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ABSTRACT Positioning accuracy in 5G networks (achieved via techniques based on observed time
difference of arrival (OTDoA)) is limited by the synchronization error between the cellular base stations.
Here, we demonstrate that these base stations can be synchronized entirely passively through the use of
emerging forms of hollow core fiber (HCF) as the data transmission medium in the 5G front-haul network.
This is possible due to the excellent thermal stability of HCF which allows the synchronization error among
cellular base stations to be reduced significantly as compared to systems based on standard single mode
fibers. Reducing this synchronization error is necessary to meet the strict timing requirements envisaged
for 5G networks. We analyze the polarization mode dispersion, chromatic dispersion, and thermal stability
of the HCF and give suggestions on how to use the HCF to balance overall radio over fiber (RoF) link
performance in 5G front-haul networks. In a proof of concept experiment we show that HCF links enable
the positioning error (calculated with the OTDoA method) to be reduced down to the centimeter level even
when subject to tens of degrees Celsius temperature variations. This represents a 20-fold improvement over
standard single mode fiber systems which would require active compensation schemes to achieve similar
levels of time synchronization accuracy.

INDEX TERMS 5G, positioning, synchronization, hollow core fiber.

I. INTRODUCTION Positioning services are traditionally provided by global
The fifth generation mobile networks (5G) will provide (as  navigation satellite systems (GNSSs) like Global Position-
compared to 4G) greater bandwidth, 10 times larger data ing System (GPS), which can provide meter level posi-
rates per user, 100 times more connected users, ultra-low tioning accuracy. Besides not being precise enough for
latency, and high accuracy geographical positioning as a  the afore-mentioned applications, GNSSs need line of
new service [2]. High positioning accuracy at the centimeter sight (LoS) conditions, which are easily compromised in

level will be instrumental for emerging applications such as severe weather conditions, indoors, or in urban environments.
autonomous driving, geographic routing, beam steering and Additionally, for a mobile user or Internet of Things (IoT)
reliable emergency rescue [3]-[6]. applications, the time to the first fix (TTFF) typically takes

tens of seconds [7]. Besides the unwanted time delay, this

The associate editor coordinating the review of this article and approving R e . .
it for publication was San-Liang Lee. also consumes power, which is often a critical consideration,
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FIGURE 1. Configuration of front-haul network. UE: User equipment, BBU:
Base-band unit, RRH;: i-th remote radio head, RoF: Radio over fiber, t; is
the signal transmission time between UE and RRH;.

e.g., in battery-operated equipment. In 4G, an alternative to
GNSS has been adopted, the Observed Time Difference of
Arrival (OTDoA) method. This method is based on measur-
ing the time of arrival difference of a reference signal emitted
from three nearby base stations (equipped with Remote Radio
Heads, RRHs) at the User Equipment (UE) [8], see Figure 1.
Its accuracy depends on the synchronization of the RRHs.
For example, a 1 m positioning accuracy requires the time
synchronization error to be below 2.5 ns [9]. Other meth-
ods to improve the positioning accuracy of 5G include:
increasing the LTE bandwidth [10], use of optimized wave-
forms [11], [12] and use of fingerprints of deployed anten-
nas [13]. However, it appears that some form of OTDoA is
the most likely candidate to be implemented in 5G [14], [15].

Regarding current standardization efforts for 5G timing,
no definitive consensus has yet emerged. For example, ref-
erence [16] suggests absolute time error across the entire
network to be within £130 ns with the following relative
timing error tolerances: +20 ns from the time server (grand-
master), 100 ns from the time transportation (depending on
the number of intermediate nodes), and =10 ns for the base
stations. For the OTDoA based positioning services, only the
last number (410 ns) is relevant, as the base stations/RRHs
connected to the same Base-band Unit (BBU) are fed with
the same timing signal. We expect that stricter timing stan-
dards may be adopted in due course, as the above-mentioned
standardization proposal gives (as we show later) rela-
tively limited performance in terms of positioning accuracy.
Thus, we refer to the standardization proposal in [16] as
‘conservative’.

The time variations at the base stations/RRHs level come
from:

(i) stability of the Local Oscillator (e.g., 5 ~ £50 ppb
for Oven Controlled Crystal Oscillator, OCXO) [17].

(i) power amplifiers (e.g., 20 dB gain change causes 6 ns
propagation time difference) [18].

(iii) signal processing element (e.g., 19 ns delay variation
from FPGA’s IP core [19].

(iv) transmission medium (temperature stability of the fiber
and coaxial cable, 8 ppm/K and 100 ppm/K respec-
tively) [20], [21]. Although fiber is less sensitive,
its length is significantly higher than for the electric
connections.
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These data suggest that the timing precision using cur-
rent technologies will be in the tens of nanoseconds range,
requiring improvements in all four above-mentioned parts of
the system to reach the conservative 10 ns target. Further
improvements still will be needed if a stricter standard (e.g.,
sub-nanosecond timing target) is to be met. We expect that
each of the four timing error contributors mentioned above
will need to be within £2 ns (conservative standard) and
+500 ps or better (if a stricter standard is to be adopted),
respectively.

In this paper, our discussion focuses on the aspects of
the transmission medium (iv), i.e. time variations due to
optical fibers that connect the RRHs with a Base-Band Unit
(BBU), which form the so called front-haul network [22],
Figure 1. In 5G, there will be a large number of RRHs,
so their architecture will need to be very simple (to mini-
mize cost), ideally receiving and transmitting signal without
any additional hardware or electrical signal processing. This
implies analog communications between the RRHs and the
BBU using radio-over-fiber (RoF) and no use of GPS or IEEE
Precision Time Protocols (PTP) (see for example [23]-[25])
for time and frequency synchronization. The interconnect-
ing RoF links will be exposed to environmental variations,
causing the signal propagation time through the optical fibers
to vary significantly due to temperature fluctuations. For the
positioning services, this timing variation will convert into
a positioning error when using OTDoA based methods [26].
Outdoor temperature variation usually exceeds 10°C within
one day, and in most countries also 30°C for one season, and
over 60°C for one year [27], [28]. For a 1-km long single
mode fiber (SMF-28) based RoF link, 60 °C temperature
change causes propagation time change of 2.4 ns (typical
thermal propagation delay sensitivity of un-cabled SMF-
28 is 40 ps/km/K [20], and is higher if the fiber is cabled
fiber [29]). Considering two RRHs connected with the same
BBU (Fig. 1) with 1-km long fibers, this gives maximum
timing error of almost 5 ns (assuming un-cabled fiber) or
more (for a cabled one). Un-cabled SMF-28 is in this scenario
just at the edge of the conservative acceptable timing error of
42 ns. Thus, we can conclude that for the conservative timing
requirements [16], SMF-28 fibers will be appropriate only
for limited distances (e.g., up to 1 km fiber between a BBU
and the most distant RRH) and limited temperature variations
(e.g, <30 °C. However, for stricter timing standards or less
benign conditions, SMF-28 cannot meet the requirements
unless a compensation technique is used.

To the best of our knowledge, the synchronization error
in 5G due to RoF links has not been studied before,
though it has been considered in some other applications
e.g. in metrology or within the square kilometer array tele-
scope [30], [31]. In these applications, methods aiming at
solving the synchronization problem have already been pro-
posed, e.g. using active feedback control, or phase conju-
gate delivery [32], [33]. However, similar to the IEEE PTP,
these methods need extra hardware and the correcting loop
bandwidth is restricted by the signal round trip time. When
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moving to the high frequency bands that 5G envisages, high
frequency RF components will be needed for these synchro-
nization techniques (e.g., frequency mixers, doublers and
filters) which are likely to be associated with prohibitively
high costs. Calibration of the RoF link based on temperature
could reduce the time synchronization error, however, its
efficiency would depend on the accuracy of the temperature
measurement along the RoF link.

In this paper, we investigate how the 5G synchronization
and positioning accuracy can be achieved in a simple, passive,
and efficient way using new emerging optical fibers. These
fibers, known as Hollow Core Fibers (HCF), offer excellent
thermal stability of propagation delay [34], allowing for a
drastic (~20 times) reduction of the synchronization error
between different RRHs. As we show here, HCF-based RoF
links allow for centimeter-level positioning accuracy using
OTDoA, even when the temperature varies by as much as
£30 °C or when the polarization of the light propagating
through the fiber changes. This level of accuracy will allow
for the synchronization of RRHs in an entirely passive way
and meet the time error criterion proposed by the current stan-
dardization efforts and be even future-proof should stricter
standards be adopted.

Il. THERMAL SENSITIVITY OF OPTICAL FIBERS

As mentioned above, signal propagation time through stan-
dard optical fibers changes at a rate of 40 ps/km/K [29].
Considering a 1 km long fiber and a year-round temperature
change of 60 °C, this gives a 2.4 ns time difference. We have
shown that in HCF, this thermal sensitivity is reduced by
almost 20 times to 2 ps/km/K [35], reducing the above-
mentioned time variations from 2.4 ns down to 120 ps. This
reduction is due to the fact that light propagates through an
air-filled core rather than in a glass material. The flexibility
of controlling the optical properties of these hollow-core
fibers through structural design implies that this improved
performance can be improved still. Indeed, we have shown
that in a particular HCF geometry, the so called hollow core
photonic bandgap fiber (HC-PBGF), this already-small sen-
sitivity, (which is observed over most of HC-PBGF transmis-
sion window), can be further reduced down to zero or even
made negative [34], [36], albeit over a small spectral range
near the long wavelength edge of the fiber’s transmission
window. However, a fiber operating at this zero-sensitivity
wavelength as opposed to the center of the window suffers
from relatively higher attenuation, chromatic dispersion [36]
and large differential properties between the polarization
states of the fundamental mode [37]. This means that a careful
consideration of the optimum operating point needs to be
carried out for any given application. In particular, we need
to evaluate whether the advantage of almost-zero thermal
sensitivity (achieved at the edge of the transmission window)
is not overshadowed by other transmission impairments that
are generally stronger at the transmission window edge as
compared to its central part (where thermal sensitivity is not
zero, but still very small as compared to standard optical
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FIGURE 2. Experimental setup for analyzing the time delay performance
of an RoF link. TLS: Tunable laser source, MZM: Mach-Zehnder modulator,
0OC: Optical coupler, PC: Polarization controller, PD: Photodiode, EA:
Electrical amplifier.

fibers). Making such analysis for 5G front-haul applications
is one of the objectives of our paper.

IlIl. PERFORMANCE OF THE HC-PBGF LINK

Our experimental set-up (Figure 2) consists of an RoF link
and means to accurately characterize the timing changes. The
RoF link components include: a tunable laser source (TLS,
Pure Photonics), 40-GHz LiNbOsz amplitude modulator
(MZM), polarization controller (PC), 1-km long HC-PBGF
under test (detailed parameters can be found in [34]) or 1-km
SME-28 (for comparative purposes), and a photodiode (PD,
Agilent 8§3440C). Our RoF link bandwidth was 40 GHz.

The polarization state of the light launched into the RoF
fiber is adjusted via a polarization controller to allow us to
study the impact of polarization on the timing performance
of the fiber. This is to mimic a real-world environment in
which polarization can change over time, due for example to
thermal fluctuations, or random fiber bends, etc. The fiber
under test was put into a thermal chamber to allow for emula-
tion of environmental thermal changes. As RoF link delay is
largely independent of the carrier frequency, we carried our
timing measurement at a relatively low frequency of 7 GHz
(limited by our real time oscilloscope). However, the timing
performance (measured in seconds) should be identical for
5G frequencies, e.g., 28 GHz and 60 GHz. Our 7-GHz carrier
was split into two with a splitter with one part used to drive
the MZM operated at its quadrature transmission point whilst
the other half was used as a reference signal sent to the oscil-
loscope. After the RoF link, the signal was amplified (with
two electrical amplifiers (EAs)) and sent into the oscilloscope
to measure its phase/delay change as the temperature and
polarization states were modified.

We first characterized the polarization properties and chro-
matic dispersion (CD) of the HC-PBGF. The differential
group delay (DGD) was measured by changing the polar-
ization state (using PC) of the light before launching into
the fiber under test and recording the maximum delay vari-
ations. This measurement was repeated for a range of wave-
lengths (over C+L bands) and temperatures. Polarization
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FIGURE 3. (a): Loss spectrum (solid black), (b): Polarization mode
dispersion (red dash) and (c): Chromatic dispersion (blue dash dot) of the
HC-PBGF. Inset: A scanning electron micrograph of the fiber end face.

mode dispersiom (PMD) was then evaluated from averaged
DGD data, Figure 3(b). We also measured PMD with the
IEEE recommended fixed analyzer method [38], achieving
good agreement of both methods. The propagation time of
optical signals passing through the fiber changes with signal
polarization/PMD. This means that if changes in the fiber’s
environment (e.g. temperature, stresses or bends) cause fre-
quency or polarization drift of the signal, this will contribute
to the fiber’s perceived environmental sensitivity. The PMD
characterizes the magnitude of these changes. The signal
time of arrival variations may cause synchronization errors
in timing-sensitive applications (e.g., positioning in 5G as
discussed in this work).

We also measured the fiber CD using the same set-up as
used for the PMD, measuring the group delay as a function
of wavelength, and then calculating the CD from it, see
Figure 3(c).

From Figure 3, we see that the PMD and CD both increase
significantly at the long-wavelength edge of the HC-PBGF
transmission window [37], which is where (as we have
mentioned earlier) the lowest (zero) thermal sensitivity of the
HC-PBGF occurs.

To measure the thermal properties of the fiber under test,
the thermal chamber temperature was first kept at 58 °C for
one hour and then it was turned off, causing the tempera-
ture to drop at a very slow rate of 2 °C/hour (Figure 4).
This slow change helped to maintain a uniform distribution
of the temperature inside the chamber. During the cooling
down process, we kept recording the time delay changes and
repeated the entire process several times for various TLS
wavelengths (timing data were recorded from 50 °C to 30 °C
to avoid the initial non-uniform temperature distribution and
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FIGURE 4. Temperature inside the thermal chamber over time.
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FIGURE 5. Delay changes with temperature for SMF-28 at 1553 nm (blue,
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very slow final settling of the temperature). The thermal delay
properties of the HC-PBGF at two different wavelengths
(1553 nm and 1611 nm respectively) are shown in Figure 5.
We evaluated the thermal delay at two wavelengths, 1553 and
1611 nm; 1553 nm is a wavelength near the center of the
HC-PBGEF transmission window (where loss, CD, and PMD
are all relatively low), while 1611 nm is the wavelength
at which our HC-PBGF is fully thermally insensitive [34].
At 1553 nm, the delay changes linearly by 38 ps for a temper-
ature change of 20 °C. Considering the fiber length of 1 km,
this corresponds to a rate of 1.9 ps/km/K, which is typical
for hollow core fibers [35], [39], and is more than 20 times
smaller than for SMF-28 (measured to be 43 ps/km/K and
shown in Figure 5 for comparison). At 1611 nm, where we
would expect no delay change with temperature (as it is the
‘zero thermal sensitivity point’), we observe that the delay
changes by about =10 ps without any obvious relationship
with temperature. We believe this is due to the PMD that
is significantly larger at the zero-sensitivity wavelength as
compared to the center of the transmission window, Figure 3.
If we look closely we can just observe small oscillations
on the 1553 nm trace in Figure 5 of a similar form to the
1611 nm trace. We believe this to be due to the significantly
lower PMD at 1553 nm. The origin of these oscillations
is in temperature induced changes in PMD, and hence the
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dash) and (c): Considering HCF from [44] (black, solid).

polarization evolution of signal light propagating through the
relatively long length of HC-PBGF, and this in turn impacts
the associated propagation delay.

Another possible origin for this variation may be the
thermally-induced change of polarization state of the input
signal launched into the HC-PBGF. If this happens, the prop-
agation time through the fiber will change as a result of
the PMD. As we see in Figure 5, operating the HC-PBGF
over a temperature range of 20 °C at 1553 nm gives about
a timing stability twice worse than at 1611 nm. It is worth
mentioning that the PMD in HC-PBGFs results from small
structural imperfections [37], [40] and thus could be signifi-
cantly improved in due course with realistic improvements in
fiber manufacturing processes, promising significantly bet-
ter thermal performance at the zero-sensitivity point in due
course.

For a practical RoF link, besides the signal delay proper-
ties, the CD has also to be considered, as it causes signal
fading [41]. The RF power fading due to the dispersion is
calculated from

242
w ) 1)
c
where L is the length of the fiber, D is the value of CD, A is
the wavelength, f is the frequency of the RF signal and c is
the speed of the light in vacuum.

At 1611 nm, we measured D1g11 = 120 ps/nm/km, while at
1553 nm, D;553 = 18 ps/nm/km, which is actually very close
to the CD of SMF-28. The RF power calculated using Eq. (1)
as a function of the carrier frequency is plotted in Figure 6.
As we can see, the CD of HC-PBGF operating at the zero
sensitivity point (1611 nm) is too high for 5G frequencies
for the fiber lengths used (1 km). For operation at 1553 nm,

P «x cosz(
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the RF power decreases by less than 3 dB at 40 GHz, similarly
with for SMF-28, which is sufficient for most, but not all
frequencies of interest in 5G.

To increase the RoF operation frequency or reach, a fiber
with lower CD must be used. For standard optical fibers,
lower dispersion is likely to introduce non-linear signal
distortion due to the fiber nonlinearity [42]. This is very
different in HCFs, where the fiber nonlinearity is approxi-
mately three orders of magnitude smaller and consequently
they can be operated at zero (or close-to-zero) CD without
any (non-linear) signal distortion [43]. Interestingly, newly
emerging and rapidly improving anti-resonant type HCFs
(ARFs), can be designed to have very low level of CD
over a very large spectral window (e.g, < 2 ps/nm/km over
1000 nm [44], [45]), effectively eliminating CD-induced
power fading in 5G front-haul networks, even for frequencies
of 60 GHz and distances in excess of 1 km (black solid curve
in Figure 6). Such fibers are extremely promising, having
recently demonstrated lowest ever attenuation of 1.3 dB/km
for any HCF reported to date [46], making them very attrac-
tive for RoF applications over longer distances than consid-
ered here. Unlike in PBGFs, the thermal sensitivity of ARF
is limited by the thermal expansion of the silica glass from
which they are made and cannot be completely eliminated.
However, this residual thermal sensitivity remains 20 times
lower than that of SMF-28 i.e. 2 ps/km/K.

To conclude, for 5G RoF links, HCFs with low CD
(< 2 ps/nm/km) and low thermal sensitivity (< 2 ps/km/K)
represent an ideal choice of transmission fiber, surpass-
ing SMF-28 significantly in timing stability (> 20 times)
and CD-induced fading, while not suffering from any
fiber-induced non-linear signal distortion.

IV. POSITIONING PERFORMANCE

Finally, we have analyzed the potential positioning accuracies
based on the measured thermal and polarization properties
of the HC-PBGF we had available for this study, and for
SMF-28 as a comparison.

We used the standard OTDoA method for calculating the
UE position, in which the UE measures the time of arrival
of signals received from at least three base stations or RRHs.
The time difference from any two times of arrival determines
a hyperbola, and the intersection of two hyperbolas (T2 =
Ti — Tp and T3 = T; — T3) determines the UE position
(2, y) [9].

Due to the synchronization error between these stations,
the UE measured time difference can be expressed as:

Jor —x0% + o — v0?
C

e =2+ 0 -

c

AT, =

+Ti—=T1) ()

where AT ; is the time difference between the reference
RRH; and the i-th RRH measured by UE, (x;, y;) is the

113201



IEEE Access

W. Zhu et al.: Toward High Accuracy Positioning in 5G via Passive Synchronization of Base Stations

RRH,
(0, 577)
*
\
Ty — Ty~ !
2 1 *
I\LLE (010)
] N\
I
* _ *
RRH, I3—T RRH,
(-500,-289) (500,-289)

FIGURE 7. OTDoA positioning method.

0.7
i, ~HC-PBGF: 1611 nm

i - HC-PBGF: 1553 nm
e : ~SMF-28
5 03f L
= AT =30°C
8 01
2 N
2 01 :
m .
O :
5 03 :
> AT =-30°C :

05F :

07L— i

0.7 -05 -03 -01 041 03 05 07
Horizontal position error, m

FIGURE 8. Positioning error boundary plotted based on +30 °C
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performance of HC-PBGF working at 1553 nm, blue dotted lines show
HC-PBGF working at 1611 nm, and black solid lines show SMF-28. Blue,
red and light blue regions are the possible calculated UE position for a
temperature change within +30 °C.

coordinates of the i-th RRH, and 7; — T is the fixed delay
plus the additional synchronization error between two RRHs.

To calculate the positioning error, we made the following
assumption: the distance between any two RRHs is 1 km,
the RoF links are 1.5 km long (to account for the fact that the
fibers connecting RRHs are always longer than the distance
between them) and the UE is at the center of the three RRHs.
The coordinates of the UE and three RRHs are given in
Figure 7. Assuming that both RoF links experience a year-
round temperature change of 30 °C, which gives a baseline
to evaluate the positioning performance under any other tem-
perature fluctuation, this temperature change will result in a
synchronization error which in turn will lead to a positioning
error.

Figure 8 shows the positioning error calculated using
Eq. (2), considering the HC-PBGF and SMF-28 properties
shown in Figure 5, the temperature induced synchronization
error and the network topology described in Figure 7. When
the RRHs are connected with SMF-28, the maximum syn-
chronization error is &2 ns, corresponding to a positioning
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TABLE 1. Performance comparison of different fibers and working
conditions.

Thermal delay ~2
sensitivity 43 0 1.9 (expected)
(ps/km/K)
PMD 0.06 22 57
(ps/vkm) [47] 1.24 <0.2+
cbh 17 120 0-18 <2
(ps/nm/km)
Optical loss
(dB/km) 02 i 42 -
RF power Medium High Medium Low
penalty
Positioning
error 1700 +4 £30 +30
(£30 °C, mm)

+ measured value for the fiber used in this manuscript,
L predicted value considering improved fiber design and fabrication [37].

error of 2700 mm. When using the HC-PBGF at 1553 nm,
the synchronization error reduces to less than +90 ps, and
the corresponding maximum positioning error is =30 mm.
For operation at 1611 nm, the maximum positioning error
was further reduced to -4 mm, with this error resulting from
change in the polarization state of the light/PMD. The overall
performance comparison is shown in Table 1. Considering all
the aspects (PMD, CD, RF power penalty, and insertion loss)
HC-PBGF working at the center of its transmission window is
currently the best choice, although the emerging ARFs would
give even better performance.

V. CONCLUSION

We have analyzed the thermal and PMD properties of
HC-PBGF relevant to time synchronization in a 5G fiber front
haul network. The overall best performance was achieved
when operating the HC-PBGF at the center of its transmission
window, where the thermal sensitivity of the propagation
delay is more than 20 times lower than for SMF-28, reduc-
ing the year-round timing error in 5G network (where the
distance between base stations are typically considered to
be < 1 km) from £2 ns to 90 ps. The value of £2 ns is
at the limit of what is required for conservative 5G timing
proposals and would give very tight margins on the timing
performance of the electronics/processing parts of the system.
The eventual stricter 5G timing proposals cannot be met with
SMEF-28 unless some active compensation is employed, but
are achievable with HC-PBGFs.

Timing errors of the order of +2 ns (SMF-28) and +90 ps
(HC-PBGF) correspond to a positioning error of 700 mm
and +30 mm respectively. Clearly, the performance given
by HC-PBGF is essential for applications like autonomous
vehicles navigation or indoor localization. [6], suggesting
stricter timing standards than those proposed in [16] are to
be expected for 5G networks.

It is worth mentioning that the influence of fiber cabling
to the timing performance needs to be also studied, as cur-
rent cabling solutions are known to degrade the fiber timing
performance.
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Newly emerging HCFs (e.g., ARFs) are expected to give
further improvement in performance, in particular in terms
of chromatic dispersion and loss.

The excellent thermal stability of HCFs relevant for time
synchronization is further complemented by three of its other
key properties relevant to 5G front haul networks. These are
the low latency (signals propagate about 50% faster in HCFs
as compared to SMF-28 [48]), the very low non-linearity,
and finally the very low chromatic dispersion. The latter two
properties allow for operation at very high carrier frequencies
(e.g., 60 - 100 GHz) without chromatic-dispersion-induced
signal fading or nonlinear signal distortion.
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