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ABSTRACT With the rapid development of earth observation satellites, on-orbit data processing is becoming
more and more desirable. In this paper, a new on-orbit change detection method for Synthetic Aperture
Radar (SAR) images, is proposed via an Extreme Self-paced LearningMachine (ESLM). First, a reflectivity-
spatial affinity is defined to measure the similarity between two segmented super-pixels, to identify the initial
three groups of pixels: strictly changed, strictly unchanged and fuzzy pixels. Then a new extreme self-paced
learning machine is developed, by gradually selecting the most confident changed pixels and predicting the
changed pixels in an incremental pattern. Moreover, both the labeled and unlabeled samples are explored
to realize semi-supervised classification. Different with the available methods, ESLM works in a self-
paced learning pattern and achieves accurate detection, for it can automatically choose the training samples
and explore unlabeled samples to enhance the online prediction of changes. Therefore, ESLM has the
characteristics of accurate and robust detection, parameter free, low-complexity and rapid implementation,
which is very suitable for on-orbit processing. Some experiments are taken on five real benchmark datasets,
and the results verify the effectiveness of ESLM.

INDEX TERMS Change detection, synthetic aperture radar, extreme self-paced learning machine, affinity
propagation super-pixel clustering, manifold regularizer.

I. INTRODUCTION
Change detection from multi-temporal Synthetic Aperture
Radar (SAR) images aims to identify changes in the images
of the same scene taken at different times [1], which has
extensive applications in many civil and military fields [2].
With the rapid development of earth observation satellites,
increasing amount of spaceborne SAR data are collected.
Thus, it is desirable to develop on-orbit change detection
techniques, which can detect changes on the aircraft and then
transmit them to the ground station. Compared with the on-
ground change detection, on-orbit change detection can avoid
the storage, compression and transmission of a large amount
of SAR data, so is potential in coping with the explosion of
data.

The associate editor coordinating the review of this article and approving
it for publication was Xin Luo.

Making an analysis on the on-orbit change detection tech-
nologies, we will find that they should have the following
characteristics:
1) High automation degree. Different with the on-

ground processing, on-orbit change detection algo-
rithms require little involvement of human operation.
In order to automatically implement on the space-
craft, on-orbit change detection methods need to have
the capability of self-learning and self-evolution, since
no manual involvement is allowed in the detection
process.

2) Low complexity. The spacecraft often has limitations
on the power consumption and device volume. For the
low power consumption and small size limitation of
aerospace platforms, on-orbit change detection algo-
rithms should have the characteristics of simple prin-
ciple, rapid processing and high efficiency.
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3) Robustness and flexibility. It is well known that the
on-board processing needs robust and adaptive detec-
tion algorithms that can work for SAR images with
different resolutions, looks and working wavebands.
Consequently, developing automated, rapid and robust
on-orbit methods, is the future trend of change
detection.

Having a glance over the available multi-temporal SAR
images change detection approaches, we will find that they
can be mainly categorized into unsupervised and supervised
ones. Unsupervised methods first calculate a ‘‘Difference
Map’’ (DM) and then locate the changes from it using
some distribution priors [3]–[6] or clustering algorithms
[7]–[9], [31]. For example, the data distributions of
‘‘changed’’ and ‘‘unchanged’’ components in the image are
explored by casting various kinds of priors, including gen-
eralized Gaussian distribution [3], hidden Bivariate Gamma
distribution [4], Gaussian mixture distribution [5], Markov
chains [6] and so on [23]–[25]. Then the changes are
detected via some statistical estimation methods. However,
these methods often cast too rigid assumption on data, and
the detection results rely heavily on the validity of priors.
Different with these works, some methods utilize clus-
tering algorithms, such as K-means clustering [5], [30],
splitting clustering [6], fuzzy clustering [7] and mean-shift
clustering [8], graph non-negative matrix factorization [31]
algorithms, to distinguish ‘‘changed’’ and ‘‘unchanged’’
components. However, several parameters, such as the clus-
ters number and splitting levels, should be manually tuned.
Moreover, due to the presence of speckle noises in images,
unsupervised change detection methods always suffer from
high detection error ratio and sensitivity to noises.

Supervised methods formulate the change detection as a
binary classification task, and utilize some labeled data (or
samples) to identify the changes from the DM [10], [11]. For
example, a Support VectorMachine (SVM)with a difference-
kernel and a ratio kernel is proposed, for accurate change
detection [10]. Later an iterative label- information compos-
ite kernel based classifier is proposed for change detection
with the guidance of anisotropic texture [11]. In a recent
work, a relationship learning approach is proposed, which
establishes a classifier to learn the relationship between the
changed class and unchanged class [12]. Due to the use of
labeled samples, supervised methods often achieve accurate
detection [28], [29]. However, both training a good classifier
and learning the relationship need a lot of labeled data, which
will involve much human participation and result in high
labeling cost.

A recent trend in machine learning is to integrate nat-
uralistic learning in biological species into learning, such
as continuous learning and self-learning. Self-paced learn-
ing is inspired by children’s learning process, whose basic
idea is to establish a simple model first and then gradually
learn samples from ‘‘simple’’ to ‘‘complex’’. In order to
realize an automatic and efficient on-orbit change detection
from multi-temporal SAR images, in this paper we develop

a rapid and simple unsupervised change detection method
via a new Extreme Self-paced Learning Machine (ESLM).
ESLM can gradually select the confident changed pixels and
incrementally predict changed pixels in a semi-supervised
pattern. First, a DM of two multi-temporal SAR images is
calculated by a log-ratio operator. Then the DM is segmented
into some connected regions named super-pixels. Second,
a reflectivity-spatial affinity is defined for two super-pixels to
evaluate their similarity, and an Affinity Propagation Super-
pixel Clustering (APSC) algorithm is designed to automati-
cally cluster super-pixels. Based on APSC, three groups of
pixels: strictly changed pixels, strictly unchanged pixels and
fuzzy pixels, are extracted from the DM, to serve as the initial
training data. The flowchart of the proposed method is shown
in Fig.1.

FIGURE 1. The framework of on-orbit change detection via ESLM.

Compared with the available change detection methods,
the proposed method can not only work for on-orbit pro-
cessing, but also have the following characteristics: 1) ESLM
works in an incremental self-paced learning pattern, which
can automatically choose the training samples itself from
‘‘simple’’ to ‘‘complex’’; 2) ESLM explores unlabeled sam-
ples to enhance the online prediction of changes. So it can
not only boost the performance of unsupervised methods, but
also avoid high computational complexity of semi-supervised
methods; 3) a multistage clustering is used to select ini-
tial training samples, which is of high automation degree.
Consequently, ESLM has the characteristics of little manual
participation, accurate detection and high robustness. Some
experiments are taken on the Bern dataset acquired by the
ERS-2 SAR, the Ottawa dataset acquired by a RADARSAT
SAR, the Yellow River dataset acquired by Radarsat-2 sensor
and two single-look SAR images pairs on the Wuhan dataset
acquired by PALSAR. The experimental results verify the
efficiency of ESLM.

II. MULTISTAGE CLUSTERING
In order to automatically extract the training samples for the
subsequent incremental classification, in this section a mul-
tistage clustering scheme is proposed. A reflectivity-spatial
affinity is first defined, and then a new APSC algorithm is
proposed.
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A. REFLECTIVITY-SPATIAL AFFINITY OF SUPERPIXELS
Given two co-registered SAR images X1 = {X1(i, j)} and
X2 = {X2(i, j)} taken at different time of the same scene,
where X1(i, j) and X2(i, j) are the pixels located at (i, j) in the
images, and 1 ≤ i ≤ I , 1 ≤ j ≤ J . First, we generate a DM
by a log-ratio operator [13],

DM =
∣∣∣∣log X2 + ε

X1 + ε

∣∣∣∣ (1)

where ε is a small positive constant to avoid the pixel values in
Xi(i = 1, 2) be zero. As soon as DM is obtained, we first use
the Simple Linear Iterative Cluster (SLIC) [14] to segment
DM into N super-pixels {S1, . . . ,SN }. The number of super-
pixels is set as N = bI × J/100c. Then an APSC algorithm
is advanced to acquire the initial training samples of ESLM.

It is well known that with the increasing resolution of SAR
images, they are not only a set of reflectivities but also a set
of data with spatial organization. So in our work we define a
reflectivity-spatial affinity s(i, j) between the ith and jth super-
pixel, to evaluate their similarity s(i, j),

s(i, j) = sreflectivity(i, j)+ sspatial(i, j) (2)

where sreflectivity(i, j) and sspatial(i, j) are the reflectivity affin-
ity and spatial affinity between the ith and jth super-pixels
respectively. The reflectivity affinity is then defined as,

sreflectivity(i, j) = −
∥∥ri − rj∥∥2 (3)

where ri and rj represent the average reflectivities of the ith

and jth super-pixel. The spatial affinity is defined as,

sspatial(i, j) =
√
(ix − jx)2 + (iy − jy)2 (4)

where (ix , jx) and
(
iy, jy

)
represent the coordinates of the two

super-pixels in the image.

B. AFFINITY PROPAGATION SUPER-PIXEL
CLUSTERING (APSC)
Then we use the calculated s(i, j) and propagation algorithm
to locate the potential exemplars (or clustering centers) from
N super-pixels [15]. The N super-pixels are considered as
nodes in a network and

{
ej
}
, j = 1, . . . ,N is a set of binary

hidden variables, where ej = 1 indicates that the jth super-
pixel is chosen as a clustering center and ej = 0 indicates
that it is not a clustering center.

{
hij
}
(i, j = 1, . . . ,N ) is a set

of N 2 binary hidden variables, where hij = 1 indicates that
the ith super-pixel has chosen the jth pixel as its clustering
center. Affinity propagation tries to find the most representa-
tive samples that maximize the sum of affinities of nodes to
their exemplars. This optimization can be implemented via
the update of responsibility r(i, j) and availability a(i, j). The
availabilities a(i, j) are initialized as zero, and the responsi-
bility r(i, j) are updated by [15],

r(i, j)← s(i, j)−max
j′=j
{a(i, j′)+ s(i, j′)} (5)

Then the availabilities a(i, j) are updated by:

a (i, j) ← min{0, r (j, j)+
∑
i′ 6={i,j}

max{0, r(i′, j)}}, if i 6= j

(6)

a(i, j) ←
∑

i′s.t.i′ 6=j

max{0, r(i′, j)}, if i = j (7)

This procedure will terminate until the exemplars are stably
determined. Compared with traditional clustering methods,
the APSC algorithm has some advantages: 1) It is free of
parameter and can automatically determine the number of
clusters; 2) It can involve many-sides affinity between nodes
to find more representative clustering centers; 3) The affinity
update is of low complexity.

C. MULTISTAGE CLUSTERING
After APSC, denote the number of clusters as V , and denote
the intensity of the centroid of the nth super-pixel in the vth

cluster as I vn . The average value in each cluster is calculated
as AI v(v = 1, 2, . . . ,V ). Then we perform a K -means clus-
tering on AI v to cluster the super-pixels into three groups:
strictly changed class, strictly unchanged class and fuzzy
class. According to AI v, the class that has the highest AI v

value is considered as the strictly changed class. The class
that has the lowest AI v value is considered as the strictly
unchanged class. The other class is thus considered as fuzzy
class.

In our work, we select the ‘‘confident’’ pixels from the
strictly unchanged and strictly changed classes, to serve as
the labeled samples. On the other hand, we also select the
‘‘confident’’ pixels from the fuzzy class, as the unlabeled
samples. If a pixel and its neighbors (a squared b× b neigh-
boring window centered around the pixel) belong to the same
class, we choose it as the ‘‘confident’’ pixel. The ‘‘confident’’
pixels in the strictly unchanged class, strictly changed class
and fuzzy class are denoted as {xui }, {x

c
i } and {x

f
i } respectively.

In our work we set b =
√
num/3, where num is the number

of pixels in the super-pixel. Fig.2 illustrates the procedure of
this multistage clustering.

FIGURE 2. Multistage clustering for determining initial training samples.

III. EXTREME SELF-PACED LEARNING MACHINE (ESLM)
Semi-supervised classifier can use a handful of labeled sam-
ples and large amount of unlabeled samples to enhance the

VOLUME 7, 2019 116415



S. Yang et al.: ESLM for On-Orbit SAR Images Change Detection

performance of classifiers [16]–[19], [31]. In this section we
first formulate an affinity regularizer to implement the semi-
supervised extreme learning. Then an incremental extreme
self-paced learning machine is constructed to gradually iden-
tify changed pixels.

A. EXTREME LEARNING MACHINE (ELM)
Extreme Learning Machine (ELM) is a single-hidden layer
feed-forward neural network [20]. Denote the number of
hidden layer as k , and denote the nonlinear activation function
of the hidden layer as g(·). Then the output of the hidden layer
for the inputs can be written as a matrix,

H =


g(w1 · x1 + b1) · · · g(w1 · xQ + b1)
g(w2 · x1 + b2) · · · g(w2 · xQ + b2)

...
. . .

...

g(wK · x1 + bK ) · · · g(wK · xQ + bK )


K×Q

(8)

where xi is the ith training samples and wi =

[wi1,wi2, . . . ,wid ] is a random weight vector connecting
the ith hidden neuron with input neurons, bi is the bias of
the ith hidden neuron. K and Q are the number of hidden
neurons and samples respectively. Here a continuous sigmoid
function g(·) is adopted in the hidden layer, according to the
universal approximation capability of feed-forward neural
networks [32]. The activation function in the output layer is
linear, so the network output is Y = [y1, y2, . . . ym], with the
output of the jthneuron being,

yj = βTj H (9)

where βj = [βj1, βj2, . . . , βjK ]T (j = 1, 2, . . . ,m) is the
weight vector connecting the hidden neurons with the jth

output neuron. m is the number of output neurons, which
is the length of the label in the classification. Denoting the
weight matrix as B = [β1, β2, . . . βm] ∈ RK×m, we solve B
by minimizing the errors of training samples and the norm of
weights,

min
B

∥∥∥BTH− T
∥∥∥2
2
+ ‖B‖22 (10)

where T =
[
t1, t2, . . . , tQ

]T
∈ RQ×l is the desired output

matrix, and ti is the corresponding output of xi. Therefore B
can be analytically determined by

B = (HHT
+ I)−1HTT (11)

where I is an identity matrix.

B. AFFINITY REGULARIZED SEMI-SUPERVISED
EXTREME LEARNING
Recently some semisupervised ELM methods have been
used to enhance the prediction accuracy when only very few
labeled samples are available [33]–[35]. In our work, we use
the confident pixels set {xci } and strictly unchanged pixels set
{xui } as the initial labeled samples L0 = {(x

j
i, t

j
i)|x

j
i ∈ R

d , j ∈
(c, u), tji ∈ Rm}, where tji is a 2-d binary vector indicating

the label of xji(t
j
i = [1, 0]T when j = c; tji = [0, 1]T when

j = u); i = 1, 2, . . . , l(l = |L0|, is the sum of the number
of strictly unchanged pixels and strictly changed pixels). The
fuzzy pixels {xfi } are taken as the unlabeled samples U0 =

{xfi |x
f
i ∈ R

d
}, where i = 1, 2, . . . , u (u = |U0| is the sum of

the number of fuzzy pixels).
Based on ELM, we develop an Affinity Regularized Semi-

supervised Extreme Learning Machine (AR-SELM), based
on a manifold regularizer. A local consistency assumption
is cast on both the labeled and unlabeled samples, which
indicates that samples with large affinity should have sim-
ilar labels [21]. Consequently, a new affinity regularizer is
defined as follows,

R =
∑

i,j=l+u

s(i, j)
∥∥∥Yi
− Yj

∥∥∥2 /2 (12)

where Yi,Yj are the corresponding outputs of two samples
xi and xj respectively. Because the items in (12) are positive,
this regularizer constrains that if xi and xj are similar to each
other, then the predictions Yi,Yj should be similar as well.
Moreover, we reformulate (12) as

R =
∑

i,j=l+u

s(i, j)
(∥∥∥Yi

∥∥∥2 + ∥∥∥Yj
∥∥∥2 − 2

〈
Yi,Yj

〉)
/2

=
1
2
(Tr(Yl+uYT

l+uD
T )+ Tr(Yl+uYT

l+uD
T ))

−Tr(Yl+uYT
l+uW

T )

= Tr(YT
l+u(D−W)Yl+u)

= Tr(YT
l+uLYl+u) (13)

where D ∈ R(l+u)×(l+u) is a diagonal matrix with the element
Dii =

∑
j s(i, j). Then the graph Laplacian matrixL = D−W

is calculated.
Denote the output of the hidden layer for the inputs L0 as

H0. By modifying the objection function of ELM in (10),
the objective function of AR-SELM can be written as:

min
B0

∥∥∥BT0H0 − Y
∥∥∥2
2
+ ‖B0‖

2
2 + λTr(Y

T
l+uLYl+u) (14)

where λ is a parameter to weight the affinity regularizer in the
semi-supervised extreme learning machine. The analytical
solution to equation (14) can be calculated to determine the
weights,

B0 = (H0HT
0 + I+ λHT

0LH0)−1H0YT (15)

As soon as the weights are calculated, the unknown sam-
ples can be predicted as changed or unchanged pixels from
Yu = BT0Hu.

C. SELF-PACED LEARNING
In our work, an incremental extreme self-paced learning
machine is developed to gradually predict the unknown pix-
els. The affinity regularized semi-supervised classifier can
automatically update the decision boundary by involving the
confident pixels into the training. The labeled and unlabeled
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data come chunk by chunk, and the weights are incrementally
learned. So the pixels in the image are gradually predicted as
the changed or unchanged pixels.

Suppose at time t , the training dataset St = Lt ∪ Ut has
been learned to solve Bt . Ht is the hidden matrix of St , Hl

t is
the hidden matrix of Lt , Hu

t is the hidden matrix of Ut . The
unlabeled samples are predicted by their outputsYu

t = BTt H
u
t ,

where Hu
t is the hidden matrix of unlabeled samples in St .

The samples whose predicted labels are confident are selected
to be the new received chunk SC = {xj}kj=1 by sequentially
max
j∈u

max(Yu
t ). At time t + 1, the new received chunk SC can

be classified as two groups: k/2 labeled samples(denoted as
S lC ) and k/2 unlabeled samples (denoted as SuC ). Denote the
hidden matrix respect to the new chunk as HC . The hidden
matrix and target matrix of S lC are denoted as Hl

C and Yl
C

respectively. The update training dataset is denoted as St+1 =
Lt+1 ∪Ut+1, where Lt+1 = Lt+1 ∪ S lC , Ut+1 = Ut ∪ SuC . The
output matrix of the hidden layer for all the received data and
the labeled data has been received up to time t + 1,

Ht+1 =

[
Ht
HC

]
, Ĥt+1 =

[
Hl
t

Hl
C

]
(16)

According to (15), the new weights of the extreme self-paced
learning machine can be determined by,

Bt+1 =
(
I+ ĤT

t+1Ĥt+1 + λHT
t+1Lt+1Ht+1

)−1
ĤT
t+1Ŷt+1

(17)

For simplicity, we denote At as,

At =

(
I+ ĤT

t+1Ĥt+1 + λHT
t+1Lt+1Ht+1

)
(18)

The graph Laplacian matrix at time t + 1 can be expressed as

Lt+1 =
[
Lt + Dt,C −St,C
−SC,t DC,t + LC

]
(19)

where Lt and LC are the graph Laplacian matrices with
respected to the dataset St and SC respectively. St,C is affinity
matrix from the dataset St to SC . SC,t is affinity matrix from
the dataset SC to St . Dt,C and DC,t are the diagonal matrices
whose main diagonal elements are row sums of St,C and SC,t
respectively. According to the relationship between time t and
t + 1, At+1 can be written as

At+1 ≈ At + ĤT
CĤC + λHT

CLCHC (20)

Then we calculate,

A−1t+1 ≈
(
At + ĤT

CĤC + λHT
CLCHC

)−1
= F−1t − λF

−1
t HT

C

(
Ik + λLCHCF−1t HT

C

)−1
×LCHCF−1t (21)

where F−1t =
(
At + ĤT

CĤC

)−1
= A−1t − A−1t ĤT

C(
I+ ĤCA−1t ĤT

C

)−1
ĤCA−1t . If we denote Kt as

Kt = I− A−1t ĤT
C

(
I+ ĤCA−1t ĤT

C

)−1
ĤC (22)

Substituting Kt into F−1t , we can get F−1t = KtA−1t and
A−1t+1 = JtA−1t , where Jt = Kt − λKtA−1t HT

C(
I+ λLCHCKtA−1t HT

C

)−1
LCHCKt . Thus we can obtain

the weights of the AR-SELM,

Bt+1 = A−1t+1Ĥ
T
t+1Ŷt+1 = JtBt + JtA−1t ĤT

C ŶC (23)

D. ESLM BASED ON-ORBIT CHANGE DETECTION
In the on-orbit change detection, the working process can be
divided into a self-paced learning phase and then a predic-
tion phase. The procedure of ESLM based change detection
algorithm is described in Algorithm 1.

Algorithm 1 ESLM Based Change Detection Algorithm
Input: Two multi-temporal SAR images
Output: Changes of the two images
Initialization phase: The samples after multistage clustering
are used as the initial training samples: S0 = L0 ∪ U0

1) Generate the hidden matrix Hl
0, H0 for S0;

2) Calculate the graph Laplacian matrix L0 for S0;
3) Randomly initialize the parameter of ELM;
4) Calculate B0from (15);

Self-paced learning phase: Set t = 0 and repeat the follow-
ing steps,

1) Formulate the data chunk SC from Bt ;
2) Calculate themappingmatrixHC for the newest chunk;
3) Calculate the LaplacianmatrixLC with respected to the

input of dataset SC ;
4) Calculate the mapping matrix ĤC for the newest

labeled samples, calculate Kt , Jt , Bt+1 and A−1t+1;
5) Set t = t + 1, go to step 1);
Until ||Bt+1 − Bt || < ε;

Predicting Phase: Use the learned B to evaluate the output
of unknown pixels to locate the changed pixels.

IV. EXPERIMENTAL RESULTS
To investigate the performance of the proposed method,
in this section some experiments are taken on five real
multi-temporal SAR images, including the Bern dataset
acquired by the ERS-2 SAR, the Ottawa dataset acquired
by a RADARSAT SAR, the Yellow River dataset acquired
by Radarsat-2, and the Wuhan dataset acquired by PALSAR.
The first three datasets have the ground-truth and the last two
datasets have not got the ground-truth.

A. DATASETS AND COMPARATIVE METHODS
1) Dataset 1: The first dataset covers a region near the

city of Bern, Switzerland, in April and May 1999.
The size of the two SAR images is 301 × 301, with
the resolution being 30m, which are shown in Fig.3(a)
and Fig.3(b) [3]. The images are collected by the SAR
on the European Remote Sensing 2 satellite. The radar
works in C-band and has VV polarization. The ground-
truth is shown in Fig.3(c).
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FIGURE 3. SAR images of bern. (a) Image in 04, 1999. (b) Image in 05,
1999. (c) Ground-truth.

FIGURE 4. SAR images of Ottawa. (a) Image in 05, 1997. (b) Image in 08,
1997. (c) Ground-truth.

FIGURE 5. SAR images of the Yellow river estuary. (a) Image in 06, 2008.
(b) Image in 06, 2009. (c) Ground-truth.

2) Dataset 2: The second dataset covers a region over the
city of Ottawa, inMay andAugust 1997. The size of the
two SAR images is 290×350, with the resolution being
10m, which are shown in Fig.4(a) and Fig.4(b). The
images are collected by the SAR on the RADARSAT.
The radar works in C-band and has HH polarization.
The ground-truth is shown in Fig.4(c).

3) Dataset 3: The third dataset covers a region over
the Yellow River estuary in China in June 2008 and
June 2009. The size of the two SAR images is
257× 289, with the resolution being 3m, which are
shown in Fig.5(a) and Fig.5(b). The images are col-
lected by the SAR on the Radarsat-2. The radar works
in C-band and has HH polarization. The ground-truth
is shown in Fig.5(c). In addition, speckle noise on the
image Fig.5(a) is much more than that of Fig.5(b),
because Fig.5(a) is single-look image and Fig.5(a) is
four-look.

4) Dataset 4 and 5: The last two datasets cover the region
of Wuhan Province in China. The original two SAR
images are obtained by PALSAR in June 2006 and
in March 2009. The radar works in L-band and has
HH polarization. The resolution of the two images is

FIGURE 6. Performances of ESLM with the variation of parameter λ.
(a) Bern dataset. (b) Ottawa dataset. (c) Yellow dataset. (d) Kappa
coefficient.

10m, and the images are shown in Fig.5(a) and Fig.5(b)
respectively. The range and size of the two SAR images
are 40km × 70km and 500 × 500 respectively. The
Wuhan dataset is single-look, so the two images have
more speckle noises than the first four datasets. Two
obviously changed areas are selected in original SAR
images to verify the performance of the proposed
algorithm.

In order to verify the effectiveness of ESLM, five related
and some state-of-the-art algorithms are used for a compari-
son, including the Mathematical Morphology and K-means
clustering (MMK) [30], Deformable Dictionary Learning
(DDL) [26], Neighborhood-based Ratio (NR) [27], Local
Restricted Convolutional Network (LRCN) [28] and Con-
tractive Autoencoder (CA) [29]. Both the visual results and
numerical results are demonstrated, along with the consumed
time of these methods. All the experiments are taken on
Intel R© CoreTM i3-3210, CPU @2.10GHz 4.0GB Windows
10 systems, Matlab 2014a.

B. EVALUATION CRITERION AND PARAMETER SELECTION
In order to evaluate the performance of various kinds of
algorithms, some evaluation criterions are used, including
Missed Alarms (MA: the number of undetected pixels in the
changed region), False Alarms (FA: the number of changed
pixels that are wrongly detected as unchanged pixels), Over-
all Error (OE) and Kappa Coefficient (KC) [22]. Moreover,
in this section we make an analysis of the parameter on the
first three datasets.
Nc is the number of changed pixels in the ground-truth

and Nu is the number of unchanged pixels in the ground-
truth. Then some evaluation metrics are calculated [23]:
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FIGURE 7. Extracted pixels by APSC on the Bern dataset. (a) Strictly
changed pixels. (b) Fuzzy pixels. (c) Strictly unchanged pixels.

FIGURE 8. Extracted pixels by APSC on the Ottawa dataset. (a) Strictly
changed pixels. (b) Fuzzy pixels. (c) Strictly unchanged pixels.

(1) false alarm rate: PPA = FA/Nu. (2) missed alarm rate:
PMA = MA/Nc. (3) total errors rate: POE = OE/(Nc + Nu).
In our method, there is a single parameter λ. In order to
choose an appropriate λ, we vary its value from 0 to 1, and
the results of the first three datasets are shown in Fig.6.
From the variation of MA, FA and OE with the parameter
λ in Fig.6(a)(b)(c), we can observe that for the datasets, these
values first increase and then decrease. Whenλtakes the value
in the range of [0.08, 0.15], the three metrics can achieve
relatively lower values, which indicatesmore accurate change
detection. Fig.6(d) shows the variation of KCwith the param-
eter λ for the first three datasets, and form it we can observe
that KC also takes a relatively larger value in this range
for the three datasets. So in the following experiments, we
set λ as 0.1.

C. EXPERIMENTAL RESULTS ON THE
FIRST THREE DATASETS
In this section we first investigate the performance of the pro-
posedAPSC algorithm. For the first three datasets, the labeled
pixels, fuzzy pixels and unlabeled pixels extracted by APSC
are shown in Fig.7-9. Fig.7(a), Fig.8(a) and Fig.9(a) show
the strictly changed pixels on the Bern, Ottawa and Yellow
datasets respectively. When compared them with the ground-
truth, we can observe that most of the detected labeled pixels
are correct, which validate the effectiveness of APSC.

Moreover, from Fig.7(a), Fig.8(a) and Fig.9(a) we can
observe that the detected strictly changed pixels are locally
connected. That is, APSC is robust to the speckle noises
existed in the SAR images. Fig.7(b), Fig.8(b) and Fig.9(b)
show the fuzzy pixels detected by APSC on the Bern, Ottawa
and Yellow datasets respectively. From them we can observe

FIGURE 9. Extracted pixels by APSC on the Yellow dataset. (a) Strictly
changed pixels. (b) Fuzzy pixels. (c) Strictly unchanged pixels.

that the fuzzy pixels prone to be uniformly distributed in the
whole image, which contain both changed and unchanged
pixels. This is consistent with the uncertainty of fuzzy pixels.
Fig.7(c), Fig.8(c) and Fig.9(c) show the strictly unchanged
pixels by APSC on the Bern, Ottawa and Yellow datasets
respectively. From Fig.7(c), Fig.8(c) and Fig.9(c) we can
find that most of them are unchanged pixels, and this is
especially obvious in Fig.9(c). However, the detected strictly
unchanged pixels not only contain pixels with low reflectivity
but also include some speckle noises, which will bring some
misclassification to ESLM.

FIGURE 10. Change maps of different methods on the Bern data set.
(a) MMK [30]. (b) DDL [26]. (c) NR [27]. (d) LRCN [28]. (e) CA [29]. (f) ESLM.

When the three groups of pixels are identified by our
proposed clustering algorithm, then ESLM is incrementally
trained to detect changes. Consequently we compare the
detection results of the five comparative methods and ESLM.
The change detection results of the first three datasets are
shown in Fig.10∼Fig.12 respectively. Fig.10(a)-(f) show the
detected change maps of the first dataset, by MMK [30],
DDL [26], NR [27], LRCN [28], CA [29] and ESLM respec-
tively. From them we can see that there are little difference
among the detection results of different methods, since the
original images are relatively clean. MMK [30], LRCN [28],
CA [29] and ESLM present similar results, and there are
some wrongly detected pixels in the result of DDL [26]
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and NR [27]. Compared with the unsupervised methods,
ESLM not only provides more refined edges but also less
noisy pixels when compared with other methods. Moreover,
ESLM present comparable results with the supervised meth-
ods that explore a lot of labeled pixels for training, including
LRCN [28] and CA [29]. However, ESLM need not man-
ually label large number of changed and unchanged pixels.
By using the self-paced learning, ESLM can automatically
label change pixels in an incremental manner. Besides it,
ESLM also explore fuzzy pixels to enhance the detection
accuracy, and the parameters of ESLM are analytically deter-
mined, which can also achieve a rapid detection.

FIGURE 11. Change maps of different methods on the Ottawa dataset.
(a) MMK [30]. (b)DDL [26]. (c) NR [27]. (d) LRCN [28]. (e) CA [29]. (f) ESLM.

Fig.11(a)-(f) show the detected changes of the second
dataset by MMK [30], DDL [26], NR [27], LRCN [28],
CA [29] and ESLM respectively. From the results we can
observe that NR [27] detects too smooth regions and its
OE is the highest among these methods. DDL [26] has the
lowest missed alarms and ESLM has the lowest false alarms.
LRCN [28], CA [29] present better results than MMK [30],
DDL [26] and NR [27]. According to OE, ESLM present
better results when compared with other methods. However,
the missed alarm rate is slightly high when compared with
LRCN [28] and DDL [26].

Fig12(a)-(f) show the detected changes maps of the third
dataset by MMK [30], DDL [26], NR [27], LRCN [28],
CA [29] and ESLM respectively. From Fig.12(f) we can see
that our method can present comparable results with other
supervised methods. However, ESLM consumes less time
than the supervised methods, such as LRCN [28] and CA
[29]. Among the comparative methods, MMK [30] present
very homogeneous detection results. Because the ground-
truth of the third dataset is also homogeneous, the changemap
generated byMMK [30] are more accord with the groud-truth
when compared with other methods.

The numerical metric (FA, MA,OE, PFA,PMA,POE , KC)
and the consumed time of the six methods are shown

FIGURE 12. Change maps of different methods on the Yellow data set.
(a) MMK [30]. (b) DDL [26]. (c) NR [27]. (d) LRCN [28]. (e) CA [29]. (f) ESLM.

TABLE 1. Numerical results of bern dataset.

TABLE 2. Numerical results of ottawa dataset.

TABLE 3. Numerical results of the Yellow dataset.

in Table 1, Table 2 and Table 3 respectively. As to these
evaluations, the best results of the six methods are denoted as
bold. From the results we can see that in most cases, ESLM
has better performance in detecting change details. As can
be seen from the three tables, ESLM can totally achieve
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FIGURE 13. Comparison of AP with APSC on the Bern dataset.

FIGURE 14. Comparison of AP with APSC on the Ottawa dataset.

FIGURE 15. Comparison of AP with APSC on the Yellow dataset.

small detection error. Moreover, ESLM not only has the
highest kappa coefficients, but also has acceptable running
time.

D. EVALUATION CRITERION AND PARAMETER SELECTION
In order to separately investigate the role of the clustering
algorithm and the classifier in our method, in this test we
first compare APSC algorithm with AP algorithm, and then
compare AR-SELM with ELM. The performance of the AP
and APSC algorithms, are compared on the three datasets.
Fig.13-15 show the convergence curves of AP and APSC
for the three datasets respectively. From Fig.13-15, we can
observe that for all the three datasets, APSC required less
number of iterations before convergence than that of AP.
In other words, APSC has faster clustering speed than AP.
Moreover, we can also find that APSC is superior to AP as to
the convergence speed, which can be observed in Fig.13(b),
Fig.14(b) and Fig.15(b).

Moreover, two methods are used to compare with our
proposed method, including AP-ELM (which uses AP for

TABLE 4. Comparison of AP-ELM, AP-ARSELM and ESLM on bern dataset.

TABLE 5. Comparison of AP-ELM, AP-ARSELM and ESLM on ottawa
dataset.

TABLE 6. Comparison of AP-ELM, AP-ARSELM and ESLM on Yellow
dataset.

FIGURE 16. Experimental results of the east lack region, Wuhan, China.
(a) Image acquired in 06, 2006. (b) Image acquired in 03, 2007.
(c) Log-ratio DM. (d) MMK [30]. (e) DDL [26]. (f) NR [27]. (g) LRCN [28].
(h) CA [29]. (i)ESLM.

clustering and ELM without affinity regularizer),
AP-ARSELM (which uses AP for clustering and AR-SELM
with affinity regularizer). The comparison results of their per-
formance on the first three datasets are shown in Table 4∼6
respectively. It can be clearly seen from them that APSC has
an improvement over AP about the performance, and our
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FIGURE 17. Experimental results of Erqi Changjiang River Bridge region,
Wuhan, China. (a) Image acquired in 06, 2006. (b) Image acquired in 03,
2007. (c) Log-ratio DM. (d) MMK [30]. (e) DDL [26]. (f) NR [27].
(g) LRCN [28]. (h) CA [29]. (i) ESLM.

proposed ESLM is superior to the original ELM by adding
the spatial and reflectivity affinity between pixels in the
classification.

E. EXPERIMENTAL RESULTS ON THE LAST TWO DATASETS
In this test, we test our proposed method on the last two
datasets. The detection results of six methods are shown
in Fig.16 and Fig.17 for visual comparison. Fig.16(a)-(b)
and Fig.17(a)-(b) show the two source SAR images, and
the log-ratio DMs of the forth and fifth dataset are shown
in Fig.16(c) and Fig.17(c) respectively. The main changes
between Fig.16(a) and Fig.16(b) are some building and filled
lakes. The main changes between Fig.17(a) and Fig.17(b)
include the Erqi Changjiang River Bridge, some ships and
buildings.

The detection results of the six methods on the two datasets
are shown in Fig.16(c)-(i) and Fig.17(c)-(i), respectively.
As shown in Fig.16 (e) and (h), we could observe that
DDL [26] and CA [29] produce many isolate pixels, which
denotes that they are not robust enough to heavy speckle
noises. However, from Fig.16(i) we can observe that our
method produce less isolate pixels and detect more homoge-
neous changeswhen comparedwith othermethods. Similarly,
the detected changes by ESLM in Fig.17 (i) have less isolated
pixels.

V. CONCLUSION
Human intelligence indicates a learning agent interacts with
a dynamic environment and updates its action policies to

maximize its long-term rewards. Inspired by it, an automatic
and robust unsupervisedmethod viamultistage clustering and
new extreme self-paced learning machine, is proposed for
on-orbit change detection of SAR images. The advantage
of ESLM is two folds: 1) it can gradually make avail of
the most confident samples, so it has low memory cost and
low computational complexity, which is desirable for on-orbit
processing; 2) it adopts a semi-supervised model to realize a
gradual classification, so achieving accurate detection results.
The performance of the proposed method is investigated on
several real SAR images, and the results are promising for
on-orbit detection. However, as we can see in the results of
the Yellow River dataset, our algorithm is also influenced by
heavy speckle noises. Therefore, improving the performance
of the algorithm to deal with heavy speckle noises will be
considered in our future work.
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