Table 11 (Appendix).

In order to evaluate the overall performance of PSO-
based RT and GA-PSO-based RT against the state-of-the-art
method reported in [31], the average deviations from the UB
and LB were calculated for each method. The effectiveness
of each method (RS or RT) can be represented by Equa-
tions 11 and 12:
Average deviation from the LB,

DL = [
∑Ns

i=1
(
ri− LBi
LBi

)]/nS (11)

Average deviation from the UB,

DU = [
∑Ns

i=1
(
UBi− ri

ri
)]/nS (12)

where ri is the makespan of the ith accepted order achieved
by a particular technique. As the number of accepted orders
may vary for both strategies, nS is the total number of orders
accepted by a technique.

A summary of the comparison between RS, RT obtained
in [31] and the proposed PSO and GA-PSO based RT is
presented in Table 5, where the same type of order arrives
into the production system randomly. The first column in
the Table shows the number of jobs for each order. The
following column represents the average improvement from
the worst-case scenario (i.e. deviation from the UB) for the
10 different problem instances [31] after applying each tech-
nique. The greater the value of DU , the better the solution.
The next column, DL , presents the deviation from the LB,
i.e. whether the orders overlapped and how effectively they
could be scheduled into the available machines. From the
results of DU and DL , it can be seen that PSO-based RT
performs better than RS [31] only. However, from the results

112750 VOLUME 7, 2019

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

TABLE 5. Same order.

TABLE 6. Mixed order with identical order sizes.

TABLE 7. Mixed order with different order sizes.

TABLE 8. Comparisons between RS and RTs for practical production problems.

it is clear that the GA-PSO-based RT approach performs
better than the others (smaller values for DL and bigger
values for DU). The last four columns present the total num-
ber of orders accepted by the RS and RT techniques. For
each of the problem instances, 10 orders were considered,
where orders have different inter-arrival times and due dates.

The GA-PSO-based RT strategy succeeded in accepting the
most orders of any strategy. A comparison between the RS
and RT techniques for mixed orders with the same-sized
orders (scenario II) and different sized orders (scenario III)
is presented in Tables 6 and 7 respectively. For scenar-
ios II and III, 25 orders with different due dates arrived

VOLUME 7, 2019 112751

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

TABLE 9. Time requirements.

TABLE 10. Comparison between algorithms in Scenario II.

randomly during a production shift. Table 7 compares the
proposed and existing methods with regard to two indepen-
dent problem instances, namely case 1 and case 2. From
Tables 6 and 7, it can be seen that the proposed GA-PSO-
based RT strategy outperforms the other methods.

C. REAL-WORLD CASE STUDY
This section presents a comparison of the proposed
approaches based on practical data available from a sanitary
ware-manufacturing industry located in Bangladesh. Rele-
vant production data on inter-arrival times, due dates and
costs is available in [31] and the computational results are
presented in Table 8. The company can earn an income by
accepting and completing an order on or before its due date.
The company can also earn bonuses by producing the order

before its due date, i.e. an earliness bonus. However, if the
order is rejected then a fixed opportunity cost is imposed.
From the production scenario, it can be seen that 10 orders
entered the production system within a short span of time.

VI. CONCLUSION
Real-time order acceptance and scheduling problems are
an important problem in a modern manufacturing system
scenario. This study aims to develop new meta-heuristic-
based strategies to optimize the number of orders accepted
that arrive in real-time in flow shop environments. Hence,
this paper proposes a hybrid GA-PSO algorithm-based RT
strategy for solving real-time multiple order PFSPs. The
parameters of each algorithm are calibrated using Taguchi
methods. The proposed approaches were compared with

112752 VOLUME 7, 2019

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

TABLE 11. Comparison between algorithms in Scenario III.

current state-of-the-art approaches. The computational
results based on realistic problem instances show that
the hybridization of GA with PSO is advantageous, since
GA-PSO-based RT shows superiority in terms of solution
quality and computational time. Two key advantages of
this strategy over the existing methodologies are the better
customer satisfaction gained by accepting a greater number
of orders and better production capacity utilization thanks to
an effective approach that is suitable for practical decision-
making on a real-time basis. This study opens up sev-
eral future research avenues for studying and investigating
different hybrid algorithms for solving different realistic
make-to-order production problems. Other realistic settings
could consider process interruptions, energy consumption,
sequence-dependent setups, buffer size constraints, and short-
ages in material supplies. The proposed algorithms can be
used to solve these problems in the future.

APPENDIX
See Tables 9–11.

REFERENCES
[1] H. F. Rahman, R. Sarker, and D. Essam, ‘‘A genetic algorithm for per-

mutation flow shop scheduling under make to stock production system,’’
Comput. Ind. Eng., vol. 90, pp. 12–24, Dec. 2015.

[2] H. F. Rahman, R. Sarker, and D. Essam, ‘‘A genetic algorithm for per-
mutation flowshop scheduling under practical make-to-order production
system,’’ AI EDAM, vol. 31, no. 1, pp. 87–103, Feb. 2017.

[3] S. M. Johnson, ‘‘Optimal two-and three-stage production schedules with
setup times included,’’ Naval Res. Logistics, vol. 1, no. 1, pp. 61–68,
Mar. 1954.

[4] E. Ignall and L. Schrage, ‘‘Application of the branch and bound technique
to some flow-shop scheduling problems,’’ Oper. Res., vol. 13, no. 3,
pp. 400–412, Jun. 1965.

[5] W. J. Selen and D. D. Hott, ‘‘A mixed-integer goal-programming formu-
lation of the standard flow-shop scheduling problem,’’ J. Oper. Res. Soc.,
vol. 37, no. 12, pp. 1121–1128, Dec. 1986.

[6] M. R. Garey, D. S. Johnson, and R. Sethi, ‘‘The complexity of flowshop
and jobshop scheduling,’’ Math. Oper. Res., vol. 1, no. 2, pp. 117–129,
May 1976.

[7] M. Nawaz, E. E. Enscore, and I. Ham, ‘‘A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,’’ Omega, vol. 11, no. 1,
pp. 91–95, 1983. doi: 10.1016/0305-0483(83)90088-9.

[8] J. Grabowski and M. Wodecki, ‘‘A very fast tabu search algorithm for
the permutation flow shop problem with makespan criterion,’’ Comput.
Oper. Res., vol. 31, no. 11, pp. 1891–1909, Sep. 2004. doi: 10.1016/S0305-
0548(03)00145-X.

[9] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, and G. Gencyilmaz,
‘‘A particle swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem,’’ Eur. J.
Oper. Res., vol. 177, no. 3, pp. 1930–1947, 2007.

[10] I. H. Osman and C. N. Potts, ‘‘Simulated annealing for permuta-
tion flow-shop scheduling,’’ Omega, vol. 17, no. 6, pp. 551–557, 1989.
doi: 10.1016/0305-0483(89)90059-5.

VOLUME 7, 2019 112753

http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/S0305-0548(03)00145-X
http://dx.doi.org/10.1016/S0305-0548(03)00145-X
http://dx.doi.org/10.1016/0305-0483(89)90059-5

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

[11] G. I. Zobolas, C. D. Tarantilis, and G. Ioannou, ‘‘Minimizing makespan in
permutation flow shop scheduling problems using a hybrid metaheuristic
algorithm,’’ (in English), Comput Oper Res, vol. 36, no. 4, pp. 1249–1267,
Apr. 2009. doi: 10.1016/j.cor.2008.01.007.

[12] C. Rajendran and H. Ziegler, ‘‘Ant-colony algorithms for permu-
tation flowshop scheduling to minimize makespan/total flowtime of
jobs,’’ Eur. J. Oper. Res., vol. 155, no. 2, pp. 426–438, Jun. 2004.
doi: 10.1016/S0377-2217(02)00908-6.

[13] R. Ruiz and C.Maroto, ‘‘A comprehensive review and evaluation of permu-
tation flowshop heuristics,’’Eur. J. Oper. Res., vol. 165, no. 2, pp. 479–494,
Sep. 2005.

[14] R. Ruiz, C. Maroto, and J. Alcaraz, ‘‘Two new robust genetic algo-
rithms for the flowshop scheduling problem,’’ Omega, vol. 34, no. 5,
pp. 461–476, 2006.

[15] H. F. Rahman, R. A. Sarker, and D. L. Essam, ‘‘A memetic algorithm for
permutation flow shop problems,’’ in Proc. IEEE Congr. Evol. Comput.
(CEC), Jun. 2013, pp. 1618–1625.

[16] P. Dasgupta and S. Das, ‘‘A discrete inter-species cuckoo search for
flowshop scheduling problems,’’ Comput Oper Res, vol. 60, pp. 111–120,
Aug. 2015. doi: 10.1016/j.cor.2015.01.005.

[17] M. Abdel-Basset, G. Manogaran, D. El-Shahat, and S. Mirjalili,
‘‘A hybrid whale optimization algorithm based on local search
strategy for the permutation flow shop scheduling problem,’’
Future Gener. Comput. Syst., vol. 85, pp. 129–145, Aug. 2018.
doi: 10.1016/j.future.2018.03.020.

[18] S. A. Slotnick, ‘‘Order acceptance and scheduling: A taxonomy and
review,’’ Eur. J. Oper. Res., vol. 212, no. 1, pp. 1–11, Jul. 2011.

[19] S. A. Slotnick and T. E. Morton, ‘‘Selecting jobs for a heavily loaded shop
with lateness penalties,’’ Comput Oper Res, vol. 23, no. 2, pp. 131–140,
Feb. 1996. doi: 10.1016/0305-0548(95)00015-E.

[20] H. F. Lewis and S. A. Slotnick, ‘‘Multi-period job selection: Planning
work loads to maximize profit,’’ Comput. Oper. Res., vol. 29, no. 8,
pp. 1081–1098, Jul. 2002. doi: 10.1016/s0305-0548(00)00105-2.

[21] S. A. Slotnick and T. E. Morton, ‘‘Order acceptance with weighted tar-
diness,’’ Comput. Oper. Res., vol. 34, no. 10, pp. 3029–3042, Oct. 2007.
doi: 10.1016/j.cor.2005.11.012.

[22] W. O. Rom and S. A. Slotnick, ‘‘Order acceptance using genetic algo-
rithms,’’ Comput. Oper. Res., vol. 36, no. 6, pp. 1758–1767, 2009.

[23] Y.-Y. Xiao, R.-Q. Zhang, Q.-H. Zhao, and I. Kaku, ‘‘Permutation flow shop
scheduling with order acceptance and weighted tardiness,’’ Appl. Math.
Comput., vol. 218, no. 15, pp. 7911–7926, Apr. 2012.

[24] S.-W. Lin and K.-C. Ying, ‘‘Order acceptance and scheduling to maximize
total net revenue in permutation flowshops with weighted tardiness,’’ Appl.
Soft Comput., vol. 30, pp. 462–474, May 2015.

[25] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th ed.
New York, NY, USA: Springer, 2012.

[26] G. Schmidt, ‘‘Scheduling with limited machine availability,’’ Eur. J. Oper.
Res., vol. 121, pp. 1–15, Feb. 2000.

[27] F. Qian, W. Zhong, and W. Du, ‘‘Fundamental theories and key tech-
nologies for smart and optimal manufacturing in the process industry,’’
Engineering, vol. 3, no. 2, pp. 154–160, Apr. 2017.

[28] R. C. Eberhart and Y. Shi, ‘‘Comparison between genetic algorithms and
particle swarm optimization,’’ in Proc. Int. Conf. Evol. Program., 1998,
pp. 611–616.

[29] H. Garg, ‘‘A hybrid PSO-GA algorithm for constrained optimization prob-
lems,’’ Appl. Math. Comput., vol. 274, pp. 292–305, Feb. 2016.

[30] A. Gálvez and A. Iglesias, ‘‘A new iterative mutually coupled hybrid GA–
PSO approach for curve fitting in manufacturing,’’ Appl. Soft Comput.,
vol. 13, no. 3, pp. 1491–1504, Mar. 2013.

[31] H. F. Rahman, R. Sarker, and D. Essam, ‘‘A real-time order accep-
tance and scheduling approach for permutation flow shop prob-
lems,’’ Eur. J. Oper. Res., vol. 247, no. 2, pp. 488–503, Dec. 2015.
doi: 10.1016/j.ejor.2015.06.018.

[32] F. Wester, J. Wijngaard, and W. R. M. Zijm, ‘‘Order acceptance strategies
in a production-to-order environment with setup times and due-dates,’’ Int.
J. Prod. Res., vol. 30, no. 6, pp. 1313–1326, Jun. 1992.

[33] I. Duenyas and W. J. Hopp, ‘‘Quoting customer lead times,’’Manage. Sci.,
vol. 41, no. 1, pp. 43–57, Jan. 1995. doi: 10.1287/Mnsc.41.1.43.

[34] I. Duenyas, ‘‘Single facility due date setting with multiple cus-
tomer classes,’’ Manage. Sci., vol. 41, no. 4, pp. 608–619, Apr. 1995.
doi: 10.1287/mnsc.41.4.608.

[35] A. Nandi and P. Rogers, ‘‘Using simulation to make order accep-
tance/rejection decisions,’’ Simulation, vol. 80, no. 3, pp. 131–142,
Mar. 2004.

[36] P. Rogers and A. Nandi, ‘‘Judicious order acceptance and order release in
make-to-order manufacturing systems,’’ Prod Plan Control, vol. 18, no. 7,
pp. 610–625, Oct. 2007. doi: 10.1080/09537280701582422.

[37] M. R. Moreira and R. A. Alves, ‘‘A methodology for planning and
controlling workload in a job-shop: a four-way decision-making prob-
lem,’’ Int. J. Prod. Res., vol. 47, no. 10, pp. 2805–2821, May 2009.
doi: 10.1080/00207540701725083.

[38] L. Tang,W. Liu, and J. Liu, ‘‘A neural network model and algorithm for the
hybrid flow shop scheduling problem in a dynamic environment,’’ J. Intell.
Manuf., vol. 16, no. 3, pp. 361–370, Jun. 2005.

[39] P. S. Eriksen and P. Nielsen, ‘‘Order quantity distributions: Estimating an
adequate aggregation horizon,’’ Manage. Prod. Eng. Rev., vol. 7, no. 3,
pp. 39–48, Sep. 2016.

[40] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. London, U.K.:
Luniver Press, 2010.

[41] S. K. Hasan, R. Sarker, and D. Essam, ‘‘Genetic algorithm for job-shop
scheduling with machine unavailability and breakdowns,’’ Int. J. Prod.
Res., vol. 49, no. 16, pp. 4999–5015, Aug. 2011.

[42] J. Liu and L. Tang, ‘‘A modified genetic algorithm for single machine
scheduling,’’ Comput. Ind. Eng., vol. 37, nos. 1–2, pp. 43–46, Oct. 1999.

[43] J. M. Nilakantan and S. Ponnambalam, ‘‘Robotic U-shaped assembly line
balancing using particle swarm optimization,’’ Eng. Optim., vol. 48, no. 2,
pp. 231–252, Feb. 2016.

[44] D. Debels and M. Vanhoucke, ‘‘A decomposition-based genetic algorithm
for the resource-constrained project-scheduling problem,’’ Oper. Res.,
vol. 55, no. 3, pp. 457–469, 2007.

[45] D. Ouelhadj and S. Petrovic, ‘‘A survey of dynamic scheduling in manu-
facturing systems,’’ J. Scheduling, vol. 12, no. 4, p. 417, 2009.

[46] A. Rossi and G. Dini, ‘‘Dynamic scheduling of FMS using a real-time
genetic algorithm,’’ Int. J. Prod. Res., vol. 38, no. 1, pp. 1–20, Jan. 2000.

[47] M. Souier, Z. Sari, and A. Hassam, ‘‘Real-time rescheduling metaheuristic
algorithms applied to FMS with routing flexibility,’’ Int. J. Adv. Manuf.
Technol., vol. 64, nos. 1–4, pp. 145–164, 2013.

[48] M. Souier, M. Dahane, and F. Maliki, ‘‘An NSGA-II-based multiobjective
approach for real-time routing selection in a flexible manufacturing system
under uncertainty and reliability constraints,’’ Int. J. Adv. Manuf. Technol.,
vol. 100, nos. 9–12, pp. 2813–2829, Feb. 2019.

[49] L. Tang, Y. Zhao, and J. Liu, ‘‘An improved differential evolution algo-
rithm for practical dynamic scheduling in steelmaking-continuous casting
production,’’ IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 209–225,
Apr. 2014.

[50] C. Lu, L. Gao, X. Li, and S. Xiao, ‘‘A hybrid multi-objective grey wolf
optimizer for dynamic scheduling in a real-world welding industry,’’ Eng.
Appl. Artif. Intell., vol. 57, pp. 61–79, Jan. 2017.

[51] M. Sama, P. Pellegrini, A. D’Ariano, J. Rodriguez, and D. Pacciarelli, ‘‘Ant
colony optimization for the real-time train routing selection problem,’’
Transp. Res. B, Methodol., vol. 85, pp. 89–108, Mar. 2016.

[52] A. F. Ali and M. A. Tawhid, ‘‘A hybrid particle swarm optimization and
genetic algorithm with population partitioning for large scale optimization
problems,’’ Ain Shams Eng. J., vol. 8, no. 2, pp. 191–206, Jun. 2017.

[53] D. E. Goldberg and J. H. Holland, ‘‘Genetic algorithms and machine
learning,’’Mach. Learn., vol. 3, nos. 2–3, pp. 95–99, 1988.

[54] J. H. Holland, ‘‘Adaptation in natural and artificial systems,’’ in An Intro-
ductory Analysis with APPLICATION to Biology, Control, and Artificial
Intelligence. Ann Arbor, MI, USA: Univ. Michigan Press. 1975.

[55] M. Sevaux and K. Särensen, ‘‘Permutation distance measures for memetic
algorithms with population management,’’ in Proc. 6th Metaheuristics Int.
Conf., 2005, pp. 1–8.

[56] T. Murata, H. Ishibuchi, and H. Tanaka, ‘‘Genetic algorithms for flowshop
scheduling problems,’’ Comput. Ind. Eng., vol. 30, no. 4, pp. 1061–1071,
Sep. 1996. doi: 10.1016/0360-8352(96)00053-8.

[57] E. Taillard, ‘‘Some efficient heuristic methods for the flow-shop sequenc-
ing problem,’’ Eur. J. Oper. Res., vol. 47, no. 1, pp. 65–74, Jul. 1990.
doi: 10.1016/0377-2217(90)90090-X.

[58] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm
theory,’’ inMicro Mach. Human Sci., Apr. 1995, pp. 39–43.

[59] Y. Shi, ‘‘Particle swarm optimization: developments, applications and
resources,’’ in Proc. Congr. Evol. Comput., Sep. 2001, pp. 81–86.

[60] G. Onwubolu and M. Clerc, ‘‘Optimal path for automated drilling opera-
tions by a new heuristic approach using particle swarm optimization,’’ Int.
J. Prod. Res., vol. 42, no. 3, pp. 473–491, Feb. 2004.

[61] J. M. Nilakantan, G. Q. Huang, and S. Ponnambalam, ‘‘An investigation on
minimizing cycle time and total energy consumption in robotic assembly
line systems,’’ J. Cleaner Prod., vol. 90, pp. 311–325, Jun. 2015.

112754 VOLUME 7, 2019

http://dx.doi.org/10.1016/j.cor.2008.01.007
http://dx.doi.org/10.1016/S0377-2217(02)00908-6
http://dx.doi.org/10.1016/j.cor.2015.01.005
http://dx.doi.org/10.1016/j.future.2018.03.020
http://dx.doi.org/10.1016/0305-0548(95)00015-E
http://dx.doi.org/10.1016/s0305-0548(00)00105-2
http://dx.doi.org/10.1016/j.cor.2005.11.012
http://dx.doi.org/10.1016/j.ejor.2015.06.018
http://dx.doi.org/10.1287/Mnsc.41.1.43
http://dx.doi.org/10.1287/mnsc.41.4.608
http://dx.doi.org/10.1080/09537280701582422
http://dx.doi.org/10.1080/00207540701725083
http://dx.doi.org/10.1016/0360-8352(96)00053-8
http://dx.doi.org/10.1016/0377-2217(90)90090-X

H. F. Rahman et al.: Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment

[62] V. N. Nair, B. Abraham, J. MacKay, G. Box, R. N. Kacker, T. J. Lorenzen,
J. M. Lucas, R. H. Myers, G. G. Vining, J. A. Nelder, and M. S. Phadke,
‘‘Taguchi’s parameter design: A panel discussion,’’ Technometrics, vol. 34,
no. 2, pp. 127–161, 1992.

[63] X. Yuan, L. Wang, Y. Yuan, Y. Zhang, B. Cao, and B. Yang, ‘‘A modified
differential evolution approach for dynamic economic dispatch with valve-
point effects,’’ Energy Convers. Manage., vol. 49, no. 12, pp. 3447–3453,
2008.

HUMYUN FUAD RAHMAN received the Ph.D.
degree in computer science from the School of
Engineering and IT, University of New South
Wales, Canberra, Australia, where he is cur-
rently a Research Associate. His research lies
in the area of manufacturing system optimiza-
tion considering uncertainty and disruptions,
Industry 4.0, project and supply chain manage-
ment. His research interests include evolutionary
computation, manufacturing system optimization,
and supply chain management.

MUKUND NILAKANTAN JANARDHANAN
received the Ph.D. degree in manufacturing Engi-
neering from Monash University, in 2015. From
2015 to 2018, he was a Postdoctoral Fellow with
Aalborg University, Denmark. Since March 2018,
he has been a Lecturer in engineering manage-
ment with the University of Leicester, Leicester,
U.K. He has published over 30 articles in reputed
journals and conferences. His research interests
include manufacturing, production planning, and
control.

IZABELA EWA NIELSEN received the master’s
degree in engineering from the Opole University
of Technology and the Ph.D. degree (Hons.) from
the Faculty of Production Engineering, Warsaw
University of Technology, in 2005, with the focus
on application of constraint logic programming
techniques in production flow planning. She is cur-
rently a Professor with the Department of Materi-
als and Production, Aalborg University, Denmark.
She has published over 140 articles in journals,

books, and conferences. Her research interests include planning, scheduling,
and optimization problems. She has a special emphasis on automated manu-
facturing, transportation, and production systems. She is an Associate Editor
for two international journals and serving as an Editorial Board Member for
several reputed journals.

VOLUME 7, 2019 112755

