
Received July 31, 2019, accepted August 9, 2019, date of publication August 13, 2019, date of current version September 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2935104

Consensus Control of Multiple AUVs Recovery
System Under Switching Topologies
and Time Delays
WEI ZHANG1, JIA ZENG 1, ZHEPING YAN1, SHILIN WEI1, JUN ZHANG2, AND ZEWEN YANG1
1College of Automation, Harbin Engineering University, Harbin 150001, China
2Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

Corresponding authors: Jia Zeng (add0624@163.com) and Jun Zhang (zhangjun410410@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51309067, in part by the Natural
Science Foundation of Heilongjiang Province of China under Grant E2016020, in part by the Fundamental Research Funds for the Central
Universities under Grant HEUCFP201736 and Grant HEUCFM171011, and in part by the Ph.D. Student Research and Innovation Fund of
the Fundamental Research Funds for the Central Universities under Grant 3072019GIP0405.

ABSTRACT The consensus control of multiple AUVs recovery system is the key to complete the multi-AUV
recovery mission. This paper proposes consensus control of multiple AUVs recovery system under switching
communication topologies and time delays including input delay and communication delay. Consensus
control algorithm for a multi-AUV recovery system is assumed to guarantee all the members to reach a
common motion state and desired point. The mothership is regarded as the point which all AUVs have to
catch up with, the recovery problem of multiple AUVs can be seen as the consensus problem of multi-
agents system. A randomly changing consensus stability criteria and stabilization conditions are derived by
a suitable Lyapunov-Krasovskii functional for the Markovian switching recovery system with time delays,
and then a consensus controller design method is derived. Finally, the correctness of the proposed method is
proved by simulation experiments.

INDEX TERMS Consensus control, multiple AUVs, recovery system, switching topologies, time delays.

I. INTRODUCTION
Similar to the spurt development of Unmanned Aerial Vehi-
cles (UAVs), Autonomous Underwater Vehicles (AUVs) are
also entering the fast lane of development. At present, there
are hundreds of AUVs in the world, which are active in
various fields such as marine science, marine engineering,
underwater security and underwater operations. Recovery is
an essential part of the AUV operation process, and success-
ful recovery is the basis for AUV to work normally under
water. Unsuccessful recovery may cause damage to the AUV,
causing the whole system to fail and even the AUV to be
lost. Extensive cooperation among unrelated individuals is
unique to humans, who often work together to achieve what
they are unable to execute alone. It is important to focus
on the collective behavior that emerges as the result of the
interactions among individuals, groups, and even societies
[1], [2]. Similarly, with the maturity and development of
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AUV technology, single AUV can no longer meet the task
requirements. Therefore, it is an inevitable direction for AUV
development that multiple AUVs work together to perform
tasks. At the same time, it also puts forward new requirements
for the recovery of AUV and promotes the application of
cluster intelligence, formation control and other technologies.
Multiple AUVs are characterized by distribution, dynamics,
adaptability, intelligence, coordination, generalization and
stratification, which can effectively reduce costs, expand
capabilities, improve efficiency and detect probabilities. Dur-
ing the recovery process, when the mothership sails along
the desired trajectory, multiple AUVs transmit information
through the sonar to ensure that mothership and AUVs can
coordinate andmaintain a consistent state. However, there are
few studies on recovery, especially multiple AUVs recovery
system, therefore, the studies of consensus control of multiple
AUVs recovery system have practical significance.

Consensus control algorithm for a multi-AUV recovery
system is assumed to guarantee all the members to reach a
common motion state and desired points. During recovery
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process, the mothership is regarded as the point which all
AUVs have to catch upwith, the recovery problem ofmultiple
AUVs can be seen as the consensus problem of multi-agents
system similarly. Consensus algorithms can be viewed as
the primary method of solving the problem for the recovery
system. Because of the uncertain, dynamical, and adversarial
underwater environments and the multiple AUVs have highly
complex nonlinear dynamics and complicated interaction
behaviors, the problem of multi-AUV consensus control is
well-known challenging [3]. A large number of studies have
been conducted on consensus control of multiple AUVs over
the past decades [4]–[15]. The consensus is defined as that
all agents maintain the common state in positions, velocities
and/or attitudes.

From the existing literature review, it has been investigated
that graph theory analysis has great advantages for deal-
ing with consensus control problem because it can simplify
communication topology and optimize information model of
multi-AUV system. It chooses edges and vertexes to delegate
the each independent AUV and their communication topo-
logical relations, respectively. Consequently, deployment of
graph theory is the appropriate preference for the consensus
tracking control of multi-AUV system in complex oceanic
environment [16].

Multiple AUVs can effectively carry out a recovery task
when they are successfully exchanging information. How-
ever, due to the complex and varied underwater environment
and the influence of communication distance, the information
affected by the actual sea conditions may be delayed or
interrupted. The status information of multi-AUVs cannot be
received in time, so coordination of the system should be
guaranteed in the case of input delay and communication
delay. Communication can be disconnected because of lim-
ited communication during the recovery process, in order to
maintain the connection, communication topology switching
is necessary. The stochastic switching topologies ensure that
all agents can receive interconnection information, which
contributes to the stable convergence under the limited com-
munication conditions.

[17] discusses linear/nonlinear consensus problems for a
network of dynamic agents with fixed and switching topolo-
gies. Reference [18] considers a leader-following consensus
problem of second-order multi-agent systems with fixed and
switching topologies as well as non-uniform time-varying
delays. Reference [19] uses time-domain (Lyapunov theo-
rems) and frequency-domain (the Nyquist stability criterion)
approaches to study leaderless and leader-following consen-
sus algorithms with communication and input delays under a
directed network topology in both the first-order and second-
order cases. Reference [20] investigates a novel consensus
protocol without using the neighbors velocity information.
The stochastic switching topology and the random commu-
nication delay which exist in the switching signal as well
as the position information exchanges are dominated by two
mutually independent Markov chains. Reference [21] con-
siders the problem of leader-following consensus stability

and also stabilization for multi-agent systems with inter-
val time-varying delays. Stochastic consensus problems for
linear time-invariant multi-agent systems over Markovian
switching networks with time-varying delays and topology
uncertainties are dealt with in [22]. Reference [23] aims at
extending the deterministic averaging method to the stochas-
tic case which includes communication white noises and
Markovian switching network topology. A condition for con-
sensus for a networked system based on linearmatrix inequal-
ities that takes into account the joint effect of time-varying
delays and switching network topology, [24] proposes a new
approach for the analysis of consensus of multi-agent systems
subject to time-varying delayed control inputs and switching
topology. [25] establishes general and applicable results for
uniform stability, uniform asymptotic stability and exponen-
tial stability of the systems by using the impulsive con-
trol theory and some comparison arguments. Reference [26]
divides the communication topology into two different
switching parts and then investigates a consensus algorithm
to solve the coordinate control problems of leaderless multi-
AUVs with double independent Markovian switching com-
munication topologies and time-varying delays among the
underwater sensors. In [27], the system is affected by data
processing and communication time-delays that are assumed
to be asynchronous, the consensus of a saturated second-order
multi-agent system with non-switching dynamics that can be
represented by a directed graph is presented. Reference [28]
studies the switching laws designed to maintain the stability
of delayed switched nonlinear systems with both stable and
unstable modes. The addressed time delays include finite and
infinite delays. Reference [29] concerns with exploring the
theoretically and technically research outcomes for the con-
flict resolution of multiple unmanned aerial vehicles (UAVs)
by using the Internet of Things (IoT) technologies. [30] estab-
lishes some efficient criteria for finite-time consensus of a
class of nonsmooth opinion dynamics over a digraph. Refer-
ence [31] investigates the problem of output tracking control
for a class of delayed switched linear systems via state-
dependent switching and dynamic output feedback control.
Reference [32] proposes coordinated control protocols with
or without time delay for the coordination control problem of
multiple AUVs under switching communication topologies
based on discrete information.

The consensus problem for multiple AUVs recovery sys-
tem under switching communication topology and time
delays including input delay and communication delay has
not been investigated yet. In this paper, leader-following
consensus criteria is used to solve multi-AUV recovery prob-
lem, consensus control algorithm for a multi-AUV recovery
system is assumed to guarantee all the members to reach a
common motion state and desired points. The mothership is
regarded as the point which all AUVs have to catch up with,
the recovery problem of multiple AUVs can be seen as the
consensus problem of multi-agents system similarly, multiple
AUVs consensus control protocol under switching communi-
cation topologies and time delay including input delay and
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communication delay is designed during the recovery pro-
cess. Firstly, the single AUV nonlinear mathematical model
is transformed into a second-order integral model via state
feedback linearization by [21]. Secondly, a randomly chang-
ing consensus stability criteria and stabilization conditions
are derived by a suitable Lyapunov-Krasovskii functional for
the Markovian switching recovery system with times delays,
and then a consensus controller design method is derived.
Finally, the correctness of the proposed method is proved by
simulation experiments.
Notation: Rn is the n-dimensional Euclidean space, Rm×n

denotes the set of m× n real matrix. Cn,h = C ([−h, 0] ,Rn)

denotes the Banach space of continuous functions mapping
the interval [−h, 0] intoRn. For symmetric matrices X and Y,
X > Y means that thematrixX−Y is positive definite,X ≥ Y
means that the matrix X − Y is nonnegative. X⊥ denotes
a basis for the null-space of X . In, 0n and 0m×n denotes
n× n identity matrix, n× n and n×m zero matrices, respec-
tively.E {·} stands for themat-hematical expectation operator.
‖·‖ refers to the Euclidean vector norm and the induced
matrix norm. λmax (·) means the largest eigenvalues of a
given square matrix. diag {· · · } denotes the block diagonal
matrix. ∗ represents the elements below the main diagonal of
a symmetric matrix.

II. PROBLEM FORMULATION
The basic introduction of graph theory and the kinematic and
dynamic models of the AUV that moves in the horizontal
plane are given in this section, and transform the AUVmodel
into a linear model.

A. GRAPH THEORY
The interaction topology of a network of underwater vehicles
can be described by the weighted directed graph. Suppose
a system with n nodes(vehicles). Let G = (V, ε,A) be a
weighted directed graph with a node set V = {1, 2, · · · , n},
an edge set ε = {(i, j) |i, j ∈ V } ⊆ V × V , and an adjacency
matrix A =

[
aij
]
⊂ RN×N of the digraph G is the matrix

with nonnegative elements, where aij > 0 if (i, j) ∈ ε,
while aij = 0 if (i, j) /∈ ε. Moreover, aii = 0 where
i = {1, 2, · · · , n} ∈ v. The digraph G is said to be undirected
if aij = aji. A set of neighbors of underwater vehicle i is
denoted by Ni = {j ∈ V : (i, j) ∈ ε}. The in-degree matrix
is defined as D = diag

(
d in1 , d

in
2 , . . . , d

in
n
)
, i ∈ (1, . . . , n),

where d ini and douti are the in-degree and out-degree of the

node d ini =
n∑
j=1

aij and douti =

n∑
j=1

aji. The G is said to be

balanced if d ini = douti for all i = 1, 2, . . . , n.

B. THE AUV MODEL
The dynamicmodel of AUVcan be described by the 6 degrees
of freedom (DOFs) according to the earth-fixed {E} and
body-fixed {G} coordinate systems as shown the red vehicle
in Fig. 2. In this paper, the type of AUV is common torpedo-
like, which is symmetrical in plane and vertical. As rolling

FIGURE 1. Multiple AUVs recovery system is assumed to guarantee all the
members to reach a common motion state and desired point. The
mothership is regarded as the point which all AUVs have to catch up with.

FIGURE 2. The dynamic model of mothership(yellow) and AUV(red) with
the 6 degrees of freedom(DOFs) under earth-fixed and body-fixed
coordinate system.

TABLE 1. The name and symbol in earth-fixed and body-fixed coordinate
system.

has little influence on translational motion, the roll speed is
ignored in this paper. The symbols and parameters adopted
conform to the system recommended by the International
Pool Conference(ITTC) and the Society of Shipbuilding and
Marine Engineering (SNAME) Terminology Bulletin. The
coordinate system satisfies the right-hand Cartesian rectan-
gular coordinate system (see Table 1) [33]. The mothership
model is the same as the AUV model since the roll speed is
ignored as shown the yellow vehicle in Figure 2.

The Kinematics equation and Kinetics equation are as
follows

η̇ = J (η) v (2.1)

Mv̇+ C (v) v+ D (v) v+ g (η) = τ (2.2)

where η =
[
x y z θ ϕ

]T
∈ R5 represents the states of

position and Euler angles respectively, J (η) is the Jacobian
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matrix from body-fixed frame to earth-fixed frame.
vi = [ui, vi,wi, qi, ri]T ∈ R5 represents the states of veloci-
ties. Matrix M denotes inertia matrix, C (v) denotes Coriolis
and centripetal matrix and D (v) denotes damping matrix.
g (η) is a vector of generalized gravitational and buoyancy
forces and moments. τ is the control input. Further details
regarding themodel parameters can be found in [33] and [34].

The model of AUV is a nonlinear and coupling model, the
feedback linear method can be used to translate the nonlinear
model into the following linear model in [32]. The derivation
process is as follows.

The mathematical model of AUV now can be represented
as[
η̇

v̇

]
=

[
I 0
0 −M−1

] [
J (η) v
W (v) v

]
+

[
0

M−1γ (ξ)

]
uτ (2.3)

Then the nonlinear model of AUV can be described as

ξ̇ = p (ξ)+ q (ξ) uτ
µ = r (ξ) (2.4)

where ξ̇ =
[
ηT , vT

]T ,
p (ξ) =

[
I 0
0 −M−1

] [
J (η) v
W (v) v

]
= [pi (ξ)]T , i = 1, 2, . . . , 10

q (ξ) =
[

0
M−1γ (ξ)

]
=
[
qij (ξ)

]
10×10 , i, j = 1, 2, . . . , 10

r (ξ) = η

Lemma 1: The system can be linear by feedback linearization
method, which is a system as Eq. (3.1), if the conditions can
be satisfied:

(1) The dimension of input is same as output;
(2) The system has relative degree, ρ1, ρ2, . . . , ρn;
(3) The sum of relative degree is same as the dimension of

the system.
Combining qij (ξ) in the Eq. (2.4), the matrix 0 (ξ) can

be determine with the property of Lie derivative. 0 (ξ) is
following as (2.5), as shown at the top of the next page.

According to the Eq. (2.4), the specific numerical qij (ξ)
can be computed, so 0 (ξ) is nonsingular matrix, and the
relative degree of the system is followed as

ρ1 = 2, ρ2 = 2, ρ3 = 2, ρ4 = 2, ρ5 = 2 (2.6)

So ρ1 + ρ2 + ρ3 + ρ4 + ρ5 = 10, which is same as the
dimension of the system. According to Lemma 1, the non-
linear model of AUV can be linear by feedback linearization
method, and the transformation of the new coordinates is

x =
[
r1 (ξ) r2 (ξ) r3 (ξ) r4 (ξ) r5 (ξ)

]
v=

[
Lpr1 (ξ) Lpr2 (ξ) Lpr3 (ξ) Lpr4 (ξ) Lpr5 (ξ)

]
(2.7)

The control input in the new linearization system can be
defined as

u = T (ξ)+ 0 (ξ) uτ (2.8)

where T (ξ) =
[
L2pr1 (ξ) L

2
pr2 (ξ) L

2
pr3 (ξ) L

2
pr4 (ξ)

]
L2pr5(ξ ), because the expression of T (ξ) is too complex, it
won’t be written out here. Therefore, the actual control input
can be obtained by uτ = 0−1 (ξ) (ui − T (ξ)).
Combining with the Eq. (2.7) and (2.8), the feedback lin-

earization dynamic model of AUV’s standard second-order
integral form can be obtained:

ẋi = vi
v̇i = ui (2.9)

where xi ∈ R5, vi ∈ R5, vi ∈ R5, ui ∈ R5.

C. LEMMA
In this section, various lemmas that play important roles in
the subsequent analysis are introduced.
Lemma 2 [35]: Let ⊗ denotes the notation of Kronecker

product. Then, its properties are easily established:
(1) (αA)⊗ B = A⊗ (αB)
(2) (A+ B)⊗ C = A⊗ C + B⊗ C
(3) (A⊗ B) (C ⊗ D) = (AC)⊗ (BD)
Lemma 3 [36]: For any constant matrix M ∈ Rn×n,

M = MT > 0, scalar γ , vector function χ : [0, γ ] → Rn

such that the integrations concerned are well defined, then

−γ

∫ γ

0
xT (s)Mx (s) ds≤−

(∫ γ

0
x(s) ds

)T
M
(∫ γ

0
x(s) ds

)
Lemma 4: [37]: Let ζ ∈ Rn, 8 = 8T

∈ Rn×n, and
γ ∈ Rm×n such that rank γ < n. The following statements
are equivalent:

(1) ζ T8ζ < 0, ∀γ ζ = 0, ζ 6= 0
(2) ϒ⊥

T
8ϒ⊥ < 0

(3) ∃F ∈ Rn×m : 8+ Fγ + γ TFT < 0

III. CONSENSUS CONTROL UNDER SWITCHING
TOPOLOGIES AND TIME DELAYS
As mentioned previously, the following will introduce con-
sensus control algorithm for a multi-AUV recovery system
under switching topologies and time delays. The mothership
and the multi-AUV operate in the form of a stochastically
switching topology. It is assumed the interconnection topol-
ogy is Markovian switching, the Markov chain describing the
switching process has a stationary probability distribution.
Since the graph is allowed to be time-varying, we suppose
that there are M possible different graphs, and the network
topologies switch among them.

A. DESIGN PROCEDURE
In this section, consensus control algorithm for a multi-AUV
recovery system is assumed to guarantee all the members
to reach a common motion state and desired points. The
mothership is regarded as the point which all AUVs have
to catch up with, the recovery problem of multiple AUVs
can be seen as the consensus problem of multi-agents system
similarly.
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0 (ξ) = LqiLPrj (ξ)

=


q6,1 cosψ cos θ −q7,2 sinψ q8,3 cosψ sin θ q8,4 cosψ sin θ −q7,5 sinψ
q6,1 sinψ cos θ q7,2 cosψ q8,3 sinψ sin θ q8,4 sinψ sin θ q7,5 cosψ
−q6,1 sin θ 0 q8,3 cos θ q8,4 cos θ 0

0 0 q9,3 q9,4 0
0 q10,2

/
cos θ 0 0 q10,5

/
cos θ

 (2.5)

Definition 1 [38]: In a system consisting of AUVs, the
motion state vector of the i-th AUV at time t is xi (t), the
mothership’s motion state is xm (t). If the system satisfies
the following formula, the recycling system can achieve con-
sistency, and ensure that the AUVs can continuously and
stably follow the mothership.

lim
t→∞
‖xi (t)− xm (t)‖ = 0

According to dynamics (2.9), consider the consensus algo-
rithm for the dynamics of the mothership is described as:

ẋm (t) = vm (t)

The dynamics of the group of AUVs under multiple inde-
pendent topologies defined as follows:

ẋi (t) = vi (t)

v̇i (t) = ui (t)

Consider a multi-AUV recovery system consisting of
AUVs, each AUV is regarded as a node in a digraph G,
employing the standard double-integrator dynamic of AUV
in Eq. (2.9), the consensus control can be designed as follows
based on the consensus algorithm.

ui (t)

= −K
∑
j∈Ni

aij (t)
((
pi (t)− pj (t)

)
+
(
vi (t)− vj (t)

))
−Kci (t) ((pi (t)− pm (t))+ (vi (t)− vm (t))) (3.1)

Due to the limited communication, which easily results in
the time delay. The consensus algorithm with the time delay
is given by

ui (t)

= −K
∑
j∈Ni

aij (t)
((
pi (t − τ1)− pj (t − τ1 − τ2)

)
+
(
vi (t − τ1)− vj (t − τ1 − τ2)

))
−Kci (t) ((pi (t − τ1)− pm (t))+ (vi (t − τ1)− vm (t)))

(3.2)

where ui is the control input for i-th AUV which uses only
the state information from its neighboring agents. K is a
protocol gain; pi (t) ∈ Rn and vi (t) ∈ Rn (pj (t) ∈ Rn

and vj (t) ∈ Rn) are the position and velocity of the i-th
AUV (j-th AUV) at time t, respectively. pm (t) ∈ Rn and
vm (t) ∈ Rn are the position and velocity of the mothership;

aij (t) is the communication weight between i-th AUV and j-
th AUV, where aij (t) > 0 if i-th AUV is connected with j-th
AUV at time t , otherwise aij (t) = 0; cm (t) is the communi-
cation weight between the mothership and i-th AUV, which is
described by diagonal matrix C , C = diag {c1, c2, · · · cN } ∈
RN×N , where cmi (t) > 0 if i-th AUV is connected with
mothership at time t , otherwise cmi (t) = 0; τ1 and τ2 (t)
represent input and communication time-delays, respectively.
τ1 is constant, τ2 (t) is an interval time-varying continuous
function satisfying, 0 < τ1 + τ2 (t) ≤ h and τ̇2 (t) ≤ hp.
The state of mothership and i-th AUV can be described as

xm (t) =
[
pTm (t) vTm (t)

]T
∈ R10n

xi (t) =
[
pTi (t) vTi (t)

]T
∈ R10n

The above recovery problem is transformed into an error
analysis problem, the system state error vector of i-th AUV
relative to the motion state information of mothership is
defined as εi (t) = xi (t) − xm (t). Let’s define ε (t) =(
εT1 (t) , ε

T
2 (t) , · · · , ε

T
N (t)

)T , ε (t) = [
εTp (t) ε

T
v (t)

]T
,

εp (t) and εv (t) represent the state error of position and
velocity in the group, respectively. Then, the system can be
rewritten as the matrix form by

ε̇ (t)=(In ⊗ A) ε (t)−B⊗ Kε (t−τ1)+C ⊗ Kε (t−µ)

(3.3)

where

µ = τ1 + τ2

A =
[
0 I
0 0

]
∈ R10×10

B =
[

0 0
D + C D + C

]
∈ R10×10

C =
[
0 0
A A

]
∈ R10×10

A =
[
aij
]
∈ R5×5

C = diag {c1, c2, · · · cN } ∈ R5×5

D = diag

∑
j∈N1

a1j, · · · ,
∑
j∈NN

aNj

 ∈ R5×5

The mothership and the multi-AUVs operate in the form of
a stochastically switching topology. The common probability
space for all random variables in the paper is denoted by
(�,F ,P), � is the space of elementary events, F is the
underlying σ -field on �, P is a probability measure on F .
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ρt is a right-continuous Markov process representing the
topology switching process of the agents, which takes values
in a given finite set M = {1, 2, . . . ,M} with generator

∏
=

{πkl}. The transition probability can be described as [39].

Pr
{
ρt+δ = l |ρt = k

}
=

{
πklδ + o (δ) l 6= k
1+ πkkδ + o (δ) l = k

where δ > 0, limδ→0+ (o (δ)/δ) = 0 and the transition
probability rates from mode k at time t to mode l at time
t + δ satisfy πkl ≥ 0 for k, l ∈ M, k, l ∈ M, k 6= l, and
πkk = −

∑
l 6=k πkl .

In this paper, a model with the consensus algorithm (3.3)
and Markovian switching interconnection topology are con-
sidered as

ε̇ (t) = (In ⊗ A) ε (t)− B (ρt)⊗ K (ρt) ε (t − τ1)

+C (ρt)⊗ K (ρt) ε (t − µ) (3.4)

where

A (ρt) =
[
aρtij
]
∈ R5×5

C (ρt) = diag
{
cρt1 , c

ρt
2 , · · · c

ρt
N

}
∈ R5×5

D (ρt) = diag

∑
j∈N1

aρt1j , · · · ,
∑
j∈NN

aρtNj

 ∈ R5×5

B (ρt) =
[

0 0
D (ρt)+ C (ρt) D (ρt)+ C (ρt)

]
∈ R10×10

C (ρt) =
[

0 0
A (ρt) A (ρt)

]
∈ R10×10

System (3.4) is the consensus control of the multiple AUVs
recovery system with Markovian switching topologies and
time delays, which reflects a stochastic communication pro-
cess between the mothership and AUVs or among AUVs.
Communication is described by a Markov stochastic process,
ρt is defined as the Markov process taking values on state
space M = {1, 2, . . . ,M}. The matrices B (ρt) and C (ρt)
would change randomly from one mode to another mode via
a Markov jump process, the control gains vary from mode
to mode in Markov switching topologies. The protocol gain
K (ρt) is to guarantee the consensus of the recovery system.
Definition 2 [40]: A Markovian system (3.4) is said to be

stochastically stable if for any finite φ ∈ Cn,h, which denotes
a vector valued initial function, and the initial condition of the
mode ρ0 ∈M, the following condition is satisfied

lim
t→∞

E
{∫ t

0
xT (s) x (s) ds |φ, ρ0

}
<∞

B. CONVERGENCE ANALYSIS
In this section, we shall propose stabilization criteria for
system (3.4). For simplicity of matrix representation,
ei ∈ R5Nn×5Nn (i = 1, 2, . . . 5) are defined as block entry
matrices. The notations of several matrices are defined as:

ξ (t)

=
[
εT (t) εT (t − τ1) εT (t − µ) εT (t − h) ε̇T (t)

]

2(ρt)

=
[
In ⊗ A B (ρt)⊗ K (ρt) C (ρt)⊗ K (ρt) 0 −In

]
41

= e1
(
IN ⊗ Pk

)
eT5 + e5

(
IN ⊗ Pk

)
eT1

+ e1
M∑
l=1

(
πkl

(
IN ⊗ Pl

))
eT1

42

= e1 (IN ⊗ (Q1 + Q2 + Q3)) eT1 − e2 (IN ⊗ Q1) eT2
−
(
1− hp

)
e3 (IN ⊗ Q2) eT3 − e4 (IN ⊗ Q3) eT4

43 = e5
(
IN ⊗ h2R

)
eT5 − (e1 − e2) (IN ⊗ R) (e1 − e2)

T

− (e2 − e3) (IN ⊗ S) (e2 − e3)T

− (e3 − e4) (IN ⊗ S)T (e3 − e4)T

− (e2 − e3) (IN ⊗ R) (e2 − e3)T

− (e3 − e4) (IN ⊗ R) (e3 − e4)T

44

= e1 (IN ⊗ (hW1+U1)) eT1 +e2 (IN ⊗ (U2−U1)) eT2
+ e3 (IN ⊗ (U3 − U2)) eT3 − e4 (IN ⊗ U3) eT4
+ e5 (IN ⊗ hW2) eT5

�(ρt)

= 41 +42 +43 +44

= e1
(
IN ⊗ Pk

)
eT5 + e5

(
IN ⊗ Pk

)
eT1

+ e1 (IN ⊗ (Q1 + Q2 + Q3)− (IN ⊗ R)

+ IN ⊗ (hW1 + U1)+

M∑
l=1

(
πkl

(
IN ⊗ Pl

)))
eT1

+ e2 ((IN⊗(U2−U1))−(IN⊗Q1)−(IN ⊗ S)) eT2
+ e3

(
(IN ⊗ (U3 − U2))−

(
1− hp

)
(IN ⊗ Q2)

)
eT3

+ e4
(
(IN⊗S)T+(IN⊗R)−(IN⊗U3)−(IN ⊗ Q3)

)
eT4

+ e5
((
IN ⊗ h2R

)
+ (IN ⊗ hW2)

)
eT5 (3.5)

Theorem 1: For given the gains K (ρt) and the scalars h, hp,
the AUVs in the recovery system (3.4) converge to the state
of themothership stochastically, if there exist positive definite
matrices Pk ∈ Rn×n, W1,W2 ∈ Rn×n, Q1,Q2,Q3 ∈ Rn×n,
R ∈ Rn×n, any symmetric matrices U1,U2,U3 ∈ Rn×n and
any matrix S ∈ Rn×n, satisfying the following LMIs for
k ∈M:

[2(ρt)]⊥
T
�(ρt) [2(ρt)]⊥ < 0 (3.6)[

R S
∗ R

]
≥ 0 (3.7)[

W1 U1
∗ W2

]
> 0

[
W1 U2
∗ W2

]
> 0[

W1 U3
∗ W2

]
> 0 (3.8)

where �(ρt) and 2(ρt) are defined in Eq. (3.5)
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Proof: For each k ∈ M, V (ε (t) , k) is the following
Lyapunov-Krasovskii stochastic functional

V (ε (t) , k) =
4∑
i=1

Vi (ε (t) , k)

V1 = εT (t)
(
IN ⊗ Pk

)
ε (t)

V2 =
∫ t

t−τ1
εT (s) (IN ⊗ Q1) ε (s)ds

+

∫ t

t−τ1−τ2
εT (s) (IN ⊗ Q2) ε (s)ds

+

∫ t

t−h
εT (s) (IN ⊗ Q3) ε (s)ds

V3 = h
∫ t

t−h

∫ t

s
ε̇T (θ) (IN ⊗ R) ε̇ (θ)dθds

V4 =
∫ t

t−h

∫ t

s

(
εT (θ) (IN ⊗W1) ε (θ)

)
dθds

+

∫ t

t−h

∫ t

s

(
ε̇T (θ) (IN ⊗W2) ε̇ (θ)

)
dθds

(3.9)

There exist some real matrices Pk =
(
Pk
)T , W = W T ,

Q = QT and R = RT , to satisfy the condition, we assume
each matrix variable to be positive definite.

By use of the weak infinitesimal operator L [21], [41], the
LV (ε (t) , k) is calculated as

LV (ε (t) , k)= lim
δ→0+

1
δ
[E{V (χ(t + δ) , ρt+δ)|χ (t) , ρt=k}

−V (χ (t) , ρt=k)]

LV (ε (t) , k) = LV1 + LV2 + LV3 + LV4 (3.10)

The term LV1 is given by

LV1

= 2εT (t)
(
IN ⊗ Pk

)
ε̇ (t)+εT (t)

(
M∑
l=1

πkl

(
IN ⊗ Pl

))
ε (t)

= ξT (t)4k
1ξ (t) (3.11)

LV2
≤ εT (t) ((IN ⊗ Q1)+ (IN ⊗ Q2)+ (IN ⊗ Q3)) ε (t)

− εT (t − τ1) (IN ⊗ Q1) ε (t − τ1)

−
(
1− hp

)
εT (t − µ) (IN ⊗ Q2) ε (t − µ)

− εT (t − h) (IN ⊗ Q3) ε (t − h)

= ξT (t)42ξ (t) (3.12)

LV3

= ε̇T (t)
(
IN ⊗ h2R

)
ε̇ (t)− h

∫ t

t−τ1
ε̇T (s) (IN ⊗ R) ε̇ (s)ds

− h
∫ t−τ1

t−µ
ε̇T (s) (IN ⊗ R) ε̇ (s)ds

− h
∫ t−µ

t−h
ε̇T (s) (IN ⊗ R) ε̇ (s)ds (3.13)

LV3
≤ ε̇T (t)

(
IN ⊗ h2R

)
ε̇ (t)− εT (t) (IN ⊗ R) ε (t)

+ εT (t − τ1) (IN ⊗ R) ε (t − τ1)

−
h− τ1
µ− τ1

(∫ t−τ1

t−µ
ε̇ (s)ds

)T
(IN ⊗ R)

(∫ t−τ1

t−µ
ε̇ (s)ds

)
−
h− τ1
h− µ

(∫ t−µ

t−h
ε̇ (s)ds

)T
(IN ⊗ R)

(∫ t−µ

t−h
ε̇ (s)ds

)
= ε̇T (t)

(
IN ⊗ h2R

)
ε̇ (t)− εT (t) (IN ⊗ R) ε (t)

+ εT (t − τ1) (IN ⊗ R) ε (t − τ1)

−

N∑
i=1

[ ∫ t−τ1
t−µ ε̇ (s)ds∫ t−µ
t−h ε̇ (s) ds

]T [ 1
1−αt

R 0
0 1

αt
R

][ ∫ t−τ1
t−µ ε̇ (s)ds∫ t−µ
t−h ε̇ (s) ds

]
(3.14)

where αt = (h− µ)
/
(h− τ1), the inequalities in inequality

(3.14) come from the Lemma (3).

−

N∑
i=1

[ ∫ t−τ1
t−µ ε̇ (s)ds∫ t−µ
t−h ε̇ (s) ds

]T −√ αt
1−αt

0

0
√

1−αt
αt

[R S
∗ R

]

×

−√ αt
1−αt

0

0
√

1−αt
αt

[ ∫ t−τ1t−µ ε̇ (s)ds∫ t−µ
t−h ε̇ (s) ds

]
≤ 0

(3.15)

LV3 ≤ ε̇T (t)
(
IN ⊗ h2R

)
ε̇ (t)− εT (t) (IN ⊗ R) ε (t)

+ εT (t − τ1) (IN ⊗ R) ε (t − τ1)

−

[ ∫ t−τ1
t−µ ε̇ (s)ds∫ t−µ
t−h ε̇ (s) ds

]T [
IN ⊗ R IN ⊗ S
∗ IN ⊗ R

]

×

[ ∫ t−τ1
t−µ ε̇ (s)ds∫ t−µ
t−h ε̇ (s) ds

]
(3.16)

Lastly, for LV4, it is calculated as

LV4 = εT (t) (IN ⊗ hW1) ε (t)+ ε̇T (t) (IN ⊗ hW2) ε̇ (t)

−

∫ t

t−h

(
εT (s) (IN ⊗W1) ε (s)

)
ds

−

∫ t

t−h

(
ε̇T (s) (IN ⊗W2) ε̇ (s)

)
ds (3.17)

Inspired by the work of [42], the following three zero
equalities with any symmetric matrices U1 and U2 are con-
sidered

0 = εT (t) (IN ⊗ U1) ε (t)

− εT (t − τ1) (IN ⊗ U1) ε (t − τ1)

− 2
∫ t

t−τ1

(
εT (s) (IN ⊗ U1) ε̇ (s)

)
ds

0 = εT (t − τ1) (IN ⊗ U2) ε (t − τ1)

− εT (t − µ) (IN ⊗ U2) ε (t − µ)

− 2
∫ t−τ1

t−µ

(
εT (s) (IN ⊗ U2) ε̇ (s)

)
ds

0 = εT (t − µ) (IN ⊗ U3) ε (t − µ)
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− εT (t − h) (IN ⊗ U3) ε (t − h)

− 2
∫ t−µ

t−h

(
εT (s) (IN ⊗ U3) ε̇ (s)

)
ds (3.18)

LV4 = ξT (t)44ξ (t)−
∫ t

t−τ1

[
ε (s)
ε̇ (s)

]T
×

[
IN ⊗W1 IN ⊗ U1
∗ IN ⊗W2

] [
ε (s)
ε̇ (s)

]
ds

−

∫ t−τ1

t−µ

[
ε (s)
ε̇ (s)

]T [ IN ⊗W1 IN ⊗ U2
∗ IN ⊗W2

][
ε (s)
ε̇ (s)

]
ds

−

∫ t−µ

t−h

[
ε (s)
ε̇ (s)

]T[ IN ⊗W1 IN ⊗ U3
∗ IN ⊗W2

] [
ε (s)
ε̇ (s)

]
ds

= ξT (t)44ξ (t)−
N∑
i=1

∫ t

t−τ1

[
εi (s)
ε̇i (s)

]T [W1 U1
∗ W2

]
×

[
εi (s)
ε̇i (s)

]
ds

−

N∑
i=1

∫ t−τ1

t−µ

[
εi (s)
ε̇i (s)

]T [W1 U2
∗ W2

] [
εi (s)
ε̇i (s)

]
ds

−

N∑
i=1

∫ t−µ

t−h

[
εi (s)
ε̇i (s)

]T [W1 U3
∗ W2

] [
εi (s)
ε̇i (s)

]
ds[

W1 U1
∗ W2

]
> 0,

[
W1 U2
∗ W2

]
> 0,

[
W1 U3
∗ W2

]
>0

(3.19)

Then, an upper bound of LV4 is

LV4 ≤ ξT (t)44ξ (t) (3.20)

From Eq. (3.10), (3.11), (3.12), (3.16), (3.19)

LV (ε (t) , k)
≤ ξ (t)T (e1

(
IN ⊗ Pk

)
eT5 + e5

(
IN ⊗ Pk

)
eT1

+ e1 (IN ⊗ (Q1 + Q2 + Q3)− (IN ⊗ R)

+IN ⊗ (hW1 + U1)+

M∑
l=1

(
πkl

(
IN ⊗ Pl

)))
eT1

+ e2 ((IN ⊗ (U2 − U1))− (IN ⊗ Q1)− (IN ⊗ S)) eT2
+ e3

(
(IN ⊗ (U3 − U2))−

(
1− hp

)
(IN ⊗ Q2)

)
eT3

+ e4
(
(IN⊗S)T+(IN ⊗ R)−(IN ⊗ U3)−(IN ⊗ Q3)

)
eT4

+ e5
((
IN ⊗ h2R

)
+ (IN ⊗ hW2)

)
eT5 )ξ (t)

= ξ (t)T �(ρt) ξ (t) (3.21)

λ� and λP is defined as follows

λ� = max
ρt∈M

{
λmax

(
�ρt

)}
< 0

λP = max
k∈M

{
λmax

(
−Pk

)}
< 0

From inequality (3.21), it is easy to prove that

LV (ε (t) , k) ≤ λ�ξ (t)T ξ (t) ≤ λ�εT (t) ε (t) (3.22)

By applying the S-procedure, the LV (ε (t) , k) has new
upper bound as

E {LV (ε (t) , k)} ≤ E
{
ξ (t)T �(ρt) ξ (t)

}
(3.23)

Then the state error and a delay-dependent stability condi-
tion for the system (3.4) can be rewritten as

E {2(ρt) ξ (t)} = 0 (3.24)

E
{
ξ (t)T �(ρt) ξ (t)

}
< 0 subject to

E {2(ρt) ξ (t)} = 0 (3.25)

It follows from Dynkin’s formula that

E {LV (ε (t) , k)} − E {LV (ε (0) , ρ0)}

= E
{∫ t

0
LV (ε (s) , k) ds

}
≤ λ�E

{∫ t

0
εT (s) ε (s) ds

}
E
{∫ t

0
εT (s) ε (s) ds

}
≤ −

V (ε (0) , ρ0)
λ�

(3.26)

−λPE
{
εT (t) ε (t)

}
≤ E {V (ε (t) , k)} (3.27)

Above all inequalities, it is easy to obtain

E
{
εT (t) ε (t)

}
≤−

λ�E
{∫ t

0 ε
T (t) ε (t) ds

}
+V (ε (0) , ρ0)

λP
(3.28)

By the Gronwall-Bellman Lemma [43], we know that

E
{∫ t

0
εT (s) ε (s) ds |φ, ρ0

}

≤

[
1− exp

(
−
λ�
λP
t
)]
V (ε (0) , ρ0)

λ�
(3.29)

Then, there exists a scalar γ as t →∞, such that

lim
t→∞

E
{∫ t

0
εT (s) ε (s) ds |φ, ρ0

}
≤
V (ε (0) , ρ0)

λ�
≤ γ sup

−h≤s≤0
‖φ (s)‖2 (3.30)

From the Lyapunov method, Eq. (3.30) and Definition 2,
it can be concluded that the system (3.4) is stochastically
stable. Finally, by utilizing Lemma 4, the condition (3.25) is
equivalent to the following inequality

[2(ρt)]⊥
T
�(ρt) [2(ρt)]⊥ < 0 (3.31)

From the inequality (3.31), if the LMIs (3.6) satisfy, then
stability condition (3.25) holds. This completes our proof.

Theorem 1 provides that the consensus criterion for system
(3.4) in the framework of LMIs with the known communi-
cation topology consensus protocol gain, a consensus con-
troller design method for system (3.4) based on the results of
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Theorem 1 will be derived. To design the consensus protocol
gain, the following zero equalities are introduced:

0=2
(
ε (t)

(
In ⊗ Pk

)
+ε̇ (t)

(
In ⊗ Pk

))
2(ρt) ξ (t) (3.32)

Before deriving this, the notations of several matrices are
defined for simplicity:

2̄ (ρt) =

[
In ⊗ A⊗

(
Pk
)1

B (ρt)⊗ Y (ρt)

× C (ρt)⊗ Y (ρt) 0 −In ⊗
(
Pk
)1]

η =
[
IN 0 0 0 IN

]T
4̄1 = e1

(
IN ⊗ P̄k

)
eT5 + e5

(
IN ⊗ P̄k

)
eT1

+ e1
M∑
l=1

(
πkl

(
IN ⊗ P̄l

))
eT1

4̄2 = e1
(
IN ⊗

(
Q̄1 + Q̄2 + Q̄3

))
eT1 − e2

(
IN ⊗ Q̄1

)
eT2

−
(
1− hp

)
e3
(
IN ⊗ Q̄2

)
eT3 − e4

(
IN ⊗ Q̄3

)
eT4

4̄3= e5
(
IN ⊗ h2R̄

)
eT5 −(e1−e2)

(
IN ⊗ R̄

)
(e1 − e2)T

− (e2 − e3)
(
IN ⊗ S̄

)
(e2 − e3)T

− (e3 − e4)
(
IN ⊗ S̄

)T
(e3 − e4)T

− (e2 − e3)
(
IN ⊗ R̄

)
(e2 − e3)T

− (e3 − e4)
(
IN ⊗ R̄

)
(e3 − e4)T

4̄4= e1
(
IN ⊗

(
hW̄1 + Ū1

))
eT1 +e2

(
IN⊗

(
Ū2−Ū1

))
eT2

+ e3
(
IN ⊗

(
Ū3 − Ū2

))
eT3 − e4

(
IN ⊗ Ū3

)
eT4

+ e5
(
IN ⊗ hW̄2

)
eT5

�̄ (ρt) = 4̄1 + 4̄2 + 4̄3 + 4̄4 (3.33)

Theorem 2: For given scalars 0 < h and hp, the agents in
the system (3.4) converge to the state of mothership stochas-
tically, if there exist positive definite matrices P̄k ∈ Rn×n,
W̄1, W̄2 ∈ Rn×n, Q̄1, Q̄2, Q̄3 ∈ Rn×n, R̄ ∈ Rn×n, any
symmetric matrices Ū1, Ū2, Ū3 ∈ Rn×n and any matrix
S̄ ∈ Rn×n, Y (ρt) ∈ Rl×n satisfying the following LMIs for
k ∈M:

�̄ (ρt)+ η2̄ (ρt)+
(
η2̄ (ρt)

)T
< 0 (3.34)[

R̄ S̄
∗ R̄

]
≥ 0 (3.35)[

W̄1 Ū1
∗ W̄2

]
> 0

[
W̄1 Ū2
∗ W̄2

]
> 0[

W̄1 Ū3
∗ W̄2

]
> 0 (3.36)

where

Q̄1 =

(
Pk
)−1

Q1

(
Pk
)−1

, Q̄2 =

(
Pk
)−1

Q2

(
Pk
)−1

,

Q̄3 =

(
Pk
)−1

Q3

(
Pk
)−1

R̄ =
(
Pk
)−1

R
(
Pk
)−1

S̄ =
(
Pk
)−1

S
(
Pk
)−1

W̄1 =

(
Pk
)−1

W1

(
Pk
)−1

, W̄2 =

(
Pk
)−1

W2

(
Pk
)−1

Ū1 =

(
Pk
)−1

U1

(
Pk
)−1

, Ū2 =

(
Pk
)−1

U2

(
Pk
)−1

,

Ū3 =

(
Pk
)−1

U3

(
Pk
)−1

2̄ (ρt), η and �̄ (ρt) are defined in Eq. (3.33).
Then, the system (3.4) under the consensus protocol gains

K (ρt) = Y (ρt)Pk are stochastically stable.
Proof: With the same Lyapunov Krasovskii functional

candidate in Eq. (3.10), by using a similar method in
Eq. (3.11)-(3.20), and considering the zero equation in
Eq. (3.32), a sufficient condition guaranteeing stability for the
system (3.4) can be

�(ρt)+ η
(
In ⊗ Pk

)
2(ρt)+

(
η
(
In ⊗ Pk

)
2(ρt)

)T
<0

(3.37)

where 2(ρt), η and �(ρt) are defined in Eq. (3.5) and
Eq. (3.33), respectively.
Also, to obtain the consensus protocol gain, pre- and post-

multiplying inequality (3.37) by matrix

diag


(
In ⊗

(
Pk
)−1)

, . . . ,

(
In ⊗

(
Pk
)−1)

︸ ︷︷ ︸
5


lead to LMIs (3.34). This completes our proof.

IV. NUMERICAL EXAMPLES
In this section, to testify the correctness of the consensus
control protocol in this paper, two numerical examples are
presented. Then, the numerical examples are illustrated the
result of Theorem 2. The formation of multiple AUVs recov-
ery system has six vehicles, which consist of one mothership
and five AUVs. To illustrate the random information between
the AUVs, the communication topologies set includes four
communication topologies.
Example 1: Communication topologies set includes four

communication topologies as shown in Fig. 3. The ini-
tial value of position and attitude of the mothership is
pm =

(
50 0 0 −π/9 π/2

)
, and the initial value of velocity

of the mothership is vm =
(
2 0 0 0 0

)
. The initial value

of x is randomly distributed in the [0, 50], y is randomly
distributed in the [0, 50], z is randomly distributed in the
[−25, 0].2 is in the interval [−π/9, π/9], ϕ is in the interval
[0, 2π ]. The time delay is set as τ2 (t) = 0.14 (1+ sin (2t)),
τ1 = 0.1, hp = 0.28.
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FIGURE 3. Structure of Communication Topology Set. The mothership
transmits information to the AUVs under four switched communication
topologies. The structure of communication topology is randomly
switched under communication constraints.

From Fig. 3, the parameters of the matrix A and C at
switching interconnection topologies are

A1 =


0 0 0 0 0
0 0 0 1 1
1 0 0 0 0
0 0 1 0 0
0 0 0 0 0

 A2 =


0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0


C1 = diag

[
0 1 0 1 0

]
C2 = diag

[
1 1 0 0 0

]

A3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 0 0
0 1 0 0 0

 A4 =


0 0 0 1 1
0 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0


C3 = diag

[
0 0 1 0 1

]
C4 = diag

[
1 0 1 0 0

]
The original velocity of AUV is zero. The recovery path is

a helical curve, and it expressed as:

x (t) = 50 cos (0.02π t)

y (t) = 50 sin (0.02π t)

z (t) = −0.03t

The Markov process taking values in M with generator 5
are as follows

5 =


−0.7 0.3 0.4 0
0.3 −0.9 0 0.6
0 0.6 −0.6 0
0.4 0 0.2 −0.6



FIGURE 4. The Switching Mode. The structure of communication topology
is randomly switched under four modes in 2000 seconds.

The consensus protocol gains K (ρt) and the maximum
bound of the time-delay h by Theorem 2 are

K1 = 0.085 K2 = 0.95 K3 = 1.12 K4 = 0.042 h = 0.38

The switching mode chosen from the set randomly is
shown in Figure 4.

The simulation results are shown in Figs. 4-7. Fig. 5
describes the position and attitude states of AUVs during
recovery process under switching topologies and time delays.
The initial states of five AUVs are randomly distributed. The
mothership tracks the recovery path, and the AUVs follow
the mothership in 1500 seconds. The position and the atti-
tude states converge to the mothership in 500 seconds, and
then keep consistent with the mothership in the remaining
1000 seconds.

The velocity states of AUVs during recovery process are
shown in Fig. 6, it’s shown that the velocity states converge
to a fixed value in 500 seconds, and then keep consistent
with the mothership in the remaining 1000 seconds. Due
to random topological transformation, the reference motion
state information of AUVs changes frequently, position, atti-
tude and velocity have large oscillations and some variability
during the adjustment process. Therefore, the AUVs oscil-
lates around the recovery trajectories during the recovery
trajectories tracking process. Since the control input needs to
be rotated by the feedback linearization method, the conver-
gence speed is slow.

Fig. 7 describes the three-dimensional trajectories of all
AUVs, which describes the whole recovery process more
intuitively. It shows that the mothership tracks the recovery
trajectory, and five AUVs converge to the mothership and
then keep consistent with the mothership. The multi-AUV
recovery mission is completed.
Example 2: Communication topology set includes four

communication topologies as shown in Fig. 8. The ini-
tial value of position and attitude of the mothership is
pm =

(
60 0 0 −π/18 π/2

)
, and the initial value of veloc-

ity of the mothership is vm =
(
3 0 0 0 0

)
. The initial

value of x is randomly distributed in the [0, 60], y is ran-
domly distributed in the [0, 60], z is randomly distributed
in the [−40, 0]. 2 is in the interval [−π/18, π/18], ϕ is
in the interval [0, 2π ]. The time delay is set as τ2 (t) =
0.14 (1+ cos (2t)), τ1 = 0.1, hp = 0.28.
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FIGURE 5. Position and Attitude States of AUVs. The position and the
attitude states converge to the mothership in 500 seconds.

FIGURE 6. Velocity States of AUVs. The velocity states converge to a fixed
value in 500 seconds.
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FIGURE 7. Three-dimensional Trajectories of Recovery Process. The AUVs
converge to the desired helical curve.

FIGURE 8. Structure of Communication Topology Set. The mothership
transmits information to the AUVs under four switched communication
topologies. The structure of communication topology is randomly
switched under communication constraints.

From Fig. 8, the parameters of the matrix A and C at
switching interconnection topology are

A1 =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 1 0

 A2 =


0 0 0 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0


C1 = diag

[
0 1 0 0 1

]
C2 = diag

[
0 0 1 1 0

]

A3 =


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 A4 =


0 0 1 1 1
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0


C3 = diag

[
1 0 0 0 1

]
C4 = diag

[
1 1 0 0 0

]

FIGURE 9. The Switching Mode. The structure of communication topology
is randomly switched under four modes in 2000 seconds.

The original velocity of AUV is zero. The recovery path is
a helical curve, and it expressed as:

x (t) = 60 cos (0.02π t)

y (t) = 60 sin (0.02π t)

z (t) = −0.05t

The Markov process taking values in M with generator 5
are as follows

5 =


−0.5 0.2 0.3 0
0.3 −0.7 0 0.4
0 0.5 −0.5 0
0.2 0 0.2 −0.4


The consensus protocol gains K (ρt) and the maximum

bound of the time-delay h by Theorem 2 are

K1 = 0.065 K2 = 1.73 K3 = 1.21 K4 = 0.023 h = 0.38

The switching mode chosen from the set randomly is
shown in Figure 9.

The simulation results are shown in Figs.9-12. The posi-
tion, attitude and velocity states of AUVs during recovery
process are shown in Fig. 10 and Fig. 11, Fig. 12 describes
the three-dimensional trajectories of all AUVs. The initial
states of five AUVs are randomly distributed. From the above
pictures, the mothership tracks the recovery path, and the
AUVs follow the mothership in 1500 seconds. The position
and the attitude states converge to the mothership and the
velocity states converge to a fixed value in 500 seconds, and
then keep consistent with the mothership in the remaining
1000 seconds. Three-dimensional trajectories describes the
whole recovery process more intuitively. The mothership
tracks the recovery trajectory, and five AUVs converge to the
mothership and then keep consistent with themothership. The
multi-AUV recovery mission is completed.

Based on the simulation results above, it is easy to derive
that under switching topologies and time delays, the mother-
ship transmits information to the AUVs under four switched
communication topologies, the structure of communication
topology is randomly switched under communication con-
straints. The position, attitude, velocity and convergence
time of AUVs depend on the attitude, velocity, and recov-
ery trajectories of the mothership and the initial position
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FIGURE 10. Position and Attitude States of AUVs. The position and the
attitude states converge to the mothership in 500 seconds.

FIGURE 11. Velocity States of AUVs. The velocity states converge to a
fixed value in 500 seconds.
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FIGURE 12. Three-dimensional Trajectories of Recovery Process. The AUVs
converge to the desired helical curve.

of AUVs. Consensus control is used to adjust the parameters
of TABLE I, the mothership tracks the recovery trajectory,
and five AUVs converge to themothership and then keep con-
sistent with themothership. Themulti-AUV recoverymission
is completed when the states of all AUVs are consistent with
that of the mothership.

V. CONCLUSION
In this paper, consensus control is applied to multi-AUV
recovery system for the first time. Switching communication
topologies and time delays are introduced in consideration
of underwater complexity. The mothership is regarded as the
point which all AUVs have to catch up with, the recovery
problem of multiple AUVs can be seen as the consensus
problem of multi-agents system similarly. Consensus control
of multiple AUVs recovery system under switching commu-
nication topologies and time delays including input delay and
communication delay is designed.

The research progress of multi-agent is introduced in
section I. Section II establishes the dynamicmodel of mother-
ship and AUV, the single AUV nonlinear mathematical model
is transformed into a second-order integral model via state
feedback linearization, in addition, graph theory and related
lemmas are introduced. In section III, a randomly changing
consensus stability criteria and stabilization conditions are
derived by a suitable Lyapunov-Krasovskii functional for the
Markovian switching recovery system with time delays, and
then a consensus controller design method is derived. Two
numerical examples are used to illustrate the effectiveness of
the proposed control methods in section IV. It is easy to derive
that under switching topologies and time delays, the multi-
AUV recovery mission is completed when the states of all
AUVs are consistent with that of the mothership.

Above all, consensus control of multiple AUVs recovery
system under switching communication topologies and time
delays is designed. It should be pointed out that the algorithm

designed is aimed at AUV dynamic model under the condi-
tion of limited communication, which cannot be applied to
unmanned aerial vehicles and other unmanned vehicle sys-
tems, therefore, the algorithm is not universally applicable.

The proposed method can be extended to discrete-time
consensus control of multiple AUVs. This work will be car-
ried out in our future research. With current control laws,
the recovery system is not immune to external disturbances
in the state information. Noise in the state information and
its mitigation strategies also will be considered in the future
research. In addition, we will apply the designed controller to
the actual AUV system.
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