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ABSTRACT In this study, a multi-objective optimization method based on the Radau pseudospectral
method is proposed for the energy management strategy in the hybrid energy storage system (HESS). In the
proposed method, by approximating state and control variables in the system with global interpolating
polynomials, the optimal control problem (OCP) is transformed into a nonlinear programming problem
(NLP) and solved by a sparse nonlinear optimizer. Further, the Pareto solution set is obtained by taking
the energy consumption of the HESS and the equivalent life of the battery as objective functions. Three
solutions representing different tradeoffs were selected for comparative analysis: minimum system energy
consumption (5819.60 kJ), with battery life 68368 cycles; maximum battery life (76227 cycles), with energy
consumption 5865.68 kJ; and the balanced tradeoff optimal solutionwith battery life 72488 cycles and energy
consumption 5841.96 kJ. The results showed that for every additional 5 kJ in system energy consumption,
the battery Ah-throughput was reduced by 0.053 Ah and its equivalent life extended by 876 cycles. Further,
compared with the single-cell energy source, the balanced tradeoff optimal solution increased the battery
life by 29.92% and decreased the system energy consumption by 1.79%. Thus, this work provides a fast
and stable multi-objective optimization method for the energy management strategy of HESS and lays the
foundation for obtaining optimal system parameters.

INDEX TERMS Energy management strategy, hybrid energy storage system, multi-objective optimization,
Radau pseudospectral method.

I. INTRODUCTION
Although traditional petroleum fueled vehicles have brought
convenience and comfort to human life, they have also led to
an energy crisis with significant environmental repercussions.
A viable alternative to fossil fuel-based vehicles is electric
vehicles, which provide advantages such as zero emission and
low noise and can significantly reduce our consumption of
fossil fuel-based energy. However, to maximize the advan-
tages, electric vehicles require a high energy density and high
power density electric energy storage system to guarantee
adequate driving range and power performance. Although
batteries have high energy density, their power density is

The associate editor coordinating the review of this article and approving
it for publication was Arup Kumar Goswami.

low, and they also suffer from relatively short service life.
However, the power density of an ultracapacitor is very high,
and its service life is very long, but its energy density is low.
Therefore, a hybrid energy storage system (HESS) that can
fully utilize the advantages of the above two equipment by
improving the energy utilization ratio and power performance
of the vehicle to extend the range of the electric vehicle’s
mileage has been developed.

In general, the energy management strategy of the HESS
has significant repercussions on the economy, power per-
formance, and battery life of an electric vehicle. This is
because there are significant differences between the dynamic
characteristics and working modes of a battery compared
to an ultracapacitor. Therefore, researchers worldwide have
conducted extensive studies to develop an effective energy
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management strategy. For example, the multi-objective non-
dominated sorting genetic algorithm II (NSGA-II) has been
used to optimize the parameter matching and energy manage-
ment strategy of hybrid power electric vehicles (EVs) [1], [2].
Convex optimization and three-level wavelet transform (WT)
algorithms have also been used to match the parameters of the
HESS and optimize the energy management strategy [3]–[5].
Lu et al. have also implemented a weighted method and a
no-preference method simultaneously to transform the multi-
objective optimization problem into a uni-objective con-
vex optimization problem for hybrid energy management
systems [6]. The literature shows that several studies have
adopted model predictive control [7], [8], rule-based con-
trol strategies, dynamic programming algorithms [9]–[11],
the projection operator adaptive law [12], and fuzzy logic
control [13] to optimize the energy management strategy of
HESS. However, in all these studies, the internal resistance
characteristics of the battery during charge and discharge are
seldom considered in the simulation process. Additionally,
the optimization result does not correspond to the real word
scenario, because the penalty factor that results in the reduc-
tion of the battery life is not incorporated into the battery life
model to avoid the discharge of the battery with large current
that degrades the service life.

Reviewing the studies cited above, we found the following
drawbacks: The convergence rate of a genetic algorithm is
slow, which renders it easily susceptible to fall into the local
optimum. Convex optimization requires convexification in
application, which is difficult to apply to practical problems.
As regards dynamic programming algorithms, their compu-
tational complexity is high, and the accuracy of the solution
depends on the density of the network grid. Model prediction
methods and rule-based control strategies are highly sensi-
tive to the prediction information accuracy. Further, although
fuzzy logic control has strong real-time performance, it can-
not guarantee the global optimum.

It should be noted that energy management optimization of
the HESS has the characteristics of strong nonlinearity, multi-
modality, etc. Among the energy management optimization
methods of the HESS currently in use, the pseudospectral
method, as a global optimization method, has the advantages
of fast convergence speed, large convergence radius, low ini-
tial sensitivity, and high accuracy. Moreover, its optimization
result must be the global optimum [14], [15]. For example,
the Legendre pseudospectral method has been used to opti-
mize the shift process of a two-speed transmission with no
power interruption [16]. Further, a pseudospectrum algorithm
has been used to optimize hybrid electric vehicle (HEV)
power management for fuel economy [17]. Researchers have
also utilized the Gauss pseudospectrummethod to develop an
optimal shift strategy for a four-gear mechanical transmission
electric vehicle [18]. In addition, the energy management
strategy of a tandem tracked vehicle has been optimized using
the Radau pseudospectrum method [15].

In this work, the internal resistance characteristics of the
HEVwith semi-active battery terminal load configuration are

studied considering the charge and discharge characteristics
of the battery. The objective function takes into account the
system energy consumption and battery lifetime of the HESS.
Further, the energy management strategy of the hybrid power
electric vehicle is optimized via the Radau pseudospectral
method, with the vehicle performance and the parameters of
the battery and the capacitance as constraints.

II. HYBRID ENERGY STORAGE SYSTEM MODEL
A. HYBRID ENERGY STORAGE SYSTEM TOPOLOGY
A HESS has three configurations—passive, semi-active, and
full active. In the passive HESS configuration, the battery
and the ultracapacitor are connected directly in parallel with
the DC busbar. This configuration has the advantage of
simple structure and low cost; however, the current can-
not be controlled during operation. In contrast, the fully
active configuration is characterized by the adoption of two
DC/DC converters with complex structure and control; how-
ever, the configuration cost is prohibitive. In the semi-active
configuration, the battery or ultracapacitor is connected to the
busbar via a DC/DC converter. The current can be controlled
by the DC/DC converter, and the flexibility of the HESS is
guaranteed. However, when the load is connected with the
ultracapacitor terminal, the DC high voltage busbar is directly
connected to the ultracapacitor, which leads to significant
fluctuation in the voltage range that is difficult to control.
In contrast, when the battery terminal is connected to the
load, the system is easier to control, and the total line voltage
is more stable, thereby reducing the system cost. Therefore,
this study utilized a semi-active HESS battery terminal load
configuration. Fig. 1 shows the topological structure of the
configuration.

FIGURE 1. Semi-active HESS battery terminal load configuration.

B. BATTERY MODELS
As shown in Fig. 2, the single-cell model of the battery
employs the internal resistance model.

In Fig 2, ub is the open-circuit voltage of the battery; ub0
is the terminal voltage of the battery; ib is the current of the
battery (positive discharge and negative charge); and Rb is the
equivalent series internal resistance of the battery. The battery
state of charge (BSOC) is calculated via Ah-Integration:

BSOC(t) = BSOC(t0)−

∫
ib(t)dt
Qb

(1)
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FIGURE 2. Equivalent model of power battery unit.

where BSOC (t0) is the value of the initial BSOC, Qb is the
battery capacity, and the power of the battery is given by:{

ub0 = ub(BSOC(t))− ib(t)∗Rb(BSOC(t))
Pb,out (t) = ib(t)ub0

(2)

In (2), when Pb,out is positive, the battery is in discharge
state; Conversely, when Pb,out is negative, the battery is in
charge state. As shown in Fig. 3, the open-circuit voltage ub
is nonlinear to the charged state BSOC. Moreover, the value
of internal resistance Rb is related to its charge and discharge
state, as shown in Fig. 4.

FIGURE 3. Relationship between the open-circuit voltage of the battery
and BSOC.

C. ULTRACAPACITOR MODEL
Fig. 5 illustrates the monomer model of the ultracapacitor.
In the figure, uc is the open-circuit voltage of the ultraca-
pacitor, uc0 is the terminal voltage, ic is the current (positive
discharge, negative charge), and Rc is the equivalent series
internal resistance. The ultracapacitor state of charge (USOC)
is calculated as follows:

USOC(t) = USOC(t0)−

∫
ic(t)dt

Ccucmax
(3)

where USOC (t0) is the initial value of the USOC, Cc is
the capacity of the ultracapacitor, and ucmax is the maximum
voltage of the ultracapacitor. The power of the ultracapacitor

FIGURE 4. Relationship between charge and discharge resistance of the
battery and BSOC.

FIGURE 5. Equivalent circuit model of the ultracapacitor monomer.

is given as follows:{
uc0 = uc(USOC(t))− ic(t)∗Rc
Pc,out (t) = ic(t)uc0

(4)

In (4), when Pc,out is positive, the ultracapacitor is in the
discharge state. Conversely, when Pc,out is negative, the ultra-
capacitor is in the charge state. The open-circuit voltage uc of
the ultracapacitor is linear to the USOC. Therefore, energy Ec
of the ultracapacitor can be expressed as follows:{

USOC(t) = uc(t)
ucmax

Ec = 0.5Ccu2cmaxUSOC
2(t)

(5)

D. DRIVING MOTOR MODEL
The electrical machine in the HESS functions as a motor
in the driving state, and as a generator in the braking state
to recover kinetic energy. In this paper, only the input and
output characteristics of the motor model are considered
for modeling, and the complex physical process inside the
motor model is ignored. The working efficiency of the motor
depends solely on the output speed and torque. Therefore,
to solve the follow-up optimal control problem for energy
management, normalization of the motor’s speed and torque
must be performed before fitting. The efficiency of the motor
can be expressed by two-dimensional five-degree polynomial
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fitting, as shown in (6):

η(T , n) =
5∑
i=0

i∑
j=0

D1+j+
∑i

0 n
(
T
Tmax

)i−j(
n

nmax
)j (6)

In (6), η is the working efficiency of the motor, D1+j+
∑i

0 n
is the fitting coefficient, T is the output torque, Tmax is the
maximum output torque, n is the output speed of the driving
motor, and nmax is the highest output speed of the driving
motor; the efficiency of the motor is illustrated in Fig. 6.

FIGURE 6. Normalized motor efficiency diagram.

E. DC/DC MODELS
Because of the different charging and discharging charac-
teristics of the battery and the ultracapacitor, there exists a
possibility of voltage mismatch (voltage clamping) in the
direct parallel connection of the two, which puts HESS at a
disadvantage. In this study, we use a bi-directional DC/DC
converter, which controls the transfer power and regulates
the voltage. Given that there will be energy loss in the trans-
mission process of the DC/DC converter, the efficiency effect
must be considered in the power system of the HESS.

F. BUSBAR POWER BALANCE MODEL
The demand power of the vehicle is expressed as follows:

Pd=
v

3600ηt
(mgf cosα+

CDAv2

21.15
+mg sinα+δm

dv
dt

) (7)

The power balance of the demand power and dc busbar is,

Pd =

{
PHESS

/
ηreg charge

P∗HESSηe discharge
(8)

The power balance between the dc busbar and the power
source is as follows:

PHESS =

{
Pb,out + P∗c,outηDC Pc,out ≥ 0
Pb,out + Pc,out

/
ηDC Pc,out < 0

(9)

In the above equations, Pd is the whole vehicle demand
power, v is the vehicle speed, M is the mass of the electric
vehicle, g is the acceleration due to gravity, f is the coefficient
of rolling resistance, and α is the slope of the road (in this
paper, α=0). CD is the drag coefficient of air and A is the
windward area; δ is the conversion factor of the vehicle
rotation mass, PHESS is the power of the HESS, ηt is the
transmission system efficiency, ηDC is the DC/DC converter
efficiency, ηe is the motor efficiency, and ηreg is the brake
energy recovery efficiency.

III. PRELIMINARY PARAMETER MATCHING
Before the configuration of the HESS can be determined,
it is necessary to undertake preliminary matching between
the battery and the ultracapacitor in the system to enable
the HESS to meet the energy and power requirements of the
vehicle.

A. BATTERY PARAMETERS
The motor parameters used in the HESS are listed in Table 1.
The voltage of the battery is determined by the motor voltage
level, and the number of battery monomers in series is given
by (10):

nbs =
ue_nom
ub_cell

(10)

where nbs is the number of battery monomers in series, ub_cell
is the battery voltage, and ue_nom is the motor rated voltage.
The number of battery units is rounded off to 96. The number
of parallel connections is determined based on the range of
the electric vehicle. The maximum range is 150 km (cruising
speed is 60 km/h). Because the power demand is more stable
at constant speed, the battery is the only energy source.
The maximum range for the electric vehicle is given by the
following expression:

MR ≤
nbsnbpub_cellQb_cellηeηt

1000(mgf + CDAv20
/
21.15)

(11)

where nbp is the number of battery units connected in parallel
and v0 is the speed at the maximum range. Considering

TABLE 1. Parameters of vehicle permanent magnet synchronous motor.
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the cost, the number of battery units is rounded off to one.
Thus, the battery is made up of 96 cells in series. During the
simulation, the initial charge state BSOC was set to 0.7.

B. ULTRACAPACITOR PARAMETERS
Compared with battery parameter matching, ultracapacitor
group parameter matching is relatively more complicated.
Given that the multiplication factor of DC/DC is generally
not greater than four [19], the minimum voltage of the ultra-
capacitor is 350/4 = 87.5 V. Ultracapacitors release 75% of
their energy when discharging from maximum voltage ucmax
to 1/2 ucmax . In practical applications, if the lowest working
voltage is half of its maximum voltage, then the maximum
voltage of the ultracapacitor is ucmax = 87.5×2 = 175 V.
The number of ultracapacitor units in series is given by (12):

ncs =
ucmax

uc_cell_max
(12)

where uc_cell_max is the upper limit of the voltage of the
ultracapacitor unit. (Note that ncs was rounded off to 65.) The
power required for a vehicle to travel at a constant speed is
termed the average power, which is given by (13):

Paverage =
v

3600ηt
(mgf +

CDAv2

21.15
) (13)

where Paverage is the average power for the battery, and the
driving speed v is 60 km/h. In order to obtain more appropri-
ate parameters for the optimization problem, ultracapacitors
should meet the power requirements beyond the average
power of the battery, and not be limited to new European
driving cycle (NEDC) conditions. The difference between the
peak power of the motor and the average power of the battery
is referred to as the power demand of the ultracapacitor.
Therefore, to meet the demand of tp = 10 s of peak power,
the number of ultracapacitor units that need to be connected
in parallel is calculated using (14):{

1Ec =
∫ t0+tp
t0

[Pe_max(t)− Paverage(t0)]dt

ncp =
81Ec

3ncsu2c_cell_maxCc_cell

(14)

In the above expression, 1Ec is the ultracapacitor energy
demand, Pe_max is the motor peak power (120 kW), and
Paverage is the average power provided by the battery,
as obtained using (13). ncp is the number of ultracapacitor
units connected in parallel, and Cc_cell is the capacity of
each ultracapacitor unit. The number of ultracapacitor units
connected in parallel in the above equation is rounded off to
three. Thus, three groups of 65 ultracapacitor monomers are
connected in parallel. In the simulation process, the USOC
was set to 0.7 when the ultracapacitor was in the initial state
of charge.

IV. PSEUDOSPECTRAL OPTIMIZATION METHOD
In the developed optimization strategy, first the Radau pseu-
dospectral method is used to separate the discrete state vari-
ables and control variables. Then, a Lagrange interpolation
polynomial is applied to approximate the state and control

variables. The differential operation in the state equation
and integral operation in the performance function are then
transformed into algebraic operations. Finally, the optimal
control problem (OCP) is transformed into a nonlinear pro-
gramming (NLP) problem in which the state variable at the
node and the control variable at the collocation point are
the parameters to be optimized. The steps involved in the
optimization are as follows:

Let the driving process of a HESS electric vehicle be
divided intoQ stages under NEDCworking cycles. The initial
time point and the ensuingQ-1 subsection points are recorded
as T0, T1,. . . , TQ, and T0<T1<. . .< TQ.
(1) Time-domain transformations convert each period

[Tq−1, Tq] (where q ∈1, q ∩Z+) in the whole time-domain
to interval [-1, 1], such that the definition interval of the
Legendre orthogonal polynomial is satisfied:

τ =
2t − (Tq + Tq−1)

Tq − Tq−1
, τ ∈ [−1, 1] (15)

(2) Collocation point and discretization: The colloca-
tion point of the Radau pseudospectral method is the
Legendre-Gauss-Radau (LGR) point, i.e., the value inter-
val is τ∈ (−1, 1] or τ ∈ [−1, 1). In this study, we select
τ ∈ (−1, 1] as the collocation interval, which is the root
of PN (τ )− PN−1(τ ). PN (τ ) is the Nth Legendre orthogonal
polynomial, which is given by (16):

PN (τ ) =
1

2NN !
dN

dτN
[(τ 2 − 1)N ], N = 0, 1, 2, . . . (16)

The nodes of the Radau pseudospectral method are N LGR
collocation points and initial time points τ0 =−1. Therefore,
the number of nodes is N+1. For pseudo spectral mosaics
with Q stages, the number of nodes in each stage, which can
differ, is recorded asNq+1; the node in the Q phase is marked
as τq,i, where i = 0, 1 ,. . . , Nq. The BSOC and USOC are
taken as state variables in the simulation process. The state
variables in each stage are discretized at the nodes, and can
be expressed as follows:{

BSOCq = [BSOCq,0 BSOCq,1 · · · BSOCq,Nq ]
USOCq = [USOCq,0 USOCq,1 · · · USOCq,Nq ]

(17)

Then, the time history curve of the state variables in each
stage can be approximated by Nq+1 Lagrange interpolating
polynomials as follows:

BSOCq(τ ) ≈
Nq∑
i=0

Lq,i(τ )BSOCq,i

USOCq(τ ) ≈
Nq∑
i=0

Lq,i(τ )USOCq,i

(18)

Here, Lq,i(τ ) is the base function of the Nq degree sub-
Lagrange interpolation, which is given by

Lq,i(τ ) =
Nq∏

j=0,j6=i

τ − τq,j

τq,i − τq,j
(19)
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The battery power Pb,out are used as the control variables
in the optimization process. They are discretized only at the
collocation point. Thus, the control variables in each stage
can be expressed as follows:

Pb,outq = [Pb,outq,1 Pb,outq,2 · · · Pb,outq,Nq ] (20)

Then, the time history curves of the control variables can be
approximated by Nq Lagrange interpolating polynomials in
each stage as follows:

Pb,outq (τ ) ≈
Nq∑
i=1

L̃q,i(τ )Pb,outq,i (21)

Here, L̃q,i(τ ) is the base function for the Nq−1 degree
Lagrange interpolation, which is expressed as follows:

L̃q,i(τ ) =
Nq∏

j=1,j 6=i

τ − τq,j

τq,i − τq,j
(22)

(3) The state equation is transformed into an algebraic
constraint, and after collocation and discretization, the state
variables are approximated by the global interpolating poly-
nomials. Thus, the differentiation operation can be expressed
as the derivation of the interpolating polynomials in (18),
as follows:
˙BSOCq(τq,k )=

Nq∑
i=0

L̇q,i(τq,k )·BSOCq,i =
Nq∑
i=0

Dqki ·BSOCq,i

˙USOCq(τq,k )=
Nq∑
i=0

L̇q,i(τq,k )·USOCq,i =
Nq∑
i=0

Dqki ·USOCq,i

(23)

where τq,k is the collocation point in phase q, where k =
1,2,. . . ,Nq; D

q
ki is the differential matrix of Nq • (Nq + 1),

which represents the differential value of the basis function of
Lagrange interpolation in phase q at each collocation point;
Dqki is expressed as follows:

D
q

ki = L̇i(τk ) =


g̈(τq,i)
2ġ(τq,i)

i = k

ġ(τq,k )
ġ(τq,i)(τq,k − τq,i)

i 6= k
(24)

where g
(
τq,i
)
=
(
1+ τq,i

) [
PNq

(
τq,i
)
− PNq−1

(
τq,i
)]

The first-order differential of the charge state BSOC to
time, which is obtained from (1) and (2), is expressed as
follows:

˙BSOC

=−

ub(BSOC(t))−
√
u2b(BSOC(t))−4Pb,out (t)Rb(BSOC(t))

2Rb(BSOC(t))Qb
(25)

The first-order differential of the ultracapacitor state USOC to
time, from (3), (4), (5), and (9), is expressed in (26), as shown
at the bottom of this page, where sign is a sign function.
Combined with (23), (24), (25), and (26), the energy manage-
ment optimal control problem of the HEV is transformed in
phase q from a dynamic equation constraint into an algebraic
constraint at collocation point τq,k : as given in (27) and (28),
as shown at the bottom of this page.

(4) Transformation of performance function in the multi-
objective energy management optimal control problem of
hybrid power vehicles mainly focuses on the performance
index, which consists ofAheff and HESS energy consumption
(EHESS). To avoid a large current discharge, penalty factors
are added into the battery in the Ah-throughput of the bat-
tery [19]. The objective function thus obtained is expressed
as in (29):
Aheff (t) =

∫ tf
0 σ (t)|ib(t)|dt

EHESS (t) =
1
2
Ccu2max1USOC(t)

2
+
∫ tf
0 ib(t) ∗ ub(t)dt

J = Aheff + EHESS
(29)

where σ is the penalty factor, and its main determinant factor
depends on the charge-discharge ratio ic, temperature, and
discharge depth, which can be simplified to (30):

σ (t) =
1.6
625

i2c(t)+ 1

ic(t) =
ib(t)
Qb

(30)

In the above expression, ib is the charge and discharge
current and Qb is the rated capacity of the battery. The
performance functions contain both non-integral (Mayer-type

˙USOC = −
USOC(t) ∗ ucmax −

√
(USOC(t) ∗ ucmax)

2
− 4

(
PHESS (t)−Pb,out (t)
ηDC∧sign(Pc,out (t))

)
Rc

2RcCcucmax
(26)

Nq∑
i=0

Dqki · BSOCq,i =
Tq − Tq−1

2

√
u2b(BSOCq,k )− 4Pb,out (τq,k )Rb(BSOCq,k )− ub(BSOCq,k )

2QbRb(BSOCq,k )
(27)

Nq∑
i=0

Dqki · USOCq,i =
Tq − Tq−1

2

√(
USOC(τq,k ) ∗ ucmax

)2
− 4

(
PHESS (τq,k )−Pb,out (τq,k )
ηDC∧sign(Pc,out (τq,k ))

)
Rc − USOC(τq,k ) ∗ ucmax

2CcucmaxRc
(28)
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performance index) and integral term (Lagrange-type per-
formance index), which can be optimized using the Gauss–
Radau integral method, which approximates its integral term.
Thus, the objective function obtained is given as follows:

Jq =
1
2
Ccu2cmax1USOC

2
+
Tq − Tq−1

2

×

Nq∑
k=1

ωq,kσ (τq,k )|ib(τq,k )| + ib(τq,k )ub(τq,k ) (31)

where ωq,k is the integral weight, which is expressed as
follows:

ωq,k =
1− τq,k

N 2
q · [PNq−1(τq,k )]2

(32)

(5) Through the above five steps, the optimal control problem
of multi-objective energy management for the original HESS
can be transformed into an NLP problem with optimization
variables:

min J =
1
2
Ccu2cmax1USOC

2

+

Q∑
q=1

Tq − Tq−1
2

Nq∑
k=1

ωq,kσ | ib | + ibub (33)

The state equation is given in (27) and (28), where the
constraints are as follows:

BSOCmin ≤ BSOC(t) ≤ BSOCmax

Pb,out_min ≤ Pb,out (t) ≤ Pb,out_max

USOCmin ≤ USOC(t) ≤ USOCmax

Pc,out_min ≤ Pc,out (t) ≤ Pc,out_max

(34)

In the NLP problem, the variables to be optimized are
the BSOC, USOC, and output power of the battery Pb,Out
at the LGR point, which can be solved using a mature
high-dimensional sparse NLP solver. The sparse nonlin-
ear optimizer (SNOPT) is a sequential quadratic program-
ming method based on line search with local superlinear
convergence.

V. PARAMETER SETTINGS AND OPTIMIZATION RESULTS
A. OPTIMIZING PARAMETER SETTINGS
The parameters in the optimization process are shown
in Table 2, where v represents the speed, in km/h. In this
study, the NEDC condition was used to optimize the simu-
lation. Based on the demand power of the vehicle, the driving
conditions of the vehicle were categorized into power ris-
ing stage (acceleration condition), power maintaining stage
(uniform speed condition), power negative stage (decelera-
tion condition), and power zero. In an electric vehicle with
HESS, the acceleration condition is supplied by the battery
and the capacitor together. However, the energy is supplied
by the battery under uniform conditions. The energy gener-
ated by braking is recovered by the preferred capacitance in
the decelerating condition; when the power is zero, neither
the battery nor the capacitor is engaged. Moreover, given

TABLE 2. Simulation parameters.

the complexity of the whole NEDC stage, the number of
stages is significantly large (69 stages in total). Hence, based
on the pseudospectral optimizationmethod, this paper divides
the suburban working conditions into 12 stages, as shown
in Table 3, by taking the suburban working conditions as an
example.

B. OPTIMIZED RESULTS
Fig. 7 shows the optimization results of the Radau pseu-
dospectral method in NEDC. The relationship between
the energy consumption of the HESS system and the
Ah-throughput of the battery is obtained. In the Pareto opti-
mal solution set, as indicated by the red data points in the
figure, when the Ah-throughput of the battery decreases, the
power and current of the battery are relatively low, and hence
capacitance consumes more energy. In contrast, when the
energy consumption of the HESS decreases, the power and

VOLUME 7, 2019 112489



Y. Liu et al.: Multi-Objective Optimization of Energy Management Strategy on HESS

TABLE 3. Stage classification of NEDC suburban working cycles.

FIGURE 7. Multi-objective optimization results under NEDC conditions.

current of the battery increases accordingly, and the capacitor
energy consumption decreases.

According to the definition of the Pareto front solution
set, the relationship between every two points in the graph
is nondominant; in other words, a reduction in either the
target energy consumption of HESS or the Ah-throughput
of the battery will lead to deterioration of the other target.
Therefore, in this study, three representative groups of data
were selected for analysis. The three red triangles shown
in Fig. 7 are the HESS minimum energy consumption point,
the balanced tradeoff optimal solution point, and the battery
longest equivalent lifetime point, respectively.

Figs. 8 and 9 show the SOC variation curves and power
flow diagrams between the two energy sources with the
smallest energy consumption of the HESS. Figs. 10 and 11
show the SOC variation curves and power flow diagrams
between the two energy sources with the longest equivalent
life of the battery. As the life of the battery is prolonged,
the energy consumption of the system increases slightly,
and a group of data with longer battery equivalent life-
time is selected as the balanced tradeoff optimal solution.
Figs. 12 and 13 show the balanced tradeoff optimal solution of
the SOC variation curve and the power flow diagram between
the two selected energy sources. Figs. 14 and 15 show SOC
variation curves and power flow diagrams for a single battery
energy source.

FIGURE 8. SOC optimization result of HESS minimum energy
consumption.

FIGURE 9. Power optimization result of HESS minimum energy
consumption.

FIGURE 10. SOC optimization results when the battery has the longest
equivalent lifetime.

In the post-Pareto solution set, the energy consumption of
the HESS increases with increase in the Ah-throughput of
the battery. This behavior can be attributed to the fact that, in
addition to meeting the demand power of the vehicle, the flow
of energy within the system between the two energy sources
is increased. Moreover, the Ah-throughput of the battery is
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FIGURE 11. Power optimization result when the battery has the longest
equivalent lifetime.

FIGURE 12. SOC optimization results for balanced tradeoff optimal
solution.

FIGURE 13. Power optimization result of balanced tradeoff optimal
solution.

also increased, leading to simultaneous deterioration of the
two targets.

Figs. 16 and 17 illustrate the relationship between ultra-
capacitor power and demand power, and battery power and
demand power in the HESS. It can be seen that the demand

FIGURE 14. Simulation results of single battery SOC.

FIGURE 15. Simulation result of single battery power.

FIGURE 16. Ultracapacitor power distribution diagram.

power is negative in the deceleration stage. In addition,
the power is absorbed by the ultracapacitor, and the battery
provides a maximum of 5 kW of power for the ultracapacitor.
In addition, the required power in the constant speed phase is
only provided by the battery, and the uniform power includes
0.8 kW, 2 kW, 4 kW, 7.3 kW, 14 kW, 22 kW. The acceleration
phase, when the required power is between 0–20 kW, can be
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FIGURE 17. Battery power distribution diagram.

further divided into two phases. One phase is the linear
relationship between the power of the battery and the demand
power for the long-term large demand power phase. The
other phase is the short-term small demand power phase,
which is supplemented by the ultracapacitor. The above opti-
mization results show the characteristics of rapid charging
and discharging of the ultracapacitor. The pseudospectral
method divides the working condition into multiple stages.
Therefore, when the acceleration stage is transformed into
other stages, a sudden change in the power of the battery
forces the ultracapacitor to supplement the decrease in power.
When the ultracapacitor is drained, the required power is
solely supplied by the battery.

In this paper, the battery Ah-throughput is converted into
the battery equivalent lifetime. The equation for calculating
the battery equivalent lifetime is given by (35) [20]:

L =
0

Aheff
=

20000× 3600× Qb
2.3× Aheff

(35)

where 0 is the total Ah-throughput of the battery; its value
is determined by the battery, and it remains constant. When
0 = Aheff, the battery reaches its lifetime limit. L repre-
sents the equivalent battery life. In addition, this study also
expressed the number of battery cycles in NEDC conditions.
The optimized results of three datasets show that the mini-
mum energy consumption of the HESS can reach 5819.60 kJ,
with the equivalent life of the battery at 68368 cycles.
Moreover, the maximum equivalent life of the battery can
reach 76227 cycles when the energy consumption of the
HESS is 5865.68 kJ. As regards the balanced tradeoff optimal
solution, the equivalent life of the battery of the optimal
solution is 72488 cycles, with the energy consumption of
the HESS at 5841.96 kJ. In contrast, the equivalent life of
the single-cell energy source is 55796 cycles, with an energy
consumption of 5948.3 kJ.

VI. CONCLUSION
In this study, a multi-objective optimization method based on
the Radau pseudospectral method was used to optimize the

energy management strategy of the hybrid electric vehicle,
with the system energy consumption and lifetime of the bat-
tery considered as the optimization objectives. In the battery
models, the internal resistance characteristics of the battery
during charging and discharging were taken into account.

Optimized results were obtained in a Pareto solution set.
Three solutions representing different tradeoffs were selected
for further analysis: minimum system energy consumption
(5819.60 kJ), with battery life 68368 cycles; maximum bat-
tery life (76227 cycles), with energy consumption 5865.68 kJ;
and a balanced tradeoff optimal solution with battery life
72488 cycles and energy consumption 5841.96 kJ. For every
additional 5 kJ in system energy consumption, the battery
Ah-throughput was reduced by 0.053 Ah and its equiva-
lent life extended by 876 cycles. Compared with the single-
cell energy source, the balanced tradeoff optimal solution
increased the battery life by 29.92% and decreased the system
energy consumption by 1.79%.

This study provides a fast and stable multi-objective opti-
mization method for the energy management strategy of
HESS. The proposed method also provides a basis for match-
ing the optimal parameters of HESS and a reference for the
formulation of an online energy management strategy.
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