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ABSTRACT Network function virtualization (NFV) enables flexible deployment of virtual network func-
tion (VNF) in 5Gmobile communication network. Due to the inherent dynamics of network flows, fluctuated
resources are required to embedding VNFs. VNF migration has become a critical issue because of the
time-varying resource requirements. In this paper, we propose a real-time VNF migration algorithm based
on the deep belief network (DBN) to predict future resource requirements, which resolves the problem of
lacking effective prediction in the existingmethods. Firstly, we propose optimizing bandwidth utilization and
migration overhead simultaneously in VNF migration. Then, to model the resource utilization that evolves
over time, we adopt online learning with the assistant of offline training in the prediction mechanism, and
further introduce multi-task learning (MTL) in our deep architecture in order to improve the prediction
accuracy. Moreover, we utilize adaptive learning rate to speed up the convergence speed of DBN. For the
migration, we design a topology-aware greedy algorithm with the goal to optimize system cost by taking
full advantage of the prediction result. In addition, based on tabu search, the proposed migration mechanism
is further optimized. Simulation results show that the proposed scheme can achieve a good performance in
reducing system cost and improving the service level agreements (SLA) of service.

INDEX TERMS Virtual network function, deep belief network, multi-task learning, migration.

I. INTRODUCTION
With the widespread access of mobile terminals and rapid
development of internet technologies, there will be a tremen-
dous growth in the amount of mobile transmission data.
According to the latest Cisco’s prediction, traffic in 2020 will
grow faster than 2010 with 1000 times. In addition, net-
work functions (NFs) are deployed in dedicated hardware
to setup service function chains offering different services
traditionally, which cause heavy operation cost and are dif-
ficult to dynamically scale the capabilities to react against
time-varying traffic. Therefore, service providers are faced
with an urgent need to find innovative and cost-effective ways
to achieve better service agility.

Today’s mobile network is rapidly evolving into 5G in
which ‘‘enhanced Mobile Broadband’’, ‘‘massive Machine
Type Communications’’ and ‘‘Ultra-Reliable and Low
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Latency Communications’’ will play an important role [1].
5G network is highly flexible to cope with business changes
of mobile services based on the technology of network slic-
ing. With the help of software defined network (SDN) and
network function virtualization (NFV) technology [2], [3],
network slicing is a technique for flexible resource allo-
cation which cuts and regroups limited physical resources
to form logically independent virtual network resources for
each slice, therefore enabling centralized management and
providing better quality for tenants [4]. In a network slice,
service requests should be steered to traverse virtualmachines
implementing the required VNFs in a specific order satisfy-
ing service requirement, which means that a service request
consists of several different VNFs interconnected by virtual
links. We call such an ordered set of VNFs as a service
function chain (SFC) [5]. Thanks to NFV, different NFs can
evolve independently of hardware which can reduce oper-
ating expenditure of operators. Moreover, we can allocate
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virtual network resources efficiently to each SFC by dynamic
scaling according to its requirements.

So far, most of existing works such as [6]–[9] studied
the deployment of SFCs to achieve efficient and scalable
composition and resource allocation. However, they did not
consider the dynamic changes of traffic traversing through
SFCs, which means that resource requirements of SFCs
change over time. When resource requirements of VNF (vir-
tual link) exceed the thresholds of physical node (link) where
it deployed to, service performance of SFC will be degraded
and even invalidated. So real-time migration of the VNF
(virtual link) is needed to ensure SLA of SFC.

The migration of VNF (virtual link) will consume a certain
amount of time and resources which cause different system
cost [10]. Further, when physical node (link) has become hot
spot of resources, it will be too late to migrate VNF (virtual
link) since spinning-up new resources needs to take some
time (in case the VNFs run in VMs), and even may fail due
to insufficient resources [11]. Therefore, the real-time migra-
tion mechanism should be able to predict future resource
demand based on historical resource requirements, and then
report potential hot spots of resource for migration ahead of
time. Unfortunately, current works on VNF migration ignore
the problem. As mentioned in [12], a greedy algorithm which
allowed SFC to reconfigure and manage VNF instances to
reduce the number of VNF instances through migration was
proposed, and in [13], it proposed a cost model to evaluate the
migration cost and designed a greedy algorithm to optimize
the migration of VNFs. But both of them did not consider
system cost during VNF reconstruction and the time lag
problem. In [14], it used Markov Decision Process theory
to consolidate VNFIs in as few servers as possible so as to
reduce the energy consumption, thereby optimizing energy
consumption and reconstruction cost, but it also did not con-
sider the time lag of migration.

In order to solve the time lag problem of migration,
a feasible method is to adopt proactive prediction mecha-
nism. For instance Rashid Mijumbi and Sidhant Hasija pro-
posed a GNN-based prediction algorithm for VNFC resource
requirements. In order to predict future resource require-
ments of VNFC, they exploited VNF forwarding graph
topology information and historical resource utilization of
each VNF component (VNFC), but did not consider how
to use the prediction results to optimize resource alloca-
tion further [15]. Now, existing prediction approaches can
be divided into three categories [16]: time-series approaches,
such as ARIMA [17]; probabilistic graph approaches, such
as Markov random fields (MRFs) [18] and nonparametric
approaches, such as support vector regression (SVR) [19].
Numerous existing studies [15], [20]–[22] have shown that
nonparametric methods usually perform better because they
have ability to capture the uncertainty and complex nonlin-
earities of resource requirements. The most representative
method is neural network technology [23] which can extract
features from resource requirements and then take advantage
of the relationship between resource features to make an

effect prediction. Although the prediction accuracy of neural
network is higher than that of traditional statistical models,
the problems of long training period, slow convergence rate
and easiness to fall into local minimum intrinsic in neural
network can not be ignored. Fortunately, Fortunately, Deep
Belief Network (DBN) [24], [25] is one of the classic algo-
rithms for deep learning [26], [27], which is formed by stack-
ing multiple Restricted Boltzmann Machines (RBMs). Since
RBM can make full use of non-labeled data in pre-training
as a generation model, DBN not only has the capability of
processing big data and mining hidden information depended
on the multiple layer structure which are inherent in deep
learning, but also can extract nonlinear features of samples
more effectively. Moreover, it solves the problems exist in
other neural network models those require a large amount
of labels and fall into local optimal solution quickly as the
number of layers increase. Based on the advantages above,
we attempt to adopt DBN to predict resource requirements of
SFC so as to develop migration strategy.

We combine prediction mechanism and migration research
together to optimize the migration of VNF, effectively avoid-
ing performance degradation of SFC caused by resource
bottlenecks while existing related works always study them
separately. The main technical contributions of this paper can
be summarized as follows:

1) To solve the problem of real-time VNF migration,
we firstly build a system cost evaluation model integrating
bandwidth utilization andmigration time. And thenwe design
a prediction mechanism based on DBN to predict future
resource requirements of VNFs in advance to react dynamic
changes of service. Based on the predicted results, we pro-
pose a heuristic algorithm to get the near optimal solution
since the coordinated VNF migration problem is formulated
as a integer linear programming (ILP).

2) Since resource requirements of VNFs change over time,
there will be a large error in prediction of the initial training
model. In the prediction mechanism of DBN, we propose an
online learning method with the assistant of offline training.
Moreover, multi-task learning which shares the information
contained in relatedVNFs is introduced to improve prediction
accuracy, and the samples are approximated by k-step of Con-
trast Divergence (CD-k) to improve the learning efficiency of
RBM. In addition, adaptive learning rate is adopted to speed
up convergence rate of RBM;

3) According to the prediction results, we propose a
topology-aware migration algorithm in which VNFs are
migrated to physical nodes meeting resource threshold con-
straints through greedy selection with the goal to optimize
system cost, and then using the strategy obtained above as
the initial solution, an optimization algorithm of migration
based on tabu search is designed to further improve the
efficiency.

The paper is organized as follows: Problem of VNF migra-
tion in NFV architectures is analyzed in Section II, then
the network model and problem definition are established
in Section III. The prediction mechanism and migration
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FIGURE 1. Network scenario in NFV architecture.

algorithm are proposed in Section IV and V respectively.
Our proposal is evaluated in Section VI, and lastly in
Section VII, we give a brief conclusion of our work.

II. PROBLEM OF THE MIGRATION IN NFV
ARCHITECTURES
According to the vision of Next Generation Innovation Net-
work (NovoNet 2020), NFs can be decoupled from dedi-
cated devices and implemented in general NFV-based servers
based on SDN/NFV concept. The resources of physical net-
work consist of computing, memory and bandwidth resource.
As shown in Fig.1, we consider the NFV architecture based
on orchestration and control framework in which physi-
cal resources are provided to slice requests through virtu-
alization. Physical network is composed of core network
and access network which adopts a new architecture called
C-RAN. A SFC is composed of some ordered VNFs and
mapped to physical network according to their resource
requirements. Through isolation, multiple VNFs can run on
the same physical nodewithout affecting each other, as shown
in the Fig.1, VNF2 and VNF3 of SFC1 can be mapped to
the same physical node. Different from [28] which assumed
VNF only requests processing resources for the case study of
CPU-intensive nodes, we consider CPU, memory and band-
width resource at the same time. And according to the differ-
ent performance, physical nodes are divided into three types:
CPU-sensitive, memory-sensitive and bandwidth-sensitive.
Each type of nodes has a different resource threshold for
different kinds of resources.

Most of existing methods only focus on offline deployment
of SFC, that is, according to the resource demand of SFC,
a deployment strategy which assumes that resources required
by SFC are constant during its lifetime is formulated to

meet the SLA. However, actual flow through SFC is chang-
ing frequently, the total amount of resources allocated to it
needs to be recalculated over time. Otherwise when resources
required by the SFC are increased to exceed the resource
thresholds of physical nodes and links to which it is mapped,
the physical networkmay become invalid because of resource
bottlenecks. Thereby it will affect the success rate of SFC
deployment seriously. So it is necessary to migrate the VNF
(virtual link) on the overloaded physical node (link) to other
physical node (link) with lower load. In the Fig.1, VNF2 and
VNF3 in SFC1 and VNF3 in SFC2 are deployed to the same
node, we need to migrate one, two or all of the VNFs on
it to other nodes when the resource requirements exceed its
resource threshold at a certain time. The goal of the paper is
to develop a spontaneous migration strategy, that is, through
monitoring resource requirements of VNFs (virtual links) in
real time, hot spots of resource in the physical network can be
discovered in advance by prediction. Then dynamicmigration
of VNFs (virtual links) is performed according to the strategy
formulated.

III. NETWORK MODEL AND PROBLEM DEFINITION
A. PHYSICAL NETWORK
We represent the physical network as an undirected graph
GS = (N S ,LS ), where N S and LS denote the set of phys-
ical nodes and links respectively. One or more VNFs can
be deployed in the same physical node. The physical nodes
are characterized by CPU capacity CS

m, each unit of CPU
resources represents the resource required to process one
packet, and memory capacity MS

m, where m ∈ N S . The
physical links are characterized by bandwidth capacity BSmn
between node m and n. LSmn denotes the set of paths with no
loops between node m and n.
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B. SFC REQUEST
Since the paper considers the inseparable flow, that is, a chain
is linear and not allowed to be separated into two paths [29] so
that the service performance of the SFC will not be affected.
SFC is characterized by the ordered set GV = (NV ,LV ),
SFCs are represented as S = {sq|q = 1, 2, · · ·Q}, where NV

and LV are the sets of all VNF ∈ NV
q ⊆ NV and virtual

links luv ∈ LVq ⊆ LV . Each SFC is consisted of some ordered
VNF. Each VNF u ∈ NV has a finite CPU resource demand
denoted by CV

u and memory resource demand denoted by
MV
u . Similarly, each virtual link luv has a finite bandwidth

demand, denoted by BVuv. Binary variable Auvmn = {0, 1} is
defined to represent whether luv is mapped on lmn ∈ LS . The
flow will be compressed or expanded after passing through
one VNF so that the required bandwidth will change. So we
assume that the bandwidth demand is denoted as follows:

BVuv(t) = CV
u (t) · Lp/tproc. (1)

where Lp denotes the packet length to be processed, and tproc
denotes the processing time of one packet.

C. PROBLEM FORMULATION
The main performance parameters considered in this paper
consist of CPU demand, memory demand of node and band-
width demand of virtual link. By monitoring the historical
data of these three indicators comprehensively, it is deter-
mined whether physical node (link) is overloaded by the
DBN prediction model of resource requirements based on
online learning. Then performs migration according to the
prediction result, thereby avoiding performance degradation
of SFC due to resource bottlenecks. According to the differ-
ence of resource requirements, we use multi-threshold trigger
mode to determine the physical nodes or links those need
to execute migration, and the VNFs or virtual links those
need to be migrated. The thresholds of resource utilization
for CPU, memory, and bandwidth are denoted by γC , γM , γB
respectively. xum is a binary indication, and xum = 1 represents
that VNF u is mapped to physical node m. If the resource
requirements of SFCs at slot t + 1 predicted by using the
historical data before slot t+1 exceed the thresholds of phys-
ical network, that is, when the following formula is satisfied,
VNFs (virtual links) migration is automatically triggered to
meet the SLA of service.∑

u∈NV

xum(t + 1) · CV
u ≥ C

V
m · γC ∀m ∈ N S

∑
u∈NV

xum(t + 1) ·MV
u ≥ C

V
m · γM ∀m ∈ N S

∑
luv∈LV

(Auvmn(t + 1)+ Auvnm(t + 1) · BVuv(t + 1) ≥ BSmn · γB

∀lmn ∈ LS (2)

When the resource requirements of SFCs exceed the thresh-
olds of physical node (link), it is necessary to develop a
policy for migrating the VNF (virtual link), that is, which

VNF (virtual link) is selected for migration and where to
migrate. VNFmigration requires to complete themigration of
running context of virtual CPU and current state of memory.
Because resource usage status of different VNFs are different,
the appropriate VNF should be selected to migrate to meet the
QoS of SFC and reduce the system overhead caused by VNF
migration.

In summary, the paper develops a system overhead model
for VNF migration, and designs a VNF migration algorithm
for minimizing the system overhead caused by migration.
The system overhead defined in this paper consists of two
parts: migration overhead and bandwidth overhead. In [14],
it pointed out that the transmission data brought by VNF
migration is positively correlated with the energy consump-
tion caused by VNF migration, and the amount of data
migrated mainly comes from memory data. Similarly, in live
migration, we need to copy memory and running states of
VNF to the target physical node to ensure that the VNF con-
tinues towork. Therefore, VNFmigrationmainly includes the
migration of the running state and memory resources. Since
memory resources account for the majority of the migrated
data, it is considered that the overhead of migrating VNF is
equivalent to the time of occupying network bandwidth by
migrating the memory data of VNF. The larger the amount
of memory data to be migrated and the smaller the avail-
able bandwidth between physical nodes, the longer time the
migration occupies the network bandwidth, and so the greater
the impact on the normal operation of physical link. The
migration overhead for migrating VNF u from the physical
node n to m is defined as the following:

C t
M (u,m) =

∑
d∈P(m,n)

M t (u) · xun (t)

Bt (d)
. (3)

wherein Bt (d) denotes the remaining available bandwidth at
time t of link in path P(m, n) between physical node m and
n. n indicates the physical node where the VNF was mapped
to, and m indicates the target node to which the VNF will be
migrated. M t (u) indicates the amount of memory resources
for the VNF u at time t .
The bandwidth overhead defined here generated by VNF u

and v for physical node m and n is defined as:

C t
B(u,m, v, n) = BVuv · x

u
m(t) · x

v
n(t) · hop

t (m, n). (4)

wherein hopt (m, n) indicates the shortest distance between
physical node m and n at time t .

And the bandwidth overhead of migrating u tom is defined
as:

C t
B(u,m) =

∑
m∈N S

∑
v∈NV

∑
n∈N S

C t
B(u,m, v, n). (5)

Then the overall system overhead of migrating u to m is
defined as:

C t
tot (u,m) = α · C

t
M (u,m)+ β · C t

B(u,m). (6)
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wherein α and β are the corresponding coefficient. Therefore,
the overall overhead of VNF migration during time t is:

C t
tot =

∑
u∈NV

C t
tot (u,m). (7)

The optimization goal of the paper is to minimize the system
overhead caused by migration, which is expressed as:

Q1 : min
x,A

C t
tot

s.t. C1 :
∑
m∈N S

xum(t) = 1∀u ∈ NV

C2 :
∑
u∈NV

xum(t) · C
V
u (t) ≤ C

V
m · γC ∀m ∈ N S

C3 :
∑
u

∈ NV xum(t) ·M
V
u (t) ≤ C

V
m · γM ∀m ∈ N S

C4 :
∑
luv∈LV

(Auvmn(t)+ A
uv
nm(t) · B

V
uv(t) ≥ B

S
mn · γB

∀lmn ∈ LS

C5 :
∑
m∈N S

Auvmn(t)−
∑
m∈N S

Auvnm(t) = xun (t)− x
v
n(t)

∀n ∈ N S , ∀luv ∈ LV

C6 : Auvmn(t) = {0, 1} ∀luv ∈ L
V , ∀lmn ∈ LS

C7 : xum(t) = {0, 1} ∀u ∈ N
V ,∀m ∈ N S (8)

Constraint C1 guarantees that each VNF should be only
mapped to one physical node. Expression C2-C4 ensure
that the resource requirements of the SFC cannot exceed
the resource thresholds of the physical node and link,
C5 expresses that each virtual link must exist a continuous
path between physical nodem and n to which the neighboring
VNFs have beenmapped. Finally constraint C7 represents the
binary variable constraint of the node and link mapping.

IV. DBN PREDICTION MODEL OF RESOURCE
REQUIREMENTS BASED ON ONLINE LEARNING
A. PREDICTION MODE OF DBN
Nowmost of themachine learning is single task learning [30].
The single-task learning mode is shown in Fig.2. It can be
seen that it breaks a SFC into VNFs, and further decom-
poses resource requirements prediction of each VNF into
two subtasks, which is composed of CPU and memory
resource demand forecasting. The model space (training
model) between tasks is independent, and ignores the rich
correlation information between resource requirements in
SFC, which affects the prediction accuracy of the model.
Therefore, based on the interrelationship of resource require-
ments between VNFs in an SFC, the paper introduces the
method of multi-task learning (MTL) [31]. With the aim of
mutual benefit, MTL learns multiple related tasks together
and has a better generalization effect by sharing the infor-
mation contained in related tasks [32], [33]. The information
from one task helps to learn related tasks more effectively.
On the one hand, there are relevant and also irrelevant infor-
mation among the multiple related tasks. The information

FIGURE 2. Single task learning mode of SFC.

FIGURE 3. Multi-task learning mode of SFC.

irrelevant to a certain task can be regarded as introduced noise
while learning the task, so the generalization performance can
be improved. On the other hand, gradient back propagation
is easy to fall into local minimum in the single task learn-
ing mode, while for MTL, the interaction (weight sharing)
among these related tasks with different local minimums can
help escape local minimums. Thus, improvements are gained
from information sharing. As shown in Fig.3, MTL predicts
resource requirements of VNF in the same SFC simultane-
ously, and jointly fine-tunes the features generated by deep
layers in the shared model space, which can get better predic-
tion results and improve generalization performance. So we
adopt MTL mode to establish a DBN resource requirements
prediction model in this paper.

B. DBN PREDICTION MODEL OF RESOURCE
REQUIREMENTS
In order to optimize the target objective, the paper firstly uses
DBN to complete the prediction of resource requirements.
The prediction framework based on online learning consists
of three parts: offline training, online learning and online
migration which is shown in Fig.4.

In the offline training phase, historical resource require-
ments of CPU, memory and bandwidth of SFC are firstly
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FIGURE 4. DBN prediction of resource requirements based on online learning.

collected. Since CPU resource andmemory resource required
by a VNF are related, our system extracts CPU and
memory resource requirements as the features for CPU
resource demand forecasting, represented as XCPU =

{CV
VNF ,M

V
VNF },∀VNF ∈ SFC . Similarly, CPU and mem-

ory resource requirements are also used as the features of
memory resource demand prediction, represented as XM =
{CV

VNF ,M
V
VNF },∀VNF ∈ SFC . The prediction of the band-

width can be obtained by the formula (1), so the features
collection is not performed here. For each SFC, the historical
observation sample set is represented as O = {· · ·Oj · · · },
the jth sample isOj = [Xt ,Xt−1, · · ·Xt−d+1], d represents the
number of slots in the sample, and also refers to the length of
the sliding window in online learning. Xt = {XCPUt ,XMt } rep-
resents the resource requirement characteristics of the SFC
at time t , and because the characteristics of CPU and mem-
ory resource requirement prediction in the paper are same,
choose any one of them expressed as Xt = {XCPUt orXMt }.
Every sample selects d slots of resource characteristics in
sequence according to the time series. After pre-processing
the data, DBNmodel is constructed to perform batch training
on the model parameters θ = (w, a, b) to improve training
speed, wherein w, a, b represent connected weights between
adjacent two layers, bias terms of visible layer, and bias
term of hidden layer respectively. Then inverse fine tuning
is performed to complete the initial prediction model.

Online learning enables real-time optimization of the pre-
diction model. Since the monitored information of SFC
resource requirements changes over time, there will be a large
error in prediction of the initial training model based on the
new sample after a period of time. Therefore, it is necessary to

conduct online learning. Here, we use the model parameters
obtained in offline training to assist online learning. Sliding
window mechanism is used to update the sample in real time,
which means that once a new slot of sample characteristics
is added, the oldest slot of sample characteristics will be
discarded so that the size of the sample is kept unchanged.
Different from batch trainingmode in the offline phase, single
sample training method is used in the training to improve
computational efficiency of theDBNmodel. And then inverse
fine tuning is performed to optimize model parameters.

Finally, in the online migration phase, overloaded nodes
in physical network are judged according to the predicted
results, and then migration strategy is formulated to perform
VNF (virtual link) migration. After the migration is com-
pleted, in order to provide a reference for the next predication
and migration, the sample is updated with the monitored
information of resource requirements.

C. PARAMETERS TRAINING OF DBN
As shown in Fig.5, based on the MTL mode, the DBN
resource requirements prediction model is formed by stack-
ing multiple RBMs and a multi-task regression layer. RBM
is an energy-based probability distribution model, and each
RBM is a bipartite graph in which undirected edges con-
nect its visible layer and hidden layer. The training sample
[Xt ,Xt−1, · · ·Xt−d+1] of SFC is put into the visible layer
neurons v in chronological order as the input. The first RBM
is trained through the unsupervised stage, enabling hidden
layer neurons h to extract features of resource requirement
from sample data. The connection between hidden node and
visible node is represented by a matrix of weights w, which
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FIGURE 5. Resource requirements prediction based on DBN with two
hidden layers.

indicating the influence on the extracted features of resource
demand at different slots. The bias term for the visible layer
and hidden layer are represented by a and b respectively. The
training of RBM is easier because the node of same layer
is independent and the hidden layer can obtain high-order
characteristics of the visible layer. For the given input vector v
of CPU, memory, and bandwidth resource requirements and
feature extraction vector v, the energy function of RBM can
be expressed as:

E(v,h) = −aT v− bTh− hTwv. (9)

The joint probability of visible layer and hidden layer based
on the energy function of RBM is

P(v,h) =
1

Z
e−E(v,h). (10)

where Z is the normalization constant which can be found
by summing over all the possible pairs of visible and hidden
vectors:

Z =
∑
v

∑
h

e−E(v,h). (11)

By summing over all the hidden layer vector, the edge distri-
bution of the visible vector can be obtained:

P(v) =
∑
h

P(v,h) =
1

Z
e−E(v,h). (12)

The maximization of (12) can be determined by taking its
partial log derivative with respect to its patameters θ =
(w, a, b):

∂lnP(v)
∂θ

=

∑
v,h

P(v,h)
∂lnP(v)
∂θ

−

∑
h

P(h/v)
∂lnP(v)
∂θ

. (13)

Here, ‘‘data’’ and ‘‘model’’ is used to keep a brief description
of the probability distribution P(h/v) and P(v,h), typically
(13) can also be written as:

∂lnP(v)
∂θ

=< vihj >data − < vihj >model . (14)

where < vihj >data denotes the expectation of samples, <
vihj >model represents the expectation defined in the model.
However, it is difficult to obtain an unbiased sample of CPU
and memory resource requirements of VNFs in SFC, so the
expectation < vihj >model in the maximum log likelihood
function cannot be easily computed and is thus estimated
using contrastive divergence [34]. Specifically, the vector of
the visible layer is firstly mapped to the hidden layer in the
training, and then the visible layer is reconstructed by the
hidden layer. Next, the reconstructed visible layer is mapped
to the hidden layer again to acquire new hidden layer, and the
repeated method is called Gibbs sampling. The correlation
between the hidden layer and the visible layer is used as the
main basis to update weights, which leads to the following
parameter update equation:

wkij = wkij + ξ (< vki hj >data − < vki hj >model)

= wkij + ξ (P(hj = 1|v)vi − vki P(hj = 1|vk )) (15)

aki = aki + ξ (< vki >data − < vki >model)

= aki + ξ (P(vi = 1|h)vi − vki ) (16)

bki = bki + ξ (< hkj >data − < hkj >model)

= bkj + ξ (P(hj = 1|v)− P(hj = 1|vk )) (17)

where ξ represents the learning rate, and k represents the
kth step of contrastive divergence. The neuron activation
probabilities are given by the following equations:

P(hj = 1|v) =
P(hj = 1|v)

P(hj = 1|v)+ P(hj = 0|v)

= sigmoid(bj +
∑
i

wijvi) (18)

Similarily,

P(hj = 1|v) = sigmoid(bj +
∑
i

wijvi). (19)

The CD-k algorithm is used to iteratively obtain preliminary
model parameters in the first RBM training. The learned
features are used as the input of the next layer, then the second
RBM is trained. Finally the features obtained after all RBM
training in the DBN are used as the input of the multi-task
regression layer. Moreover, since we employ sigmoid regres-
sion in the prediction layer, the whole structure can be
seen as a complete structure of an NN. Once the optimal
parameters (weight w and bias a, b) have been determined
in the unsupervised stage, a supervised fine-tuned phase is
performed via error backpropagation algorithm on the whole
structure to adjust the weights and bias. This is done by
setting labels, which represent the actual CPU and memory
resource requirements of each VNF in SFC. BP algorithm
only needs to perform a local search in the optimization. Due
to the randomization of weights in the traditional BP neural
network, it overcomes the disadvantages that optimization
time is too long. Finally, the predicted output Yt+1 including
M̂V
u (t + 1) and ĈV

u (t + 1) of each VNF in the SFC is
obtained.
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D. ADAPTIVE LEARNING RATE
For DBN, learning rate ξ in the pre-training stage has a
great effect on the learning model. If ξ is too small, it will
be difficult for RBM in the DBN model to converge in a
short period. If it is too large, the RBM may not converge
to extract effective features. In this paper, we judge whether
the current ξ is appropriate through observing reconstruction
error, so that the prediction model can automatically adjust
learning rate according to the actual training state. If the
reconstruction error decreases, we increase ξ by multiplying
a number greater than 1, and vice versa, we decrease it by
multiply a number lower than 1.

E. DBN PREDICTION OF RESOURCE REQUIREMENTS
BASED ON ONLINE LEARNING
In summary, the DBN prediction of resource requirements
based on online learning is as follows. Here, a SFC among
all services is taken as an example for description.
Step 1: CPU and memory resource requirements of VNF

in the SFC before slot t are taken as the observations. The
sample set is normalized by the maximum and minimum
method, which is represented as x̄u =

xu−xmin
xmax−xmin

, where xu
denotes CV

u or MV
u , xmax and xmin refer to the maximum and

minimum of resource requirement. Firstly, offline phase with
batch training used to improve learning efficiency is carried
out. A batch includes N samples in chronological order, and
each sample consists of d slots. Then the initial prediction
model is obtained through offline training;
Step 2: The resource requirements monitored at slot t + 1

of the SFC are input as a label, and BP algorithm is used to
obtain better model parameters w, a, b in the fine tuning;
Step 3: Perform online prediction and update the sample in

real time. Let t = t + 1, and make [Xt ,Xt−1, · · ·Xt−d+1]
which represents the resource demand of d slots now as
the training sample. Then use pre-training method of sin-
gle sample to continuously update w, a, b by the formula
(15)(16)(17) until themaximum number of iterations of RBM
is reached;
Step 4: Predict Yt+1;
Step 5: Repeat steps 2-4 until all test samples have been

predicted.

V. DYNAMIC MIGRATION OPTIMIZATION ALGORITHM
BASED ON TABU SEARCH (TADM-DBN)
Calculate the resource utilization of physical nodes and links
by using the resource requirements predicted of next slot in
Section IV. When resource utilization exceeds the threshold
of physical node, one or more VNFs deployed on the phys-
ical node need to be migrated to other physical node with
lower resource utilization. Similarly, the virtual link needs
to be migrated to other physical link with lower resource
utilization. This paper firstly proposes a topology-aware algo-
rithm for global dynamic migration to migrate VNF to phys-
ical node that satisfies the constraint of resource threshold
through greedy selection, and then optimize the migration

strategy by using the obtained solution as the initial solution
based on tabu search algorithm [35].

A. TOPOLOGY-AWARE ALGORITHM FOR DYNAMIC
GLOBAL MIGRATION (TPGDM-DBN)
The topology-aware algorithm for dynamic global migration
proposed in the paper selects target physical node greedily for
VNFmapped on overloaded node that is predicted. Firstly the
local migration algorithm is used to calculate the overhead
C t
tot (u,m), and the VNF u with minimal system overhead

is selected and migrated to the target node m that satisfy
the resource constraints. The procedures are detailed in
Algorithm 1 below.

Algorithm 1 Topology-Aware Algorithm for Dynamic Local
Migration(TPLDM-DBN).
1: Input: Overloaded physical node Ss and the VNFs

mapped on it (VNFList)
2: Output: VNFmthat is needed to migrate and the target

physical node Sd to migrate
3: Cmin←∞
4: for each VNFi ∈ VNFList do
5: For each Sj ∈ S do
6: If check_constraints(VNFi, Sj) = False
7: Continue;
8: endif
9: Add Sj to SVNFi
10: Endfor
11: Calculate the minimum system overhead Ci of migrat-

ing VNFi to the selected set of physical nodes SVNFi
that meet the resource constraints by topology-aware
algorithm, and the target physical node is represented by
Di.

12: If Ci < Cmin and Di 6= Ss then
13: Cmin← Ci

VNFm← VNFi
Sd ← Di

14: Endif
15: Endfor
16: Return (VNFm, Sd )

The input is any one Ss of overloaded physical nodes
those are predicted. Calculate the overhead C t

tot (VNFi, Sj)
of migrating VNFi in the VNFlist to physical node Sj. Line
4 firstly determines if the selected physical node Sj satisfies
its resource constraints, which means that Sj must be able to
meet the future resource requirements of all VNFs deployed
to it after migrated. If not, continue to judge the next physical
node. Put all the satisfied physical node into SVNFi , the com-
plexity is O(|N S

|). Then use topology-aware algorithm to
calculate the system overhead and save the minimum value
in Ci. The topology-aware migration is defined as follows,
the VNF should be migrated to the physical node closest to
the mapped node of its neighbor VNF in SFC, where the
distance refers to the hops of the reconstructed path of virtual
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link.

M (u,m) =

{
sumv∈neig(u)D(m, n), where xum = 1, xvn = 1

m ∈ {m|C S̃
m > CV

u and BS̃ (p(m, n)) > BVuv}

where D(m, n) denotes the hops between node m and n. C S̃
m

denotes the available resource capacity of node m, p(m, n)
denotes the shortest path between node m and n. BS̃ (p(m, n))
denotes the available bandwidth capacity along path between
m and n, the complexity is O(|LS | + |N S

|log|N S
|). Lines

10-12 calculate the minimum system overhead for migrating
VNF in the VNF list. VNFi that has the minimum system
overhead will be the VNFm that is needed to be migrated,
and then migrate VNFm to node Sd . The complexity of the
Algorithm 1 isO(|Nv|(|N S

|+|LS |+|N S
|log|N S

|)), where Nv
is the number of VNFs on the overloaded node. Then a global
migration algorithm is performed in Algorithm 2 below.

Algorithm 2 Topology-Aware Algorithm of Dynamic Global
Migration (TPGDM-DBN).
1: Input the set of all overloaded physical modes and the

VNFList mapped on them:
2: for each Si ∈ SList do
3: Execute Algorithm 1 to select the VNF to migrate
4: while Si is still overloaded

Continue to execute algorithm 1 to select the
VNF with low system overhead for migration.

5: Endwhile
6: Endfor
7: Output the VNF set to be migrated and the corresponding

target physical nodes.

The input of algorithm 2 is the set of all overloaded phys-
ical nodes and the VNF list. For every overloaded physical
node, algorithm 1 is adopted to select the VNF with the
minimal overhead to migrate until all nodes do not exceed
the resource threshold. Finally, output the solution. When
executing 3-6 lines, the overloaded physical nodes are auto-
matically removed. So the complexity of Algorithm 2 is
O(|Ns||Nv|(|N S

− Ns| + |LS | + |N S
|log|N S

|)), where Ns is
the number of overloaded physical nodes.

B. DYNAMIC MIGRATION OPTIMIZATION ALGORITHM
BASED ON TABU SEARCH (TADM-DBN)
Tabu search (TS) is a metaheuristic search method based
on local search used for optimization. Use the tabu list to
block the area that has just been searched to avoid roundabout
search. Some special solutions can be released in the tabu list
to ensure the diversity of search. Moreover, in order to imple-
ment global search, tabu search algorithm allows accepting
inferior strategy to escape local optimal solution. Since the
above algorithm is based on greedy heuristic method and
the obtained solution is not optimal, hence we introduce
tabu search algorithm to optimize the migration strategy by
exchanging the order of the VNFs.

In order to design a TS algorithm, five major compo-
nents must be determined: the initial solution, the neighbor-
hood solutions, tabu list, aspiration criterion and stopping
condition.

1) INITIAL SOLUTION
A good initial solution can greatly improve the efficiency of
TS algorithm. Conversely, a poor initial solution will reduce
the convergence speed of the algorithm. In the paper, solution
obtained in the algorithm 2 is used as the initial solution of
tabu search.

2) NEIGHBORHOOD SOLUTIONS
A set of new solutions formed according to a certain mobile
strategy based on the current solution. The paper adopts
exchange strategy. To be specific, for the n overloaded phys-
ical nodes, one feasible solution of the migration is Z . The
neighborhood solutions N (Z ) are obtained by exchanging
the order of VNF to migrate on any two physical nodes,
which may change the type of VNF that need to be migrated
according to the principle of minimum system overhead.
By comparing the neighborhood solutions with the current
solution, a better solution Z̃ is selected.

3) TABU LIST
If the VNFs on i and j are migrated, we declare i and j as a
tabu to be searched during the next n − 1 iterations, where
n represents the number of overloaded physical nodes. The
reason for using n − 1 is to avoid the next n − 1 iterations
returning back to the same order. Therefore, the tabu in this
paper is recorded in short-term memory as a 2-tupple T (i, j).

4) ASPIRATION CRITERION
We allow for aspiration in which the criterion to allow a tabu
move if it results in a solution with a lower system overhead
than that of the current optimal solution Z∗. This would imply
that the solution should be removed the tabu tag and added to
the available candidate migration strategy.

5) STOPPING CONDITION
Finally, we have defined two criteria which determine when
the algorithm stops: (1) the maximum number of iterations is
reached. (2) there is no optimization in the system overhead
after a certain consecutive iterations. The details are shown in
Algorithm 3.
As shown in algorithm 3, the initialization sets the obtained
solution in algorithm 2 as the current solution Z meanwhile as
the best solution Z∗.We also initialize the tabu list T as empty.
The while loop starting at line 2 will continue searching for
a solution until the stopping condition is met. In lines 4 to
6, the neighborhood solutions are checked to release those
are in tabu list. If the candidate solution has a lower system
overhead than the current best solution (line 8-10), thenwe set
it as the new best solution and add it to the tabu list. Finally
the counters in the tabu list are updated in line 11. Since the
complexity of choosing neighborhood solutions is O(|Ns|2),
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Algorithm 3 Migration Optimization Algorithm Based on
Tabu Search (TADM-DBN)
1: Determine Initial Solution:Z = Z0,Z∗ = Z0,T = ∅,

Apiration Value: A(Z∗) = C t
tot (Z

∗)
2: While StopConditionNotMet() do
3: determine Candidate Set W in the neighborhood

solutions N (Z ), and choose the optimal solution X∗ in
W;

4: If C t
tot (X ) < A(Z∗),X ∈ T and C t

tot (X ) < C t
tot (X

∗)
X∗ = X
update C t

tot (X
∗)

5: Endif // Aspiration criterion
6: If C t

tot (X
∗) < C t

tot (Z
∗)

7: Z∗ = X∗,
8: C t

tot (Z
∗) = C t

tot (X
∗),

9: A(Z∗) = C t
tot (Z

∗)
10: Endif
11: update Tabu List T , T = T ∪ X∗,
12: Z = X∗

13: Endwhile
14: return Z∗.

the complexity of any remaining step isO(1). Assume that the
number of iterations is I when the stopping condition is satis-
fied, the corresponding complexity of the whole algorithm is
O(I |Ns|3|Nv|(|N S

−Ns|+|LS |+|N S
|log|N S

|)). The complex-
ity of the algorithm is under control, because ifNs is relatively
small compared with N S , the value outside the bracket is
smaller, then the complexity is relatively low and vice versa.
If Ns is relatively large compared with N S , the number of
target physical nodes that VNFs can be migrated to is limited
(the network may be severely overloaded). Now there are
few choices for migration, that is, the value in brackets is
small, and the complexity of the algorithm is not high. So the
proposed migration algorithm is applicable for small and
medium-sized networks.

After the VNF of the overloaded node and its adjacent link
are migrated, the virtual link selected with minimal system
overhead mapped to the overloaded physical link is migrated.
The minimum here is the minimal bandwidth overhead due to
the migration overhead is zero.

VI. EVALUATIONS
To evaluate the efficiency of our algorithms, we compare the
accuracy of prediction with the BP-NN prediction [20] and
compare the performance of the migration algorithm with the
heuristic algorithm proposed in [13].

A. SIMULATION ENVIRONMENT
Simulations are carried out on a Laptop with Intel Core i7-
4790, 8GB of memories and CPU frequency of 3.60GHz
using Matlab 2015b. The physical network graphs and
SFC are generated by the GT-ITM tool [36]. CPU capacity
of physical node is uniformly distributed between 50 and
100 units, while memory capacity is between 1 to 3 GB. And

physical link bandwidth is uniformly distributed between
60Mbps and 110Mbps. Given 15 SFCs, the number of VNFs
in each SFC can be 2,3,4. In order to verify the perfor-
mance of DBN prediction model and the migration algo-
rithm proposed in this paper, we use the superposition of
sinusoidal and cosine signals to simulate the sample data
of SFC resource requirements and discretize it. In order to
simulate the real environment, each sample is added with a
randomly generated value following a Poisson distribution.
And in this way, it is reasonable and conform to the actual
data flow characteristics of periodicity and burstiness. The
relationship between different types of VNFs and resources
in a SFC is achieved by slightly changing the amplitude,
angular frequency or initial phase angle of the sinusoidal or
cosine signal, and then periodically collect CPU, memory
and virtual link resource requirement of each SFC. We set
the sampling period to one hour and collect 10,000 samples
totally, in which the first 70% are as training samples for
DBN to train, while the remaining 30% are as test samples
to perform prediction. Intercept 120 slots of data from the
prediction results to describe the effect.

B. RESOURCE REQUIREMENTS PREDICTION
A SFC with 3 VNFs is used as an example to describe the
efficiency of prediction when using the first 5 or 10 time slots
to predict resource requirements of the next time slot, that
is, d is 5 or 10. For the sake of simplicity, DBN prediction
of resource requirements based on online learning adopts
a classic 5-layer model. The number of nodes per layer is
30-30-20-10-6 and 60-128-32-16-6, respectively. The max-
imum iteration of RBM is 300, and the initial learning rate
is set to be 0.0001. The root mean square error (RMSE)
used to measure the accuracy of the prediction is defined as
follows.

RMSE =

√√√√1
n

n∑
t=1

(Yt − Ŷt )2. (20)

where Yt represents the tag, Ŷt represents the predicted value,
n is the number of test samples. The smaller the RMSE,
the higher the accuracy of prediction. It is verified by simula-
tion that the RMSE is 0.1893 in the case of 30-30-20-10-6 and
0.1562 in the case of 60-128-32-16-6. Therefore, we use a
DBN prediction model with 60-128-32-16-6 nodes per layer.
The prediction of CPU resource requirements for one of the
VNFs in the SFC is selected to illustrate the accuracy of the
prediction model. Fig.6 and Fig.7 show the comparison of
the DBN predicted value with the true value of CPU resource
requirement and the BP-NN predicted value with the true
value. The RMSE in DBN case is 0.1552 which is better
than 0.2793 obtained by BP-NN algorithm. This indicates
that DBN prediction model overcomes the shortcomings of
traditional neural networks. It can fully utilize a large num-
ber of non-labeled data in the unsupervised stage, so as to
obtain closely optimal model parameters, and extract features
from input more effectively which improves the prediction
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FIGURE 6. CPU resource requirements based on DBN prediction.

FIGURE 7. CPU resource requirements based on BP-NN prediction.

accuracy of resource requirements. While BP-NN requires
a large amount of labeled data to train the model parame-
ters, and as the number of layers increases, the model will
quickly fall into local optimal solution, which will affect
prediction accuracy. In addition, from the comparison of
CPU resource requirements prediction under the two learning
modes in Fig.8, it can be seen that MTL has higher pre-
diction accuracy because it makes full use of rich informa-
tion in related tasks to improve overall performance of the
prediction.

In order to compare the effects of fixed learning rate
and adaptive learning rate on convergence speed of RBM,
the number of layers in RBM is set to one, and then compare
the error curves of RBM reconstruction in two cases. For
adaptive learning rate, multiply the learning rate by 1.2 when
reconstruction error is reduced, and multiply the learning rate
by 0.8 when increased. It can be seen from Fig.9 that recon-
struction error of RBM with adaptive learning rate tends to
be relatively stable after 50 iterations, and after 200 iterations
with fixed learning rate. We can conclude that adaptive learn-
ing rate accelerates convergence speed of RBM compared to
fixed learning rate, and improves computational efficiency of
DBN to some extent.

FIGURE 8. CPU resource requirements based on DBN prediction.

FIGURE 9. Reconstruction error of RBM for learning rate.

FIGURE 10. System overhead of different algorithms.

C. MIGRATION ALGORITHM
Fig.10 shows a comparison of system overhead for different
algorithms. In order to more objectively compare the perfor-
mance of different algorithms, we describe the accumulation
of system overhead over time, since migration strategy of
VNF or virtual link in each time slot will affect system
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FIGURE 11. Migration times of different algorithms.

FIGURE 12. Bandwidth utilization of different algorithms.

overhead of next time slot. Due to migration overhead of
this paper can represent the time required for migration and
bandwidth overhead reflects bandwidth resource utilization
or transmission delay, system overhead composed of them
shows performance of service. It means that the smaller the
system overhead, the better the service performance. As can
be seen from the figure, system overhead is increasing over
time, and the growth of two algorithms proposed in this paper
is relatively small. It is because TPGDM-DBNalgorithm con-
siders migration overhead and bandwidth overhead together,
so that system overhead is optimized. TADM-DBN algorithm
uses tabu search to further optimize system overhead based on
the solution obtained from TPGDM-DBN algorithm. How-
ever, the heuristic algorithm proposed in [13] only focuses
on optimization of bandwidth overhead, hence the perfor-
mance is relatively poor compared with proposed algorithms.
This is also reflected in the comparisons of migration
times and bandwidth utilization of different algorithms
in Fig.11 and Fig.12. Since the algorithm in [13] only pursues
optimization of bandwidth overhead unilaterally, it is slightly
better than the proposed algorithm in terms of bandwidth
utilization, but its system overhead has increased significantly

FIGURE 13. System overheads with different thresholds.

FIGURE 14. CPU utilization of different nodes.

because it is easier to cause frequent migrations of VNF or
virtual link.

Fig.13 shows system overhead for different thresh-
olds. In order to analyze the impact of thresholds more
vividly, the difference between CPU, memory and bandwidth
resource requirements and the difference of service perfor-
mance between physical nodes are temporarily masked, that
is, the simulation is performed by setting same threshold.
As can be seen from the figure, as the threshold increases, sys-
tem overhead decreases gradually. This is because the larger
the threshold, the less likely the resource demand exceeds the
threshold, therefore the less times the migration needs to be
performed.

Fig.14 shows an example of CPU utilization for different
nodes. CPU resource thresholds of three nodes selected for
analysis are 0.65, 0.85 and 0.55 respectively. It can be seen
that CPU resource requirements of VNF deployed in any node
do not exceed their resource thresholds, thereby ensuring
service performance of physical nodes and satisfying SLA
of the SFC. Similarly, memory and bandwidth resource uti-
lization of physical network are also guaranteed. For the sake
of space, no further analysis is performed here. Fig.15 shows
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FIGURE 15. Number of violations for different algorithms.

FIGURE 16. Computation time.

the number of SLA violations for different algorithms. The
number of violations refers to the times of occurrences that
resource requirements exceed thresholds of physical net-
work. It can be seen that TADM-DBN proposed significantly
reduces the number of violations during migration because
it can report resource requirements in advance. Then make
migration decision based on the predicted requirements to
ensure performance of SFC and improve users’ experience.
The prediction accuracy based on BP-NN is relatively low,
so the number of violations is higher. Algorithms that adopt
prediction mechanism generate less violations than those
which do not execute prediction first, which reflects the
importance of prediction to improve users’ experience.

As in [37], we further study the computation time of online
training and online migration in Fig.16. After offline training
period, the model parameters of DBN in the model are saved
to assist online training. Therefore, our evaluations showed
that each online prediction required about 5-10ms. In addi-
tion, we observed that an online migration can be obtained
in about 20s. The prediction time and migration times are
comparatively low, given that they are performed for resource
requirements 1h ahead of time.

VII. CONCLUSION
In order to solve the poor service performance prob-
lem caused by dynamic changes of resource requirements,
the paper first establishes a system overhead model tak-
ing account of migration overhead and bandwidth overhead
together. Then it proposes a resource requirements prediction
algorithm using DBN based on online learning to predict
the future resource requirements. Adaptive learning rate and
multi-task learning mode are introduced in the prediction to
improve the efficiency of prediction. Finally, by using the
result of prediction, a topology-aware dynamic migration
algorithm is designed, and the migration strategy used as
initial solution is further optimized by tabu search. The simu-
lation results show that prediction algorithm in the paper has
high accuracy and the convergence speed of training has also
been improved. In addition, the combination of prediction and
migration algorithms effectively reduces system overhead
and SLA violations which result in better performance of
SFC. Due to different divisions of the protocols may have
different performances in the proposed 5G C-RAN architec-
ture, effective deployment scheme of VNFs in access network
needs to be proposed. Therefore, the migration of VNFs in
access network will be more accurately modeled in future
work.
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