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ABSTRACT Train dispatching (TD) is at the forefront of all rail operations that transport passen-
gers or goods. Recent technological advances and the explosion of digital data have introduced data-driven
methods (DDMs) in rail operations. In this study, DDMs on the TD problem are briefly explored, focusing
on relevant studies on delay distribution, delay propagation, and timetable rescheduling. Data-driven
TD methods, including statistical methods (SM), graphical models (GM), and machine learning (ML)
methods are reviewed. Then, key issues in establishing different data-driven models for the TD problem
are addressed. Subsequently, ML methods are considered to be among the most promising DDMs that lead
to innovative TD methods, relying on rich data obtained from train operations. This study emphasizes the
potentials for designing new alternatives in the three key fields of interest and provides directions for further
research on TD. Future research, including the ML-driven TD and intelligent TD, were discussed in this
study.

INDEX TERMS Data-driven, delay distribution, delay propagation, timetable rescheduling, train dispatch-
ing, machine learning.

I. INTRODUCTION
Robust train operations and effective management of unex-
pected incidents are critical for quality of service (QoS)
and the competitiveness of rail services in the trans-
portation sector. Delays affect users’ expectations about
reliability, punctuality, and QoS. Moreover, delays cause
missing transfers and extend working hours of crews and
locomotives, thereby leading to increased operational cost
for operators. Consequently, rail operating companies are
given high priority in avoiding and reducing the negative
influence of delays [1] . A significant number of models
and algorithms have been proposed to improve train services
in response to unexpected incidents in rail operations [2].
Recently, several railway traffic control (RTC) projects were
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launched to improve train operations and services for the
ever-increasing rail travel demand. The Europe ON-TIME
project, which began in November 2011, defines two out of
eight targets mainly related to disturbance management [3].
The project titled Safety, Reliability, and Disruption Man-
agement of High-Speed Rail (HSR) and Metro Systems
(Grant No. T32-101/15-R) was granted to enable depend-
able train operation, performance, and service through the
advanced design of rail system operations with the help of
train operation data [4]. In case of a delay incident, a train
dispatcher who is responsible for facilitating the train move-
ments over an assigned territory follows a set of dispatching
decisions that are provided in the timetable or adjust them
according to critical decisions. Train dispatching (TD) is a
multi-criteria decision-making (MCDM) problem [5], [6].
Although several MCDM approaches are available, each has
its advantages and disadvantages. As reviewed in [7], [8],
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TD has become an active research area mostly due to delay
reduction priority. However, a gap remains in the number
of models that can handle TD in a real-time RTC system.
In addition, most of the proposed solutions are based on
abstracted models and simplified assumptions. Most of the
recent practices in TD are still dominated by predetermined
rules, contingency plans, intuition, and personal expertise.
In practice, dispatchers need to integrate real-time structured
and unstructured information (supporting data) when making
dispatching decisions in response to unexpected incidents and
displaced operations. This phenomenon is the main limitation
of conventionalmathematicalmodels because they can hardly
handle real-world, large-scale models in real-time, thereby
leaving aside the gap between the experimental results from
these models and the actual operations.

Recent rapid advances in monitoring and communica-
tion systems and data technologies enabled a wide range of
possibilities, such as data-driven train dispatching (DDTD)
for operations management in rail transportation [9]. Train
operation records from control and monitoring systems are
a valuable resource to mine and assess realized operations
to improve train operations based on data-driven decisions.
The applications of big data in railway operations, mainte-
nance, and safety have attracted the attention of researchers
and practitioners [10]. Admittedly, data-driven decisions
are remarkable, practical, and reasonable. In this regard,
TD-related activities and decisions can be supported by hid-
den knowledge extracted from train operation records to
make better decisions and actions in response to delay in
future train operations.

The rest of this paper is organized as follows: In Section 2,
we briefly introduce some related concepts of TD, and we
present the collection of dispatching data and summarize
dimensions that are reviewed. Subsequently, in Section 3,
we categorize three types of data-driven models that have
been applied in TD, covering 153 relevant papers focusing
on data-driven methods (DDMs) in TD. Then, we presented
the review results and discussed the future research direction
and the potential applications of DDMs in TD in Section 4.
Finally, we present conclusions in Section 5.

For reading convenience, all the abbreviations and their full
forms in this paper are listed alphabetically in Table 1.

II. DATA-DRIVEN TRAIN DISPATCHING
A. TRAIN DISPATCHING
A train dispatcher (United States, Japan, and China), rail traf-
fic controller (Canada), train controller (Australia), or signal-
man (UnitedKingdom) is obliged tomake real-time decisions
to command trains. For the sake of safety and efficiency, train
operations are governed by strict rules. Once delay occurs,
the operations should be recovered as soon as possible at the
first possible position with the greatest care to avoid risking
the subsequent operations. Thus, dispatchers should make
critical dispatching decisions on the basis of available data
and previous experiences. First, they need to collect relevant
data from operational circumstances. Second, they need to

TABLE 1. Index of phrases have an abbreviation.

process the data to gather useful information. Third, dispatch-
ing knowledge and personal experiences lead to decisions in
train operation dispatching strategies. Traditional dispatching
works are highly experience-oriented, thereby resulting in
many uncertainties and inconsistencies in decision making
in response to similar circumstances. Although the proposed
mathematical models for TD perform well in experiments
and provide remarkable results in the academic field, their
application in real-time TD situations is difficult because they
cannot consider the knowledge and expertise of dispatchers.
This phenomenon is mainly due to the hidden factors and
interdependencies that models can hardly cover, but a dis-
patcher can consider.
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B. TRAIN DISPATCHING DATA
Recent technological advances and developments in rail
transportation have enabled operators to store, access, and
mine enormous real-world train operation data (RWTOD)
from realized train processes. These kinds of RWTOD can
come in three forms. The first form is structured data
(e.g., arrival and departure time at stations), which is mainly
reserved in the centralized traffic control (CTC) system [11].
The second form is semi-structured data, which can be mined
from recorded videos, images, and event notes [12], [13]. The
third form is unstructured data (e.g., dispatching command
and other literal event records), which can be captured by
monitoring systems. Researchers and practitioners can use a
host of data processing tools to process the numeral struc-
tured data. However, semantic and syntactic data models,
which offer greater capabilities for data integration, extensi-
bility, and compatibility over traditional approaches, are often
applied to process semi-structured and unstructured data [14].
Train operation appearance is analyzed and estimated to a
certain extent using train operation records of the Japanese
railway, whether in the form of tables, texts, graphs, images,
and videos [15]. Goverde and Hansen confirm that delay
propagation and conflicts in the Netherlands can be analyzed
by using train operation records [16]. Graffagnino visualizes
train operation data in Switzerland to study delays [17]. For
instance, TRENO in OPEN TRACK performs an extremely
detailed graphical analysis of train movements, train speeds,
acceleration, braking curves, and dwell times using RWTOD
tools [18]. Moreover, train operation data in other countries,
such as Germany [19], Italy [20], Denmark [21], Finland [22],
UK [23], Japan [24], India [25], Turkey [26], US [27],
Serbia [28], and China [29], [30], have been used in data-
driven TD modeling.

C. DATA-DRIVEN TRAIN DISPATCHING ISSUES
1) DELAY DISTRIBUTIONS
Train operations are assumed to be stochastic processes [26].
Dispatchers need to capture the characteristics of delays on
specific lines or local railway network. Delay distributions
usually provide basic rules on delay causes that the trains
follow and assist dispatchers in obtaining the delay probabil-
ities and duration online and offline. Figure 1 shows the deci-
sion making based on delay distribution models, which may
include delay cause distributions, arrival/departure delays at
stations, running time delays in sections, delay aggregation
distributions, and delay influence distributions. The upper
part outlines what dispatchers do, and the lower part illus-
trates some delay distribution examples at stations and in
sections. Overall, dispatchers need to estimate the poten-
tial delay probabilities and their influences based on delay-
specific causes according to historical delay distributions in
the approaching journey. When a delay occurs to a train,
various strategies, such as adjusting running speeds, altering
dwell times, and changing overtaking could be considered by
dispatchers to absorb delays.

FIGURE 1. Decision-making based on delay distributions.

FIGURE 2. Recursive iterative processes of delay prediction.

2) DELAY PROPAGATION
Delay propagation is a function of delay aggravation caused
by disturbances and delay recovery activities conducted by
dispatchers. A delay may spread out in vertical and horizontal
orientations, leading to delay propagation on the line or even
on the network and contributing to the complexities of train
operations. Delay propagation has been the main source of
displacements in the railway system; thus, minimizing delay
propagation takes high priority [31]. Analyses of microscopic
and macroscopic approaches show that most of the studies
consider the railway system at a microscopic rather than at
a macroscopic level, and almost all papers have focused on
minimizing delays of passengers or freight. Delay prediction
is one of themost popular issues in these studies. It is a typical
data-driven process because the following arrival or departure
time is subject to its current status and the adjacent leading
train. Thus, dispatchers can determine the arrival and depar-
ture times one after another. Figure 2 shows that determining
train status is a recursive, iterative process. The time axis
(red line) denotes the current time, and dispatchers need to
use known data on the left of the time axis to predict unknown
events on the right of the time axis. The origination departure
time p4 of train i+1 is determined by p1, and p5 is derived by
p2 and p4. Similarly, p7 is derived from p5 and p6. Train i+1 is
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FIGURE 3. Strategies and objectives of timetable rescheduling.

mostly subject to the status of train i, whereas train i+2 is
mostly subject to the status of train i+1, whose predicted
points of p4, p5, and p7 are considered historical data. Major
disturbances can propagate to other trains in the network,
thereby requiring short-term adjustments in the timetable to
limit delay propagation [32].

3) TIMETABLE RESCHEDULING
TTR is what dispatchers mainly deal when the effect of
unexpected displacements on train operations are adjusted.
TTR is usually considered the decision of altering succeeding
train arrival, departure, and running times, which are previ-
ously planned timetable. CD and resolution CDR, minimiz-
ing delays, minimizing delay costs, and BTA optimization are
the mainly proposed objectives in TTR. Figure 3 summarizes
the strategies that are mainly used by dispatchers and pro-
posed objectives in TTR in the existing literature.

Several problems, such as delay recovery, conflict detec-
tion and resolution, timetable optimization, and QoS
improvements, are investigated as the main issues of TTR.
Fang et al. [33] survey nine types of models and solu-
tion approaches on TTR in railway networks, addressing
problems of CR, disturbance/disruption recovery, TD, and
some data-driven associated methods in general. A review
of recovery models and algorithms for real-time railway
rescheduling of recent decades can be found in the work of
Cacchiani et al. [7]. Here, the most recent papers on the
DDMs employed in TTR are specifically considered.

When delays occur, the main problem that dispatchers
focus on is CDR because the delay of only one train may
cause an entire cascade of delays to other trains over the
entire railway network and further delays and conflicts at train
interactions and transferring points [34], [35]. The delays
may lead to conflicts due to the competition of resources,
and conflicts tend to lead to delays because of the time loss
and the hindrance between trains. Conflict chains and trees
should be prevented by dispatchers [36]. A conflict occurs
when an overlap occurs between two or more time windows
due to deviations of train events [37]. The total solutions for

trunk lines in European railway networks include identifying
and resolving conflicts automatically are the bases of the
European Rail Traffic Management System [38]. One of the
ultimate goals of TTR is CR, of which the detailed loop is
presented in [39], and the detailed loop of CD is proposed
by [40].

In practice, a certain amount of buffer times is mostly
added to the timetable. However, this method can affect oper-
ational capacity in heavily utilized networks by contribut-
ing to longer travel times. Furthermore, the unused buffer
times in sections (or stations) cannot be used by trains in
the downstream sections (or stations) due to its non-storage
property. Therefore, various BTA schemes can have different
impacts on delay propagation and recovery and the opera-
tional capacity of the railway system, even with the same
amount of buffer time [41]. To this end, two main issues need
to be addressed. The first issue is how and to which extent the
buffer times affect delay recovery and CR. The second issue is
how to distribute the buffer time among different stations and
sections to achieve the highest utilization ratio of buffer time.
The timetable planners and dispatchers design or reschedule
timetables with historical data using the empirical buffer
times used in previous timetables with certain delay scenar-
ios. On the one hand, planners may create a new BTA scheme
for a new operation based on the statistics of historical timeta-
bles that are used for the line. They may use the statistics of
timetables of another line with similar operating conditions
for a newly opened line. This process can be considered a
long-run period BTA to boost the robustness of the timetable.
On the other hand, dispatchers adjust timetables according
to the historical performance of a certain day to resolve
probable delays or conflicts. This process can be considered a
short-term BTA.

D. OUTLINE OF DATA-DRIVEN TRAIN DISPATCHING
ISSUES
DDMs or data-oriented and data-based models are built by
analyzing the actual data obtained from an operating system,
particularly in finding connections between the subsystems
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TABLE 2. Case studies on train dispatching.

and state variables (input, internal, and output variables) with-
out requiring many details and explicit knowledge from the
physical behavior of the system. DDMs have strong model-
ing abilities for complex systems, digging out relationships
among system indices and establishing models that can fit
different situations [42]. The survey shows that DDMs are
multifunctional and are important in the development of intel-
ligent transportation systems [43].

The rail industry has been a pioneer in using and imple-
menting big data analytics. In this regard, the recently pub-
lished book on big data application has shown practical
aspects of DDMs in rail transportation [44]. The RWTOD
has been widely used in many countries, supporting the
improvement of rail traffic control qualities. For example,
a data-driven train delay prediction system is developed with
the help of big data analytics [20]. In Table 2, some of the
case studies on TD issues based on the RWTOD in typical
countries are summarized. Some trained models based on
RWTOD have been used in many simulations in the last
decade via commercial software, such as Opentrack [45]
and RailSys [46], and laboratory software, such as railway
traffic optimization using alternative graphs (ROMA) [31]

and TNV-Conflict [36], to figure out the precise behavior of
trains and improve train operation qualities.

Turner et al. [52] reviewed some studies on timetable
planning and scheduling that applied DDMs, such as data
mining, knowledge engineering, and expert systems. In this
work, we look into the most popular DDMs, namely, sta-
tistical method (SM), Graphical models (GM), and machine
learning (ML) methods [42]. The SM, including correlation
analysis, regression models, and visualization methods, mine
relationships among variables embedded in the data. The
GM methods attempt to derive knowledge or rules from the
data to establish the arc weights of the alternative graphs,
the matrices of the Markov model, the probability chains of
the Bayesian network, and the fuzzy numbers of the fuzzy
network. These models include fuzzy logic, expert, and prob-
abilistic graphical models. ML is a method used to produce
reliable, repeatable decisions and to uncover hidden knowl-
edge by learning from relationships and trends in historical
datasets. The support vector machine (SVM), reinforced
learning, deep learning (DL), and artificial neural
networks (ANN) are also typicalMLmethods. Figure 4 shows
that three different key subjects in TD, including delay
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FIGURE 4. Outline of data-driven train dispatching issues.

distributions, delay propagation, and TTR and optimization,
are reviewed using the aforementioned DDMs.

III. DATA-DRIVEN MODELS IN TRAIN DISPATCHING:
LITERATURE
A. DATA-DRIVEN DELAY DISTRIBUTIONS: LITERATURE
In this section, we review studies on delay causes and dis-
tributions based on DDMs. Train delay distributions highly
depend on the varying operating conditions of specific lines
and networks. Although developing universal distributional
forms that can be applied everywhere is difficult, data from
specific lines can be used to reveal the general principles for
other similar areas. Conte [53] pioneered the systematic study
of dependencies among delays using data-based methods;
his application-oriented thesis deals with identifying depen-
dencies among delays through a stochastic analysis based
on the measured arrival and departure delays that have been
considered observations of random variables.

1) DELAY CAUSES
a: SM
Observations show that external factors are the main causes
of primary delays, and operation interference is the main
cause of knock-on delay, according to the data of on-
schedule ratios. The number of passengers, occupancy ratio
(passengers/seats), infrastructure utilization, cancellations,
temporary speed reductions, railway construction, depar-
ture and arrival punctuality, and operational priority rules
are the main factors that may affect train operations [54].
Palmqvist et al. [55] applied SM to quantify how severe
weather, timetable, operational, and infrastructure-related
variables can influence the punctuality of passenger trains.

From the aspect of external factors, poor weather con-
dition has always been the main cause of primary delays.
A novel exploration of the impacts of extreme events has been
conducted [23], [56]. Punctuality statistics on the Norway
railway show that more than 4000 delay hours, which was
approximately 30% of the total amount of delay hours, was
caused by infrastructure conditions [57].

Internal and congestion-related factors, such as crosses,
passes, overtakes, prior time period train counts, total train
hours, train spacing variability, and train departure head-
way were investigated by using SM for freight trains in
the US [27]. The study found that the primary congestion
factors (crosses, passes, and overtakes) consistently have
the largest effect on congestion delay. Positive and statis-
tically significant relationships between reactionary delays
and capacity utilization conclude the exponential relation-
ship between adding trains onto a congested network and
capacity utilization, which is an important internal factor of
delay [58].

The experience from Taiwan HSR shows that shortening
the maintenance cycle can effectively alleviate the problem
of train delay caused by signal failures [59]. Recently, over
1,200 train operation records were obtained from the ‘‘delay
events record chart’’ of Wuhan–Guangzhou HSR in China,
and seven categories of external causes that lead to primary
delays are identified [29], and a similar relationship plot
between capacity utilization and delays are also obtained
from the Chinese HSR operation data. Statistics also show
that almost 90% of disruptions are due to bad weather [60].
All these results help dispatchers to know the overall causes
of delays in HSR.

Data-driven visualization based on train operation records
can help determine delay causes. Timetable planners can intu-
itively determine the situation of train operation and obtain
helpful information for analysis by visualizing the histori-
cal train operation data [24]. Chromatic Diagram, a help-
ful software to visualize the raw data, is abstracted and
plotted to determine the delay causes [17], [61]. Moreover,
the bubble diagram, incremental delay diagram, 3D diagram,
and other information visualizations, such as box diagrams,
dwell times, running times, headways, and scatter diagrams
for delays, are applied to visualize historical train operation
records [24]. Causes and effects of delay can be analyzed,
and delay reduction measures can be evaluated by comparing
results with the help of these skills.

b: GM
The fault trees are generally used for estimating the risk and
development of railway facility failures. Port and Ramer [62]
stated that fault trees might help estimate earthquake-induced
failure probability and downtime of critical facilities, includ-
ing in railway systems. Liu et al. [63] employed a fault tree
combined with quantitative analysis to investigate the fault
of HSR accidents. The fault tree analysis is also used to
determinewhere the risks are, the dangers they pose, andwhat
factors have the most significant effects on the rail system
by analyzing all possible basic events. All wind-, rain-, and
snow-related adverse weathers along with human-related fac-
tors, can potentially cause great risks. A hierarchical analytic
process is used to calculate the weights among indices for
each adverse weather factor. A fuzzy synthetic evaluation
process is then conducted to identify the risk level of an
evaluation target [64].
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c: ML
ML is not popularly used in studies of delay causes. So far,
large amounts of historical detector data together with failure
events, maintenance action, inspection schedule, train type,
and weather information are used to predict railway facility
maintenance [65]. Several analytical approaches, including
correlation analysis, causal analysis (e.g., principal compo-
nent), time series analysis, and ML techniques (e.g., SVM),
are applied to learn rules automatically and build failure
prediction models. Oneto et al. [66] proposed a train delay
prediction system (TDPS) using ML to predict delays, con-
sidering exogenous weather data. The model can be further
improved by including data from exogenous sources, par-
ticularly on the weather information provided by national
weather services. Results of real-world data from the Italian
railway network show that the recommendations of this study
can remarkably improve the current state-of-the-art train
delay prediction system. The delay cause discovery model
is constructed in four phases, including data preprocessing
and analysis, decision tree based on ML methodology, delay
analysis with key delay factors, and spatiotemporal lateness
topology analysis [67].

2) DELAY DISTRIBUTIONS
a: SM
Several standard distributionmodels are often used to fit data-
driven probability distributions and regression models. Delay
elements, indices, and distributions can be easily observed
using data-driven visualization methods. The chromatic dia-
gram is used to visualize where a delay emerges and how
it develops [68]. Then, dispatchers can easily identify the
frequency and severity of delays and the effectiveness of
the respective delay reduction measures. The proposed open
timetable used in Schweizerische Bundesbahnen (SBB) helps
railway timetable planners to evaluate actual schedule adher-
ence data and assist dispatchers in identifying delays [19].
Delay distributions show the number of trains in various
groups and different delay patterns using real data with clus-
tering methods [69].

An estimation of the duration of disturbances using
SM [70] or other sophisticated techniques usually happens
in railway networks [71]. The third quarter distributions of
actual running times and delays are investigated using his-
torical data [21]. A percentile approach, which assists the
punctuality reporting system of RDK to work effectively,
helps dispatchers to aggregate delay percentiles on train num-
bers (or groups of trains), geography (measuring points),
time period, percentile, or as a combination [50]. Several
reports have been developed to help RDK locate systematic
causes of delays. These approaches can be used to achieve
improved punctuality. Furthermore, on the most important
lines of RDK, aggregations of data for analysis of dynamics
of delays and queuing effect on single lines between stations
are investigated using the data from the digital CTC [72].

So far, delay disturbances of trains in most studies are
approximated by an exponential distribution. A shifted

exponential distribution for the free-running time of each
train is proved, and the effect of headways on knock-on
delays of trains is simulated in [73]. Goverde et al. [74] fitted
the distributions of train arrival time, departure times, and
dwell times in the Netherlands railway, and Yuan [75] inves-
tigated the departure and arrival times at Hague HS station
with RWTOD. Both of their studies concluded that train oper-
ation interference time follows a negative exponential dis-
tribution. The exponential distributions, which are assumed
for inter-arrival time and minimal headway times, are used
in a queueing network model to predict the average waiting
time of trains [76]. Later, Briggs and Beck [77] used the
q-exponential function to demonstrate the distribution of train
delays on the British railway network.

The Weibull, Gamma, and lognormal distributions
have been adopted in several studies [78], [79].
Buker and Seybold [80] evaluated the suitability of a group
of existing distribution models, such as modified exponential
phase-type, theta-exponential, and polynomial distributions,
to approximate arrival delays. The operation data from the
Wuhan–Guangzhou HSR suggest that the probability density
distribution of different disruption sources and distributions
of affected trains due to delays are plotted in general [60].
The log-normal distribution can fit the primary delay dura-
tion distribution, and the inverse model can fit the affected
number of train distributions [29], [81]. Also, the log-logistic
probability density function is the best distributional form to
approximate the empirical distribution of running times [82].
For the fittingmodels, several model test methods are applied,
Kolmogorov–Smirnov test, for instance [60], [82], [83].

Similarly, punctuality data from automatic registrations in
the signaling systems have been used for regression stud-
ies, and correlation coefficients are found to be significant
at 0.01 level between arrival punctuality and the number of
passengers, occupancy ratio, and departure punctuality [54].
The nonlinear regression model generated by train operation
records is used to calculate the expected times under cer-
tain delays [73]. Specifically, the developed models can be
incorporated into a dispatching decision support system to
improve real-time train traffic control. This method would
provide dispatchers with accurate estimates of the occurrence
of possible disruptions and the potential effects of a given
disruption event.

b: GM
Train operations were described by a set of processes, includ-
ing train running, dwell, and waiting times caused by con-
flicting train routes, in which dependencies between events
and processes are graphically represented by timed event
graphs [84]. The running and dwell time and headway arcs are
all generated by sorting all events using the same train number
of their date and time of occurrence, containing all arc mod-
eling delay dependencies among events. Furthermore, arc
weights that reflect the minimal time between two adjacent
events have been derived by calculating a small percentile of
all observed arc weights in the track occupation data.

VOLUME 7, 2019 114553



C. Wen et al.: TD Management With Data-Driven Approaches: A Comprehensive Review and Appraisal

Zilko et al. [85] developed a probabilistic model to esti-
mate the railway disruption duration using non-parametric
Bayesian network (NPBN), which strongly depends on the
empirical distributions of each dependent variables that were
generated by historical data in the entire Dutch railway net-
work. However, the Bayesian network strongly relies on the
accuracy of the information, which updates over time.

c: ML
So far, papers dedicated to studying delay distributions using
ML methods are limited. An ML method is proposed for
the automatic calibration of disturbance parameters for rail-
way operation simulation to generate stochastic disturbances.
Supported by ML, efforts toward calibrating parameters
have been greatly reduced with ensured consistency between
simulation models and actual railway operations [86]. The
proposed calibration algorithm has been implemented
and integrated into the new simulation software, DoSim.
A remarkable improvement in system performance is
observed. The software has been tested on an example for
a real railway network in Germany with 71 stations. The
recently published paper in TRB meeting presents statis-
tical and ML models to build the relation between delay
duration and cause and statistically predict delay time [87].
The models of MLR, decision tree, and SVM are applied,
in which SVMperforms best in estimation accuracy. Also, the
SVM models are applied to investigate the relationship
between the primary delays and their affected trains based
on the train operation records obtained from Guangzhou
Railway Bureau in China, and the ε-SVR and υ-SVR models
show remarkable performance to predict the possibilities of
the number of affected trains [88].

3) STATE-OF-THE-ART ON DELAY DISTRIBUTIONS
This is not an easy task for dispatchers given their heavy
workload. The delay information should be provided with an
easy-to-understand way so that the information can be used
without increasing hassle. Delay distributions and relation-
ships between delays and their causes help manage delays
during train operations. They can help dispatchers to under-
stand the delay mechanism to improve the management of
train delays in practice. Table 3 presents a summary of the
literature on data-driven delay distributions.

The actual operation can be affected by various of factors,
over 50 broad attributable reasons have been listed in the
UIC 450-2 that will lead to train delays, such as weather,
facility failure, and drivers’ and travelers’ behavior [89]. The
reviewed studies have shown the roadmap of modeling delay
distributions based on RWTOD (Figure 5). Two layers of
indices obtained from RWTOD should be used in the mod-
eling. First, dual-index models should combine delay causes
and one of the indices in the ‘‘second layer indices.’’ Second,
multi-index models can be formed using several or all indices
that can be obtained. In this light, spatiotemporal delay dis-
tributionmodels, delay aggravation, and recovery distribution
models, as well as comprehensive models that involve all the

FIGURE 5. Roadmap of the data-driven approach for delay distribution
modeling.

elements above, can be established. ML methods should be
employed because more data have become available, and the
big data have provided a broad vision in data mining.

The existing studies have four deficiencies concerning
delay distributions, which are:
(1) Researchers have focused on delay-distribution model-

ing based on specific lines, lacking general models that
can fit multiple lines.

(2) Cause-based models of delays are scarce; many spe-
cific causes for which the data can not be obtained
have not been studied. More detailed relationships
between delay distributions and their causes based on
rich RWTOD should be determined. As stated by the
International Union of Railways, the availability of
delay causes is urgently required to optimize inter-
national train networks [21]. Primary and secondary
delays should be explicitly recorded, thereby making
the development of algorithms possible to link primary
and secondary delays and to determine how delays
develop and how trains may auto-correlate their delays.

(3) The studies tend to focus on a single line or even a
segment. It is necessary to study the delay distributions
for the entire railway network involving many types of
trains, especially the systems comprised of cross-line
trains.

(4) The models can fit the delay data well, but they can not
tell us the mechanisms causing the delays. Also, most
of the statistic models need to be established based on
some prior assumptions.

B. DATA-DRIVEN DELAY PROPAGATION: LITERATURE
Delay prediction and recovery are the main issues in address-
ing the problem of delay propagation. Delay propagation
factors, such as interaction among primary delays, knock-on
delays, exogenous events, delay aggravation, and recovery
can be approximated using probability functions that can
consider factors from sections, stations, time, and train inter-
actions.

1) DELAY PREDICTION
Train operations are highly dependent on running and dwell
time variations [90]. The estimation of running times requires
predicting the effect of disturbances and subsequent buffer
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TABLE 3. Summary of the State-of-the-art studies on data-driven delay distributions.

VOLUME 7, 2019 114555



C. Wen et al.: TD Management With Data-Driven Approaches: A Comprehensive Review and Appraisal

time adjustments that may be experienced during their
operations.

a: SM
Results supported the strong correlation between arrival
delays and dwell times, focusing on a statistical analysis
of running times between stations to make predictions of
the delay propagation in a railway system [84]. Phase-type
distributions that can derive secondary delay distributions
from primary delay distributions have been proposed [91].
Yuan and Hansen [48] presented an analytical stochastic
model for estimating the propagation of train delays, and the
key issue is how to estimate the convolution of individual
independent distributions. Validation results reveal that the
proposed analytical stochastic model effectively estimates
the propagation of train delays and consequently, the punc-
tuality of train arrivals, departures, and knock-on delays of
trains. Correlation statistics are used to mine delay depen-
dencies in large-scale real-world delay data obtained from the
SBB network during two months of the timetable [49]. How-
ever, without any assumption on the statistical distribution of
data, algorithms that efficiently find systematic dependencies
in large-scale railway delay data are proposed.

Regression models obtained from delay distributions can
serve as prediction models [54], [73]. Therefore, advanced
minimum running time estimations may be used as a piece-
wise linear function that consists of the maximum number
of regression lines for small delays and a small percentile
for large delays. Passenger boarding and alighting events
contribute to the dwell time prediction of trains [92], [93].
Murali et al. present a delay regression-based estimation
technique that models delay as a function of the mix of
trains and the network topology [94]. Guo et al. [95] con-
sider the train operation as a sequence of discrete events and
apply a linear regression model when modeling the delay
prediction. The delay interpretation and dependencies are
learned from historical data obtained from five stations on
the Beijing–Shanghai HSR. A combination of linear regres-
sion and combinatorial model is generated from the online
train delay monitoring data and is tested on the basis of a
regional corridor fromLucerne, and resulted in low prediction
error, although capacity constraints within stations are not
considered [96].

Most recently, Kecman andGoverde [97] presentedmodels
that were developed by collecting all running and dwell time
data from the training set and creating a separate predictive
model to estimate each type of process time. This model
confirms that regardless of departure delays, the majority
of running times seem to be weakly affected by peak hours
and do not have a remarkable daily variation. Li et al. [98]
developed parametric and non-parametric regression models
to estimate dwell times at shortstops for real-time scheduling,
which is driven by train detection data from the Netherlands.
Peak-hour dwell times are estimated using a linear regression
model of train length and dwell times at previous and preced-
ing trains. The off-peak-hour dwell times are estimated using

a non-parametric regression model, particularly the k-nearest
neighbor model.

A visualization and analytic system that can perform delay
forecasting for the passenger information control system has
been used since July 2003 [99]. This system generates delay
status information that can show delay propagation.

b: GM
Difficulty in delay prediction is mainly due to unpredictable
factors that affect train event times, and the key issue is to
model uncertainties during train status transition. To this end,
computation theories such as graph theory, Markov chain,
fuzzy network, and Bayesian network are employed.

A data-mining approach is used to analyze rail transport
delay chains with data from passenger train traffic on the
Finnish rail network; however, data from the train running
process are limited to one month [22]. Also, event graphs
are used to forecast running, arrival times, dwell times, and
headways [47], [84]. Kecman and Goverde [100] employ
a timed event graph with dynamic arc weights to set up a
microscopic model for the accurate prediction of train event
times. Through this model, train interactions are modeled
with high accuracy by involving operational constraints and
following the actual headway time between adjacent trains.

A laboratory version of the real-time dispatching system
called ROMA was developed and tested on an offline dataset
to automatically recover disturbances and proactively detect
each time interval [31], [101], [102]. The alternative graph
is a suitable model for the job shop problem and can easily
model several real-world constraints. The main value of the
alternative graph is the detailed representation of the network
topology at the level of railway signal aspects and operational
rules, which can provide fruitful data and rules for other
modules.

Barta et al. [103] developed a Markov chain model to
evaluate the evolution of freight train delays at their succes-
sive terminals and classify terminals in terms of the roles of
the trains. Şahin [26] established a Markov chain model to
illustrate delay propagation and recovery using the observed
historical data collected from a single-track line of the Turk-
ish State railways. When the data-driven status transition
matrix is available, predicting train states at certain event
time steps and estimating steady-state delay probabilities will
be possible. However, data used for modeling in this paper
were 6-h and 18-station train-graphs of seven days, and only
six delay cause classes that distinguish delay states are used.
Based on the assumption that the probability of a state change
depends on the moment of transition, train delay predictions
are modeled by using a non-stationary Markov chain [104].

A fuzzy Petri net (FPN) model in which expert knowl-
edge is used to define fuzzy sets and rules, transforming
expertise into a model to calculate train delays, is pro-
posed to estimate train delays [28], [105]. The proposed
dispatching rules, which is empirically verified under dif-
ferent circumstances, can serve as training documents of
the central training center and can be a basis of the

114556 VOLUME 7, 2019



C. Wen et al.: TD Management With Data-Driven Approaches: A Comprehensive Review and Appraisal

decision-making system for dispatchers by interviewing dis-
patch experts with more than 10 years of experience in the
central train control center of Taiwan railways [106]. In the
triangular fuzzy number workflow nets of high-speed train
running state models, the fuzzy time for train activities are
generated on the basis of data for June 21–24, 2012 at five
stations between Beijing–South, and Dezhou–East of the
Beijing–Shanghai HSR [107]. The probability of different
deviation times is obtained by initially using least-squares
linear regression.

The transition matrix is generated from actual records
of train movements when applying the Markov chain to
model the delay propagation [26]. The Bayesian networks
can timely update train running status based on new oper-
ation data. Zilko et al. [85] first attempted to apply the
NPBN, which represents the joint distribution among vari-
ables that describe the nature of the disruption to predict
the disruption length to the Dutch Operational Rail Con-
trol Centre. Later, they extended a new model with copula
Bayesian networks, which consider the factors that influ-
ence the length of disruptions and models the dependence
between them [108]. We proposed a hybrid Bayesian net-
work model to predict HSR delays using the train operation
records of Wuhan–Guangzhou HSR. The proposed model on
overage can achieve over 80% accuracy in predictions within
a 60-min horizon [109]. Of course, the joint method with
Bayesian Reasoning andMarkovmodel can be used to predict
the delay state in different station [110], [111]

c: ML
Kecman and Goverde [97] proposed a statistical learning
method that combines SM andMLmethods. The modeling is
divided into three steps, namely, least-trimmed squares robust
linear regression, regression trees, and random forests. The
complementary advantages of these three types of models
enabled the statistical learning methods to outperform other
models. A supervised decision tree method that follows the
ML and data mining techniques is designed to estimate the
key factors in knock-on delays [67]. The proposed model
can be used in predicting lengths of railway disruptions with
high accuracy using delay history data. A hybrid approach
that combined decision tree and random forest regression is
also used to predict the running time, dwell time, train delay
and penalty costs, which merges the data-driven model and
experience-based models approaches [112].

ANN, as a basic ML method, learn from historical data
to make predictions about future [113]. Peters et al. [114]
applied ANN to process existing delays abstracted from
known operation data to generate delay predictions for
depending trains shortly; this method performs well when
predicting future (secondary) delays based on existing (pri-
mary) delays, and it outperforms the traditional rule-based
method. Yaghini et al. [115] also presented an ANN model
with high accuracy to predict the delay of passenger trains
in Iran; the comparison of the proposed ANN, decision
trees, and multinomial logistic regression models confirm

that the ANNmodel has high accuracy, low training time, and
remarkable solution qualities.

Also, support vector regression (SVR) in passenger
and freight train arrival delays prediction is implemented
in [116], [117]. The comparison between the proposed SVR
model and the ANN model shows that the SVR outperforms
ANN because it achieves higher average R2 than ANN on
the test data. The models, based on the least-squares method,
SVM, and least square SVMwere trained and tested by using
the field data collected in Wuhan–Guangzhou HSR and were
proposed to predict train positions. These methods enabled
the prediction of the HSR train position and the running
time [118].

Most recently, the shallow and deep extreme learning
machine (DELM) was proposed, along with the rapid devel-
opment of big data technologies. Oneto et al. [20], [66] pre-
sented a data-driven TDPS for a large-scale railway network
to provide useful information to RTC processes by using
state-of-the-art tools and techniques; this system can extract
information from a large amount of historical train movement
data using the most recent big data technologies, learning
algorithms, and statistical tools. The described approach and
prediction system have been validated on the basis of real
historical data in six months. The results show that the DELM
outperforms the current technique, which is mainly based on
the event graph proposed by Kecman and Goverde [100].
Using the findings of Oneto et al. [20] as a basis,
Oneto et al. [71] developed a data-driven dynamic train
delay prediction system (DTDPS), which can integrate
heterogeneous data sources to deal with varying dynamic
systems using DELM. Exploiting state-of-the-art tools and
techniques, this system is entirely data-driven and does not
require any prior information about the railway network.

2) DELAY RECOVERY
a: SM
The majority of recent studies have focused on the area
of delay recovery models and algorithms. Three classes of
real-time schedule recovery, namely, vehicle rescheduling
for road-based services, train-based rescheduling, and airline
schedule recovery problems, are reviewed in [119]. Another
overview of recovery models and algorithms for real-time
railway disturbance and disruption management that mainly
summarized methods on real-time TTR of the rolling stock
and crew duties is presented in [7].

Naohiko et al. [120] briefly discussed the recoverymeasure
of disruption in train operations in the Tokyo metropolitan
area and apply three kinds of data, namely, train accident,
train operation record, and delay certificate data. Interviews
with 19 transportation staff of 9 companies with regard to
rescheduling methods at the time of the accident with casu-
alty provided recovery effects of the various strategies con-
ducted by dispatchers. Although this study only proposed
an interview result and statistics on delay recovery, it pre-
sented a data-driven method of the measurement of delay
recovery.
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Liebchen et al. [121] introduced recoverable robustness
into train delay recovery to jointly optimize the plan and
strategy for limited recovery. Based on the assumption of
uncertainty at the running and dwell times of trains, different
recovery possibilities can be obtained from the historical
data. Recoverable robustness integrates timetabling and the
so-called disturbance management under different scenarios
with various recovery possibilities.

b: GM
The alternative graph can be generated after all the neces-
sary information has been elaborated by the loaded infor-
mation, and the disruption recovery module of the ROMA
checks if block sections in the network are unavailable
and automatically recovers disturbances [31], [101], [102].
Cadarso et al. [122], [123] proposed a two-step approach
that combined passenger demand pattern anticipated by a
discrete choice model and an integrated optimization model
for the timetable and rolling stocks to deal with recovery
disruptions in large-scale rapid transit networks. The data-
driven multinomial logit model was computed and validated
by the Spanish rail operator RENFE based on passenger
counts, inquiries, and historical data fittings.

Khadilkar [25] proposed a data-enabled stochastic model
for evaluating the robustness of timetables by considering
delay prediction and recovery. Regarding the time supple-
ments, the running time between two stations is frequently
used to absorb previous delays, and the delay recovery effec-
tiveness is statistically estimated based on the empirical data.
The average recovery rate of 0.13 min/km was used for the
delay recovery ability obtained from more than 38,000 train
arrival/departure records from the Indian Railway network.
However, only the empirical data for 15 days were available
for the study. Such a constant average recovery rate can hardly
reflect the actual recovery potentials of different sections and
stations.

c: ML
Recently, Wen et al. [124] presented two DDMs, namely,
multiple linear regression models and random forest regres-
sion model, to address the problem of predicting delay recov-
ery of HSR trains due to primary delays. Models were trained
and tested using the 10-month train operation records from
the Wuhan–Guangzhou HSR line in China. The researchers
examined the relationships between train delay recovery
(dependent variable) and four independent variables, namely,
primary delay duration, total scheduled dwell time for all
downstream stations, total supplements in all downstream
sections, and a binary variable. The validation tests indi-
cate that both models can achieve considerable performance,
whereas the random forest model outperforms the multiple
linear regression models in delay recovery prediction accu-
racy. Moreover, the proposed random forest regression is
superior to the extreme learning machine (ELM) and stochas-
tic gradient descent methods [125] and [126] under the same
explanatory variables and dataset.

FIGURE 6. Roadmap of data-driven delay propagation.

3) STATE-OF-THE-ART ON DELAY PROPAGATION
Existing studies on delay propagation show that data-driven
delay prediction and recovery are universally concerned with
theory and practice. Table 4 shows a summary of state-of-the-
art studies on data-driven delay propagation.

Figure 6 depicts the research roadmap of data-driven delay
propagation. Dispatchers need a continuous estimation of
succeeding train status, including the arrival and departure
time at stations, running time in sections, and delays at sta-
tions and sections. The primary and knock-on delay models
should be set up, and how delays are recovered should be
revealed based on delay distributions, delay and aggrava-
tion, and recovery effectiveness obtained from experiences
and historical data. Attention should be paid to the ML/DL
in delay propagation estimation and evaluation without any
assumption on statistical data distributions to reveal the
mechanism of delay development.

The reviewed studies have four shortages regarding delay
propagation:

1) Researchers tend to study the issues of delay propaga-
tion and recovery with GM methods, such as Petri Net
with Fuzzy Logic, which rely too much on the prior
dispatching knowledge.

2) Studies involving delay propagation due to different
causes and delay durations are lacking. It is necessary
to study the influence of delays, including the affected
trains and time intervals.

3) The models of primary delays and knock-on delays
should be set up respectively, and how delays are recov-
ered should be revealed lying on delay distributions,
delay and aggravation, and recovery effectiveness that
obtained from the experiences and historical data.

4) Researchers mainly study the delay propagation for a
specific railway line instead of a complex network.
The interaction between the delay propagation in the
horizon direction and the vertical direction need to
be studied in-depth, and how a delay propagates on a
railway network should be more significant.

The ML/DL needs to be paid more attention to delay propa-
gation estimation and evaluation, without any assumption on
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TABLE 4. Summary of the state-of-the-art studies on data-driven delay propagation.
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statistical distributions of data, revealing the mechanism of
delay development.

C. DATA-DRIVEN TIMETABLE RESCHEDULING:
LITERATURE
1) CONFLICT DETECTION AND RESOLUTION
As reviewed in [127], over four decades have passed since
the conflict management problem in train operations around
the world was first studied, and several systems and the
CDR module have been developed. Existing studies on CDR
mainly apply CI methods, especially knowledge-based meth-
ods and graph theories as well as ML, which are effective
methods for dealing with CDR using train operation data.

a: SM
Chen and Harker [128] firstly model the probability of a
train’s historical dispatching data, delaying a particular train
due to actual conflicts, and the conflict delay between two
trains is based on this probability and the probability of the
two trains interfering with each other. The latter probability
is dependent on the outcome of prior conflicts in the schedule
and unforeseen events. Train operation conflict number is
usually used to study the characters of delays and conflict
severity between trains; for example, the delay risk and reli-
ability of train arrival times [129], [130]. The number of
conflicts has been considered as one of the most important
indexes to measure the severity of delays.

b: GM
Hansen et al. [47] presented a delay propagation model
in which train path conflicts and dispatching decisions
are considered and estimated the parameters through the
offline statistical analysis of historical train operation data.
Medeossi et al. [131] defined conflicts regarding probability
by calibrating the motion equation with the train tracking
data obtained from GPS or train event recorders, using
performance parameters and calibrated motion equations
with initial delay and stop time distributions from building
stochastic blocking times. A set of tools for CDR were
proposed by theMultilevel Advanced Railways Conflict Res-
olution and Operation (MARCO) project, which pioneered
the development of tools, algorithms, and technologies for
CDR [132]. Designer of Network Schedules was developed
to design a conflict-free timetable in Dutch [133]. The COM-
BINE and COMBINE2 projects aimed to develop a traffic
management system (TMS) based on MARCO [38], [134].
The dispatching support system, ROMA, which aims to
compute flexible conflict-free timetables, detect and resolve
conflicts, and terminate delay propagation, was proposed
in [135], [136]. Another set of tools called TNV was
developed, which mainly consisted of TNV-Prepare,
TNV-Conflict, and TNV-Statistics [137]. Subsequently,
the the train observation and tracking system (TROTS) was
developed to use operation data from Dutch train describers,
thus serving as a dispatching support system [138].

Knowledge-based DDM systems that rely on artificial
intelligence were utilized to deal with CD and CR during
the 1990s. The expert system for real-time train dispatching,
in which computer-aided technologies are employed to pro-
cess the human expertise and train operation data, is used in
detecting and resolving train conflicts [139]. In this system,
the CD is triggered by the automatic train tracking system,
and CR is conducted based on a highly detailed datamodeling
of train operation constraints. Subsequently, the knowledge
extracted from human experts is used to search for a reason-
able conflict resolution [140]. Similarly, thework experiences
of dispatchers for more than 10 years are used as the basic
rules for CDR in the knowledge-based system [106].

Furthermore, the fuzzy network theory is widely used
to solve CDR problems. Fay [141] proposed a dispatching
support system with expert knowledge in fuzzy rules of
‘‘IF-THEN’’ type and used an FPN notation tomodel the rule-
based expert knowledge in a decision system. The modeled
expert knowledge was used as the rule for the ‘‘selection of
feasible actions’’ for conflict classification and resolution,
which would affect the development of conflicts directly.
Then, Zhuang et al. [142] applied a timed Petri net to model
the HSR train timetable to study conflict prediction using the
fuzzification of time intervals in a train timetable based on
historical statistics. Based on the temporal fuzzy reasoning
method, a new conflict prediction method is proposed, and
the results under two scenarios of HSR in China prove that
conflict prediction after the fuzzy processing of the time
intervals of a train timetable is reliable and practical. Con-
flicts between successive stations and within stations are
identified and solved with the fuzzy logic system, where
expertise is used to establish fuzzy rules and adjust train dwell
times [143]. The fuzzy rules from this knowledge after fuzzi-
fication could express their actual meaning effectively.

As reviewed in the part of delay prediction, pre-loaded data
and accurately updated data are used by ROMA in predicting
delay and then identifying conflict; the conflict identification
can usually be the direct result of delay prediction. In an
alternative graph, a fixed arc is a fixed precedence relation,
an alternative arc represents an alternative precedence rela-
tion, and the weights of both kinds of arcs that are calculated
by historical data are considered the arc lengths [144], [145].
After loading all data and determining all arc weights, offline
conflicts can be detected using a topological visit of the alter-
native graph, and alternative arcs are used to avoid conflicts
between trains [31].

TNV systems maintain a real-time record of train descrip-
tion steps and received events from the safety and sig-
naling systems, with the precision of a second [16]. The
TNV-Prepare tool generates TNV-tables that provide vari-
ous opportunities to analyze railway operations, including
capacity analysis, punctuality analysis, and assessment of
stochastic railway processes. Subsequently, the TNV-Conflict
tool was developed to identify all signaled route conflicts
automatically, including critical sections and conflicting
trains [137]. Later, the TNV-Statistics tool was developed and
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added to TNV-Conflict to determine chains of route conflicts
with associated secondary delays and rank signals according
to the number of conflicts, time loss, or delay jump [36].
The TNV system was recently replaced by TROTS, a process
mining tool based on event data records from the Dutch train
describer system, which aims to minimize train disruptions
and improve operation safety in railway systems [39].

c: ML
Most recently, artificial intelligent DDMs were proposed to
deal with CDR problems. The D-Agent method was devel-
oped to study CDR problems and support dispatchers in
making decisions on station operation [146]. The D-Agent
was designed to learn from its history in applying differ-
ent decisions experimentally and evaluating skills by the
preference weights of alternative solutions in a particular
task. It is composed of five basic modules: local database,
knowledge base, skill base, reasoning mechanism, and com-
munication interfaces. Then, Zhu and De Pedro [147] pro-
posed an approach to traffic state prediction and conflict
detection that is based on proper state transition maps and
corresponding relation matrices (anomaly analysis) to study
the CD issue; the researchers used the corresponding state
domain tables to maintain empirical data-driven traffic state
sequences, which mainly concern infrastructure status and
train movement information expressed as segment and route
state vectors. The representative (statistical) state transition
maps integrate timetable requirements to predict concrete
traffic trends in a short period and detect abnormal states and
irregular times. Then, conflict detection is conducted through
the state transition under the restrictions of train operation
principles and operational limitations.

2) BUFFER TIME ALLOCATION
a: SM
After analyzing historical data and distributing the buffer
times in a complex and busy junction with minimum delay
propagation, Yuan and Hansen [48], [148] concluded that
as buffer times between trains decrease, knock-on delays
increase exponentially; this condition confirms that the
BTA is necessary to reduce the behavioral response and waste
of resources. To investigate the quality of timetable supple-
ment allocation and assess whether the timetable supplement
in existing timetables fits the actual need and is properly used,
Fabrizio et al. [21] presented a statistical approach to analyz-
ing the historical data of train timekeeping in Denmark; their
study shows that actual supplement times can be detected in
a train path using historical data.

To measure the effectiveness of buffer times, weighted
average distance (WAD), and buffer index (BI) were pro-
posed. Vormans [149] defined WAD as the weighted aver-
age distance of supplements from the starting point of the
train line, which can be calculated using the historical trips
of trains. Based on the analysis of historical data in [149],
strategies of buffer time distributions were proposed; namely,

the uniform distribution of margins, shifting margins toward
the beginning or end, placing margins at or near strategic
locations, and locating buffer times where disturbance occurs
most frequently. WAD aims to describe how supplements
are distributed along the journey and attempt to optimize
this process, using both analytical and numerical methods.
Similarly, WADs are applied in the approach that combines
linear programming (LP) with stochastic programming and
robust optimization techniques to improve the robustness
of a timetable [150]. The strategy of placing margins at
critical points was developed by Andersson et al. [151].
Kroon et al. [152] introduced a stochastic optimization model
that can be used for modifying a given cyclic timetable in
whichWAD is used as a measure. The authors concluded that
with the optimal allocation of different amounts of total slack,
the distribution favors early buffer supplement (low WAD)
when a small total buffer supplement is available. Recently,
Palmqvist et al. [153] employed the analytical method to
study the problem of BTA strategies that depend on the
effectiveness of margins on the punctuality of passenger
trains. Results imply that every additional percentage point
of margins improves punctuality by approximately 0.1%,
and approximately the same for every percent increase in
the WAD of margins. The BI is calculated from a delay
and a buffer time for each train and station and represents
a characteristic of the delay due to knock-on delays [61].
By calculating the BI for all trains and stations, the existence
of a train whose BI is larger than those of the surrounding
trains at a station can be determined, and a delay is likely to
propagate rapidly to the succeeding trains from that train at
the station.

To increase the robustness of a timetable against delay
propagation, the scheduled running time in sections, and the
dwell time at stations are often larger than the minimum
required running and dwell times [154]. However, allocating
excessive time supplements can extend the travel times for
trains and increase infrastructure capacity loss [1]. Therefore,
the BTA should be addressed during timetable scheduling
and rescheduling with consideration for delay occurrence and
recovery factors. According to the UIC CODE 451-1 OR
published by the International Union of Railways, regular
running time supplements are added to every train path in
the timetable in three ways: based on the distance driven
(min/km), travel time (%), and fixed supplements per sta-
tion or junction (min) [155]. Supplements vary in different
countries due to local circumstances. For instance, running
time supplements are approximately 7% for all trains in the
Netherlands and passenger trains in Switzerland compared
with 11% for freight trains in Switzerland.

b: GM
Dispatching decisions partly focus on allocating a sufficient
amount of time supplements to rail operations on the net-
work [156] to compensate for stochastic arrival and departure
delays of trains [157]. Goverde and Hansen emphasized
that time allowance (buffer times) is a significant
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FIGURE 7. A research framework of data-driven timetable rescheduling.

indicator of timetable stability, that is, the effectiveness of
avoiding or reducing delay propagation to another train [154].
They presented the recommended BTA principles in
German railways and Netherland railways that are set as
the basis of their operation experiences. Meanwhile, in the
UK, the runtime and dwell time allowances (supplements)
are not explicitly defined but are optimized according to the
past performance obtained from historical operation data on
the particular railway section [158]. The BTA problem is
modeled as a knapsack problem, and Jovanović et al. [41]
inferred that the recent increase in the availability of historical
traffic data could be exploited to prioritize candidate places
in the schedule for buffer time assignment and the DDMs can
be applied for BTA.

Vansteenwegen and Oudheusden [159] first investigated
the desired buffer times in a timetable and then established
an LP problem that penalizes the positive and negative devi-
ations from the desired values. The ideal buffer times are
calculated to safeguard the connections and transfers between
trains. These buffer times are based on the delay distributions
of arriving trains and on the weighting of different types of
waiting times obtained from the Belgian train operation data.

c: ML
Huang et al. [160] established a data-driven BTAmodel based
on the Wuhan–Guangzhou high-speed railway. A ML model
named ridge regression model is proposed to explain delay
recovery time regarding buffer times at stations, buffer times
in sections, and the severity of the primary delays. Based on
the utilization of buffer time, the model redistributes buffer
time, which provides a new research method for BTA. The
proposedMLmodel has aroused a newmethod to incorporate
real-world timetables performance indices such as the buffer
time utilization ratio and delay probability derived from his-
torical records using ML methods.

3) STATE-OF-THE-ART ON TIMETABLE RESCHEDULING
TTR is the carrier of decisions by which dispatchers regulate
the train operation constantly in their domain. The impor-
tant issues on TTR, CDR, and BTA have received consid-
erable attention and seem to be promising research fields.
Several tree-based or knowledge-based rules are obtained

from data to determine the optimal input-output patterns
and make better real-time decisions during operation distur-
bances in HSRs, timetable design, and optimization [161].
Table 5 presents a summary of the state-of-the-art studies on
data-driven timetable rescheduling.

Therefore, integrating methods combining both optimiza-
tion and DDMs for TTR are necessary for real-time train
control. The research roadmap of data-driven TTR can be
depicted in Figure 7.

Knowledge-based models, alternative graphs, and fuzzy
logic are the most popular DDMs that have been applied
in CDR. The key challenges of these approaches are
mining conflict identification principles, obtaining conflict
resolution rules, and dependence on historical data. The
review of the studies listed above reveals that the BTA
mainly relies on measuring the effectiveness of buffer times
based on historical data, such as WAD, and searching for
an approach to optimize the allocation of buffer times,
combining the effectiveness of buffer times on delays or
disruptions.

The reviewed studies have four shortcomings concerning
the data-driven timetable rescheduling:

(1) The rules of the evolution of train conflicts need to be
studied in-depth, and the theories of intelligent CDR
need to be developed.

(2) The issues need to be addressed concerning how a
disturbance leads to conflict, how buffer time absorb
delays, and how to resolve the challenges. The model-
ing of conflict chains has been proved to be a hard but
significant problem.

(3) There is a lack of models that can incorporate real-
world timetable performances indices such as differ-
ent buffer time utilization rates and delay probabilities
obtained from historical records. Since delay propa-
gation and recovery problems are highly dependent
on operational factors and conditions that are realized
during train operations, in practice, the BTA should
be carried out by considering characteristics of imple-
mented timetables. The BTA scheme needs to obtain
better recovery effectiveness against delays.

(4) Assessments of dispatching qualities of different strate-
gies are lacking.
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TABLE 5. Summary of the state-of-the-art studies on data-driven timetable rescheduling.
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Considering these issues,ML andDLmethods have advan-
tages in learning principles and rules for CDR. These can
provide more patterns of CDR schemes based on the ML and
DL methods that can learn much from more cases. In this
way, more detailed and specific solutions are expected and
possible for usage in CDR. The BTA scheme must obtain
better recovery effectiveness against delays. Given rich train
operation records, models can be established from past per-
formances to describe the effectiveness of buffer times rather
than using indicators, such as WAD and BI. Models, such as
regression models of BTA against delay recovery, can be used
as input to BTA. Models that apply ML should also be con-
sidered to learn BTA rules from historical data and optimize
BAT schemes automatically.

IV. REVIEW RESULTS AND FURTHER DISCUSSIONS
A. DEVELOPMENT OF DATA-DRIVEN TRAIN DISPATCHING
THEORIES AND IMPLEMENTATION
High punctuality of trains is an important factor considered
by railway companies. However, trains are influenced by
badweather, mechanical failure, and organizational strategies
during operation, which could lead to disruptions. Accurately
predicting train-delay propagation and the scope of influence
can assist train dispatchers in estimating the train opera-
tion states accurately. The detailed assessment can provide a
theoretical basis for rescheduling strategies, facilitate more
scientific and reliable rescheduling decisions, and improve
the theories of automatic train operations and the intelligent
dispatching of railways.

According to section 3, we summarize the reviewed papers
in Figure 8, which indicates that fewMLmethods and studies
focus on TD. This summary illustrates the existence of a gap,
which necessitates further research on the modeling of CDR
and BTA with ML approaches. The distribution of reviewed
articles by year is shown in Figure 9. The figure indicates
that the application of DDMs in TD presents a generally
increasing trend in the last two decades. ML methods have
become more attractive in the last five years as big data has
played a crucial role in DDMs, while many studies have
focused on SM and GM from 2004 to 2013.

In summary, the DDTD theory was first proposed in
the 1980s, and the knowledge-based expert systems for train-
traffic control, named ESTRAC-I, II, and III were developed
and implemented consequently in the 1980s and 1990s [90],
[162]–[164], [167]. ‘‘IF-THEN’’ knowledge was used to rep-
resent the decision-making rules of dispatchers. Almost at
the same time, the distributed approach to railway traffic
control was described with the help of artificial intelligence,
and a knowledge-based interactive train scheduling system-
aiming at large-scale complex planning expert systems was
developed [165], [166]. The development of ROMA in the
2000s has great contributions to the DDTD as reviewed above
[135], [137]. The fuzzy logic and many other GM methods
have been applied before 2014 [28], [106]. And the ML
methods have been widely and rapidly applied in DDTD in
the latest 5 years, based on RWTOD [20, 23, 127].

FIGURE 8. Number of publications reviewed on data-driven
methods in TD.

FIGURE 9. Trends of publications for the reviewed articles in each
category.

In other words, TD is an issue that belongs to the
problem of job-shop scheduling and system control [167].
Through data-driven methods, dispatching rules are discov-
ered from the data for job-shop problems. The literature
review shows that ML approaches have been widely applied
over the last 20 years in the scheduling of manufacturing
systems [168], [169]. This condition means that the
ML approach based on preference learning can perform in
uncovering train dispatching rules [170]. One of the most
promising ML approaches is neural networks (NN) and vari-
ants, such as convolutional neural networks (CNNs) in image
processing [171], deep belief networks (DBNs) in audio
recognition [172], and recurrent neural networks (RNN) in
sequence analysis [173]. RNN-based models have been suc-
cessfully applied in travel time estimation in highways [174],
[175] and air transport [176], but the applications in railway
train delay/travel time prediction are limited. DL discovers
the complex structure in large datasets by using the backprop-
agation algorithm to indicate how a machine should change
its internal parameters used to compute the representation in
each layer from the representation in the previous layer [177].
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DL approaches have shown strong abilities in analyzing,
evaluating, and predicting the performance of a complex
system [178], [179]. To minimize the job scheduling
time, a deep reinforcement learning method was proposed
for studying multi-resource multi-machine job scheduling,
revealing that deep reinforcement learning method has the
potential to outperform traditional resource allocation algo-
rithms in various complex environments [180].

B. FURTHER DISCUSSIONS: OPPORTUNITIES AND
CHALLENGES
1) ML/DL DRIVEN TD
Based on RWTOD, with the advantages of ML/DL in data
processing andmodeling, therewill be several potential appli-
cations in TD:

1) Integrated models of temporal, spatial, and cause-
specific distribution models of delays must be estab-
lished using detailed RWTOD during longer periods.
More complex investigations regarding the delay dis-
tributions are required to determine the characteristics
of delays. The modeling of the frequency and duration
of the initial interruption and the subsequent knock-
on delays are essential to assist the dispatchers making
decisions. The compound distribution model, which
consists of the occurrence time, sections, and stations of
delays, are more valuable than the currently used mod-
els. The delay duration distribution model and the tem-
poral and spatial distribution model of cross-line trains
would be helpful to capture the basic delay features of
the rail network. Using these models, dispatchers can
obtain the real-time and future status of trains under
certain operation circumstances. Clustering methods,
such as k-means, can be used to classify delay cat-
egories, and the delay patterns can be derived from
data and data-driven models. Delay distributions can
also be used as input in data-driven simulation studies
and distributional functions in predictive modeling for
delay propagation.

2) DDMs can support dispatchers in having better predic-
tions of delay propagation patterns and possible delays
under specific situations to adjust train operations. The
implementation effects of TDPS and DTDPS based on
big-data technologies have shown good performance in
terms of delay prediction [20], [71]. ML and DL meth-
ods can be used to model propagation patterns, in-train
interactions, and the spatial and temporal relationship
between adjacent trains. Exploring the delay rules and
the propagation mechanisms and enhancing the delay-
recovery capacity of the timetable are the critical issues
required to be addressed to improve the efficiency and
quality of train dispatching. Theories of train delay
propagation and recovery using data-driven methods
based on operational records are needed. Based on the
RWTOD, studying delay propagation rules and evolu-
tionmechanisms, combined with delay and buffer time,

on a network will continue to be crucial, especially for
cross-line trains. After analyzing the mechanisms of
delay propagation in the horizontal direction on the rail
network, the influencing factors should be determined,
including the number of affected trains and the event’s
duration. Various categorizations should be taken into
account, and a quantitative prediction model of train
delay influence indicators should be established sep-
arately. The delay propagation in horizontal direction
model can be used for estimating the severity of delays
and how they affect the operation of trains on the
rail network. The model can also provide support in
creating dispatching strategies.

3) DDMs can uncover more precise rules for CDR and
BTA from RWTOD, including conflict identification
principles, conflict resolution rules, and the effective-
ness of buffer times. ML and DL models can be used
to classify, model, forecast, and then optimize CDR and
BTA on the basis of RWTOD.Moreover, rules for CDR
and BTA are more likely to be obtained on the basis of
RWTOD. For example, some conflict reasoning rules
and conflict resolving rules can be mined by DL. Cur-
rently, the scheduling of a train timetable scarcely con-
siders the impacts of the implementations, which brings
adverse effects on the transport quality and capacity of
the railway. Executing train timetable feedback opti-
mization is a significant step in improving the quality of
the timetable theoretically and practically. It is possible
to reveal the evolutionary trend’s structure concerning
potential conflicts based on the train’s operational data.
When detecting a delay, a method to calculate the
potential conflict situation is required. This situation
can be considered as the optimized object in the data-
drivenCDRmodel, establishing the feedback optimiza-
tion theory for timetable rescheduling using DDMs.

4) Delay recovery effectiveness measures can be obtained
from RWTOD by CNN to update WAD. The BTA
model based on deep reinforcement learning can be
established to maximize the delay recovery capac-
ity and increase the buffer time effectiveness. The
delay recovery effectiveness measures can be obtained
from RWTOD by CNN to update WAD. The BTA
model based on DRL can be established to maximize
the delay recovery capacity and increase the buffer
time effectiveness. For different types of delays, based
on RWTOD, modeling of temporal and spatial distri-
butions of delay recovery due to buffer time need to be
carried out first, and the characteristics of recover time
under different BTA scheme should be investigated.
DDMs will be used to calculate the buffer time distri-
butionmatrix and the delay recovery coefficient matrix.
These matrices can be used to determine the timetable
buffer time utilization efficiency and to identify sig-
nificant trains, sections, and stations. Then, the delay-
recovery chains should be established to derive the
effectiveness of buffer times. Because of the close
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FIGURE 10. Sketch map of intelligent TD.

relationship between buffer time utilization and dis-
patching strategies, the assessment of the dispatching
strategies can be realized [160].

2) INTELLIGENT TD
Intelligent TD is an automated decision-making process in
the dispatching system, controlling the train operations. The
dispatchers’ experience, along with the RWTOD, provides
knowledge and dispatching rules regarding the assessing,
developing, and protecting of transportation states, making
sure that trains always run well. The sketch map of intelligent
TD is as shown in Figure 10.

SBB has recently started the rollout of adaptive control
system (from German Adaptive Lenkung, adaptive train con-
trol) on their network since 2014 [181], [182]. However,
the predictive dispatching is needed to be carried out, by con-
sidering the disturbances, estimating the running times and
the potential conflicts, and predicting the delay occurrence.
The distributional model and propagation of delays can be
used as a predictive tool by the dispatchers to assess the
delay duration and their influences, given certain operation
circumstances. With new train operation data, the models can
be updated via a dynamic or predicting system for delays.
This work is to establish a predictive dispatching decision
support tool to help dispatchers in managing train operations.

The development of the intelligent TD will need to address
the concerns of dispatching-knowledge extracting, automatic
decision-making, and the assessments of dispatchers and their
actions taken during train operation control. These measures
would eventually contribute to the state-of-the-art, intelligent
dispatching systems, enriching the theories and practice of
timetable design and real-time train operation adjustment.

The intelligent TD is a critical point of intelligent train
operation. Based on large-scale and complex train operation

data, various advanced data science and artificial intelligence
methods will be synthetically used to study the closed-loop
control problem of intelligent traffic control, involving train-
state assessment and deduction, train rescheduling, collabora-
tive dispatching, emergencymanagement, and train operating
state protection. A study of the train operating state assess-
ment and developing theories based on the multi-driven of
time and events is also needed. Also, train delay propagation
and recovery mechanisms are required to be revealed; data-
driven train delay recovery and intelligent train rescheduling
methods in various scenarios are needed to be established;
and knowledge automation of intelligent train reschedul-
ings, such as delay propagation knowledge, CDR rules,
BTA schemes, and effectiveness of certain dispatching strate-
gies, are needed to be constructed. These research area can
provide the theoretical and technical support to the intelligent
train dispatching and subsequently, the railway transportation
science.

V. CONCLUSIONS
Rail system performance depends on carefully designed
timetables and effective real-time train operations control.
In this regard, train dispatching plays an indispensable role in
train operation management. Train dispatchers deal with col-
lecting and processing train operation information, estimating
the status of trains, resolving conflicts, and rescheduling the
timetable. Train operation records from train monitoring and
describer systems have been valuable sources for analyzing
railway performance and assessing the QoS of railways to
provide feedback on train operations and improve the plan-
ning and control of dense railway networks.

To support dispatchers in decision making, various models
have been proposed from which this study surveyed data-
driven models and methodologies. Through the review of
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the relevant literature, drawbacks in train dispatching were
found in the mathematical- and simulation- model-driven
methods. However, the data-driven models based on train
operation records can generate different solutions to sup-
port the decision-making of dispatchers. Usually, statistical
analysis is employed to reveal some fundamental rules of
TD or dependencies between related factors within the CI
and ML models. CI is used to generate knowledge for TD
or deriving the status of trains. ML models have shown
potentials in the field of railway engineering, especially
for delay prediction. In bridging the gap between theories
and practices in TD, although DDMs have been applied,
several research challenges remain in establishing innova-
tive dispatching decisions to help dispatchers in managing
train operations. Although DDMs can be useful in solv-
ing practical problems or modeling a specific system or
procedure, a contemporary trend is to establish hybrid mod-
els that combine DDMs and traditional mathematical mod-
els. As reviewed in [183], the model-driven DL approach
that combines model- and data-driven DL approaches can
retain advantages (i.e., determinacy and theoretical sound-
ness) of themodel-driven approach and avoid the requirement
for accurate modeling. Model-driven approaches have been
proven to have a significant level of accuracy, relying on
the objective, physical mechanism, and domain knowledge
for a specific task. However, their level of generalization is
limited in practice. Meanwhile, ML/DL approaches use a
standard network architecture as a black box, highly relying
on big data to train the black box. Model- and data-driven
approaches do not oppose each other. Moreover, the model-
driven DL approach can retain the powerful learning ability
of the DL approach and overcome the difficulties in network
topology selection. We believe that the model-driven DL
approach can be widely applied in TD and the other works
associated with train operation and management. Given that
ML/DL approaches have shown promising abilities in data
processing and modeling, they can be applied in TD model-
ing and classifying delays, modeling the delay propagation,
solving the problems of CDR, and optimizing the BTA.

Big data analytics is at its nascent stage; a future research
direction is to develop a decision support system for a
network-wide RTC to continuously supervise trains that run
on the network and update the operating timetable. Advanced
and intelligent RTC systems are intended to monitor, predict,
and control trains in real time to ensure the safety, regularity,
reliability, and punctuality of train operations.
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