

Received July 16, 2019, accepted August 5, 2019, date of publication August 13, 2019, date of current version August 26, 2019. *Digital Object Identifier 10.1109/ACCESS.2019.2934847*

On Redundancy Reduction of Non-Recursive Second-Order Spectral-Null Codes

D. PELUS[I](https://orcid.org/0000-0003-0889-278X)[®], (Member, IEEE)

Faculty of Communication Sciences, University of Teramo, 64100 Teramo, Italy

e-mail: dpelusi@unite.it

This work was supported by the Academic Research Funds of the University of Teramo, Italy.

ABSTRACT The code design problem of non-recursive second-Order Spectral Null (2-OSN) codes is to convert balanced information words into 2-OSN words employing the minimum possible redundancy. Let *k* be the balanced information word length. If $k \in 2I$ then the 2-OSN coding scheme has length $n = k + r$, with 2-OSN redundancy $r \in 2*IN*$ and $n \in 4*IN*$. Here, we use a scheme with $r = 2 \log k + \Theta(\log \log k)$. The challenge is to reduce redundancy even further for any given *k*. The idea is to exploit the degree of freedom to select from more than one possible 2-OSN encoding of a given balanced information word. To reduce redundancy, empirical results suggest that extra information $\delta_k = 0.5 \log k + \Theta(\log \log k)$ is obtained. Thus, the proposed approach would give a smaller redundancy $r' = 1.5 \log k + \Theta(\log \log k)$ less than $r = 2 \log k + \Theta(\log \log k)$.

INDEX TERMS Balanced codes, high order spectral null codes, Knuth's complementation method, parallel decoding scheme, optical and magnetic recording.

I. INTRODUCTION

The spectral-null codes are an important class of codes applied in recording systems. Such codes have zero power spectral density at specific frequencies. The fields of application of spectral-null codes are on transmission systems over fiber or metallic cable and in storage media such as magnetic or optical recording.

Let $SN(n, q)$ indicate the set of *q*th-order spectral-null words in ϕ^n , with $\phi = \{-1, +1\}$ a bipolar alphabet. This set is defined as (see [6], [7], [16])

$$
SN(n, q) \stackrel{def}{=} \left\{ X \in \phi^n | m_i(X) = 0, i \in [0, q - 1] \right\}.
$$
 (1)

The quantity $m_i(X) = x_1 1^i + x_2 2^i + ... + x_n n^i = \sum_{j=1}^n x_j j^i$ is the *m*_{*i*}-weight of the word $X = x_1x_2...x_n \in \overline{\phi^n}$, with sums and products over *IR*; $m_i(X)$ is also referred to as the *i*-th moment of *X*. All the words $X \in SN(n, q)$ are called *q*th-Order Spectral-Null (*q*-OSN) words. When $m_i(X) = 0$, the word X is m_i -balanced. Let C be a binary code. C is a q -OSN(n, \tilde{k}) code of length n and with \tilde{k} information bits, if, and only if $C \subseteq SN(n, q)$ and $|C| = 2^{\tilde{k}}$. In the case $q = 1$, the q -OSN (n, \tilde{k}) codes coincide with the balanced codes [2]–[4], [6], [8], [10], [13]–[16], [19], [21], [23]–[27], [32]. On the other hand, for $q \ge 2$, the *q*-order spectral null codes are applied in digital recording and partial-response channels [7], [16]. Considering the *q*-OSN codes over the binary alphabet $\mathbb{Z}_2 = \{0, 1\}$ [21] and replacing the symbols -1 and $+1$ with 0 and 1 respectively, *SN*(*n*, *q*) becomes equivalent to the set *SN'*(*n*, *q*) $\subseteq \mathbb{Z}_2^n$

$$
SN'(n, q) = \left\{ X \in \mathbb{Z}_2^n \middle| m_i(X) = \sum_{j=1}^n x_j j^i = \frac{1}{2} \sum_{j=1}^n j^i \right\}
$$

for all integer $i \in [0, q-1]$. Note that, the sums and products are over *IR*.

In the design of a *q*-OSN code, the main issue is to change the information words into *q*th-order spectral null words using the minimum possible redundancy. Tallini and Bose [20] found that, for $q = 2$, the minimum redundancy is $r_{min}(k) = 2 \log n - 1.141$. Some efficient 2-OSN codes have been proposed in [9], [11], [16], [20], [22], [30], [31]. Tallini *et al.* [28] designed 2-OSN codes whose scheme is based on the combination between the Knuth's parallel decoding proposal [2], [13], [14], [21] and the random walk method for second-Order Spectral Null codes [9], [20], [30]. This approach gives a novel non-recursive efficient codes design method which makes the cited codes less redundant than other code designs. Moreover, the Knuth's parallel decoding scheme has been also used by Weber and Immink [29] and Swart and Weber [18] to convey extra auxiliary data by exploiting the freedom degree to select from more than one possible balancing indexes of a given

The associate editor coordinating the review of this article and approving it for publication was Rui Wang.

information word. Pelusi *et al.* [14] gave a generalization of Knuth's scheme for obtaining efficient *m*-ary balanced codes with a parallel decoding scheme. In this scheme, the extra information $\delta_k = 0.5 \log_m k + \Theta(\log \log k)$ comes from the choice of balancing index and the unused check symbol contribution. A modification of this scheme has been proposed in [12] with the derivation of an asymptotic amount of auxiliary data for a variable length realization of a ternary code construction modification of the scheme in [14].

In this paper, we propose to convey extra auxiliary data using the freedom of choosing more than one possible balanced encoding of a given 2-OSN information word [28]. In other words, we consider the combination between the Knuth's parallel decoding scheme and the random walk method for second-Order Spectral Null codes. The target is to reduce the redundancy $r = 2 \log k + \Theta(\log \log k)$ of the second-order spectral null codes designed in [28].

Section [II](#page-1-0) contains a detailed description of the proposed scheme. The experimental results are discussed in Section [III.](#page-5-0) The concluding remarks are contained in Section [IV.](#page-7-0)

II. PROPOSED SCHEME

The proposed scheme is based on the scheme described in [28]. The 2-OSN information words are already m_0 -balanced words. Let \vec{k} be the maximum number of information bits that can be m_0 -balanced into k bits, it follows that

$$
\tilde{k} = \log_2 \binom{k}{k/2} \tag{2}
$$

with $k \in 2\text{IN}$. Therefore, starting from an even length information word *X* that belongs to $SN(k, 1)$, the design problem is to convert this word into a word in the set *SN*(*n*, 2) using

$$
SN(n, 2) = \left\{ X \in \mathbb{Z}_2^n \middle| \begin{aligned} m_0(X) &= \sum_{j=1}^n x_j = \frac{n}{2} \quad \text{and} \\ m_1(X) &= \sum_{j=1}^n x_j j = \frac{n(n+1)}{4} \end{aligned} \right\}
$$

where $n = k + r$ and r is the check words length. The conversion is assured by suitable functions from an *m*1 balancing functions set and appending appropriate check words. In order to define the *m*1-balancing functions, the following quantities

$$
S(k, \mu_0) \stackrel{def}{=} \{ X \in \mathbb{Z}_2^k : m_0(X) = \mu_0 \} \subseteq \mathbb{Z}_2^k
$$

$$
S(k, \mu_0, \mu_1) \stackrel{def}{=} \{ X \in \mathbb{Z}_2^k : m_0(X) = \mu_0, m_1(X) = \mu_1 \}
$$

are defined. Note that $S(k, \mu_0, \mu_1) \subseteq S(k, \mu_0)$, with $k, \mu_0, \mu_1 \in \mathbb{I}N$. The sets $S(k, \mu_0)$ and $S(k, \mu_0, \mu_1)$ indicate the set of all k -bit m_0 -balanced and m_1 -balanced data words, respectively.

Let $\langle \Gamma_h \rangle$ be a function from $S(k, k/2)$ into itself, i.e.

$$
\langle \Gamma_h \rangle \colon S(k,k/2) \to S(k,k/2)
$$

with $h \in [0, p - 1]$ and $p \in \mathbb{N}$. Moreover, let $k, r \in 2\mathbb{N}$ be given so that $n \stackrel{def}{=} k + r \in 4*IN*$. We define the set

$$
CS \stackrel{\text{def}}{=} \{\Gamma_0, \Gamma_1, \ldots, \Gamma_{p-1}\},\
$$

as the set of $p \in \mathbb{I}N$ non-empty subsets of the set of all the *r*-bit *m*₀-balanced check words $S(r, r/2)$.

The sets Γ_0 , Γ_1 , ..., Γ_{p-1} satisfies the following conditions:

1) The sets Γ_h are pair-wise disjoint; i. e.,

$$
\Gamma_i \cap \Gamma_j = \emptyset \iff i \neq j.
$$

This feature avoids the ambiguity for recovering $h \in$ $[0, p - 1].$

2) For every m_0 -balanced information word $X \in S(k, k/2)$ there exists one $h_{bal} \in [0, p - 1]$ and $C_{h_{bal}} \in \Gamma_{h_{bal}}$ such that

$$
m_1\left(\langle \Gamma_{h_{bal}}\rangle(X) C_{h_{bal}}\right) = \frac{n(n+1)}{4}
$$

.

The meaning of symbol *hbal* is of an ''*m*1-balancing index" of *X*, with $h_{bal}(X) \subseteq [0, p-1]$ as the set of all possible balancing indices of *X*. Note that, for all $X \in S(k, k/2)$,

$$
m_0\left(\left\langle \Gamma_{h_{bal}}\right\rangle\!\!\left(X\right) C_{h_{bal}}\right) = m_0\left(\left\langle \Gamma_{h_{bal}}\right\rangle\!\!\left(X\right)\right) + m_0\left(C_{h_{bal}}\right)\\ = \frac{k}{2} + \frac{r}{2} = \frac{n}{2}.
$$

3) For all indices $h \in [0, p-1]$, the function $\langle \Gamma_h \rangle$ is oneto-one so that, from *h* and $Y = \langle \Gamma_h \rangle(X)$ it is possible to unambiguously recover *X*.

Given a word $X = x_1, x_2, ..., x_k \in S(k, k/2)$, the random walk method for 2-OSN codes consists of exchanging adjacent bits with any alteration of m_0 -weight and with a variation of *m*1-weight of −1, 0 or +1. The random walk terminates once that the reverse $X^R \stackrel{def}{=} x_k x_{k-1} \dots x_1$ is achieved. Formally, given

$$
X = x_1 x_2 x_3 \dots x_i \dots x_j \dots x_{k-1} x_k
$$

let

$$
X^{(i,j)} = x_1 x_2 x_3 \dots x_j \dots x_k \dots x_{k-1} x_k
$$

be the word obtained form *X* by exchanging the *i*th bit with the *j*th bit, and

$$
X^R = x_k x_{k-1} \dots x_j \dots x_i \dots x_3 x_2 x_1
$$

be the reverse of *X*.

Formalizing as in [20], let us consider the sequence of $k(k - 1)/2 + 1$ words,

$$
X^{(0)} \stackrel{def}{=} X = X,
$$

\n
$$
X^{(1)} \stackrel{def}{=} (X^{(0)})^{(1,2)},
$$

\n
$$
X^{(2)} \stackrel{def}{=} (X^{(1)})^{(2,3)},
$$

\n
$$
\vdots
$$

\n
$$
X^{(k-1)} \stackrel{def}{=} (X^{(k-2)})^{(k-1,k)},
$$

\n
$$
X^{(k)} \stackrel{def}{=} (X^{(k-1)})^{(k-2,k-1)},
$$

\n
$$
X^{(k+1)} \stackrel{def}{=} (X^{(k)})^{(k-3,k-2)},
$$

\n
$$
\vdots
$$

\n
$$
X^{(2k-3)} \stackrel{def}{=} (X^{(2k-4)})^{(1,2)} = X^{(1,k)},
$$

\n
$$
X^{(2k-2)} \stackrel{def}{=} (X^{(2k-3)})^{(2,3)},
$$

\n
$$
X^{(2k-1)} \stackrel{def}{=} (X^{(2k-2)})^{(3,4)},
$$

\n
$$
\vdots
$$

\n
$$
X^{(3k-6)} \stackrel{def}{=} (X^{(3k-6)})^{(k-2,k-1)},
$$

\n
$$
X^{(3k-4)} \stackrel{def}{=} (X^{(3k-5)})^{(k-4,k-3)},
$$

\n
$$
\vdots
$$

\n
$$
X^{(4k-10)} \stackrel{def}{=} (X^{(4k-9)})^{(2,3)} = (X^{(1,k)})^{(2,k-1)},
$$

\n
$$
\vdots
$$

\n
$$
X^{(k(k-1)/2)} \stackrel{def}{=} (X^{(k(k-1)/2)-1})^{(k/2,k/2+1)} = X^R.
$$

For example, if $k = 4$ and $X = x_1x_2x_3x_4$ then the sequence has cardinality $k(k - 1)/2 + 1 = 7$ and

$$
X^{(0)} = x_1 x_2 x_3 x_4 = X,
$$

\n
$$
X^{(1)} = x_2 x_1 x_3 x_4
$$

\n
$$
X^{(2)} = x_2 x_3 x_1 x_4
$$

\n
$$
X^{(3)} = x_2 x_3 x_4 x_1
$$

\n
$$
X^{(4)} = x_2 x_4 x_3 \overline{x_1}
$$

\n
$$
X^{(5)} = \frac{x_4 x_2 x_3 \overline{x_1}}{x_4 x_3 x_2 x_1} = X^R.
$$

Given a set of m_1 -balancing functions, each m_0 -balanced data word *X* ∈*S*(*k*, *k*/2) is encoded as

$$
E_2(X) = \langle \Gamma_{h_{bal}} \rangle(X) C_{h_{bal}}
$$

where $h_{bal} \in h_{bal}(X)$ is an " m_1 -balancing index" of *X*.

The check word partition *CS* is defined by the following simple constructive rule.

For $h = 0, 1, 2, \ldots, p - 1$, for all integers

$$
\mu_1 \in m_1 \left(S(r, r/2) - \bigcup_{j=0}^{h-1} \Gamma_j \right),\tag{3}
$$

the set Γ_h contains exactly one check word in *S*(*r*, *r*/2, μ_1) – $\bigcup_{j=0}^{h-1} \Gamma_j$.

This definition implies that

$$
p \le \max_{\mu} |S(r, r/2, \mu)|
$$

with $\mu \in \mathbb{N}$. For example, if $r = 8$ and

$$
p = \max_{\mu} |S(8, 4, \mu)| = 8
$$

then

so that, for instance, $CS = {\Gamma_0, \Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4, \Gamma_5, \Gamma_6, \Gamma_7},$ where

- $\Gamma_0 = \{11110000, 11101000, 11011000, 10111000, 01111000, \right.$ 01110100, 01101100, 01011100, 00111100, 00111010, 00110110, 00101110, 00011110, 00011101, 00011011, 00010111, 00001111},
- Γ_1 = {11100100, 11010100, 10110100, 10101100, 01110010, 01101010, 01011010, 01010110, 00111001, 00110101, 00101101, 00101011, 00100111},
- Γ_2 = {11100010, 11001100, 10110010, 10011100, 01110001, 01100110, 01011001, 01001110, 01001101, 00110011, 01000111},
- Γ_3 = {11010010, 11001010, 10101010, 10011010, 01101001, 01100101, 01010101, 01010011, 01001011},
- Γ_4 = {11100001, 11010001, 10110001, 10100110, 10010110, 10001110, 01100011, 10001011, 10000111},
- Γ_5 = {11000110, 10101001, 10011001, 10010101, 10001101},
- Γ_6 = {11001001, 11000101, 10100101, 10100011, 10010011}, 1000011

$$
17 = \{11000011\}
$$

The information word length *k* and the check word length *r* must satisfy the [\(4\)](#page-2-0) [2], [20], [21]

$$
\frac{k(k-1)}{2} \leq {r \choose r/2}.
$$
 (4)

However, there are cases where

$$
\frac{k(k-1)}{2} < \binom{r}{r/2},
$$

thus there will be $l = \frac{k(k-1)}{2} - \binom{r}{r}$ $r \choose r/2$ unused check words. Because the partition *CS* can be constructed in different ways [28], the idea is a novel construction of Γ 's. The proposed construction of Γ 's is described in Algorithm [1.](#page-3-0)

For example, if $k = 12$ and $r = 6$ then [\(4\)](#page-2-0) gives $66 < 70$. This means that there are $l = 70 - 66 = 4$ check words unused. The partition *CS* is constructed according to Algorithm [1,](#page-3-0) where the choice is to remove 4 unused check words from the Γ 's constructed above. The removal procedure consists of removing the check words starting from the last Γ _{*i*} (Γ ₇ in our case) and taking off the check words from Γ 's until their cardinality is equal to 1, i. e. $|\Gamma_i| = 1$. In this way, for the example above, the check words 11001001, 11000101, 10100011, 10010011 are removed from Γ_6 and so $\Gamma_6 = \{10100101\}.$

Now, we define the m_1 -image of the words in Γ_h , $m_1(\Gamma_h)$, as the integer interval

 $m_1(\Gamma_h) = [\alpha_h, \beta_h]$

where

$$
\alpha \stackrel{\text{def}}{=} \min_{C \in S(r, r/2)} m_1(C)
$$

and

$$
\beta \stackrel{\text{def}}{=} \max_{C \in S(r, r/2)} m_1(C)
$$

Thus, in the case $r = 8$

The cardinalities of Γ 's are necessary to define the *p* natural numbers [28]

$$
d_h \stackrel{def}{=} \begin{cases} 0 & \text{if } h = 0, \\ d_{h-1} + \lfloor |\Gamma_{h-1}|/2 \rfloor + \lceil |\Gamma_h|/2 \rceil & \text{if } h \in [1, p-1] \end{cases} (5)
$$

In the example, $|\Gamma_0| = 17$, $|\Gamma_1| = 13$, $|\Gamma_2| = 11$, $|\Gamma_3| = 9$, $|\Gamma_4| = 9$, $|\Gamma_5| = 5$, $|\Gamma_6| = 1$ and $|\Gamma_7| = 1$, therefore $d_0 = 0$, $d_1 = 15$, $d_2 = 27$, $d_3 = 37$, $d_4 = 46$, $d_5 = 53$, $d_6 = 56$ and $d_7 = 57$.

According to Theorem 2 in [28], the following *m*1 balancing functions for $k = 12$, $r = 8$ and $p = 8$ are defined:

where the underlined parts represent the permutation of bit position.

The steps of 2-OSN encoding is illustrated in Algorithm [2.](#page-3-1)

Input: $Z \in \mathbb{Z}_2^{\tilde{k}}$ **Output**: $YC = E_2(E_1(Z))$, where $Y \in \mathbb{Z}_2^k$ and $C \in \mathbb{Z}_2^r$ **¹ begin** 2 | $X = E_1(Z);$ $3 \mid d_0 = 0;$ **4 for** $h = 0 : p - 1$ **do** $\mathbf{5}$ **if** $h \neq 0$ **then 6** $\left| \int d_h = d_{h-1} + \frac{\lfloor | \Gamma_{h-1} |/2 \rfloor + \lfloor | \Gamma_h |/2 \rfloor}{h} \right|$ **⁷ end 8** $\langle \Gamma_h \rangle(X) = X^{(d_h)}$; **9** $w_1 = m_1(\langle \Gamma_h \rangle(X));$ 10 $\mu_1 = n(n+1)/4 - w_1 - kr/2;$ 11 **if** $m_1(C) = \mu_1$ **then** 12 *h*_{*bal}* = *h*;</sub> **¹³ end ¹⁴ end ¹⁵** $\left\langle \Gamma_{h_{bal}}(X)\right\rangle = X^{(d_{h_{bal}})};$ 16 $Y = \langle \Gamma_{h_{bal}}(X) \rangle$ 17 $\mid C = C_{h_{bal}};$ 18 $E_2(X) = YC$; **¹⁹ end**

Note that, the word *X* at row 2 of Algorithm [2](#page-3-1) is the m_0 -balanced word of length *k* associated with *Z*, i.e. $X =$ $E_1(Z)$. In this way, $m_0(X) = k/2$. Moreover, refer to row 11, an *m*₁-balancing check exists in Γ_h if, and only if, $\mu_1 \in$ $m_1(\Gamma_h) = [\alpha_h, \beta_h]$. The value of h_{bal} is one among all

possible balancing indices obtained in row 12 and the corresponding *m*1-balancing check is

$$
C_{h_{bal}} \stackrel{\text{def}}{=} C \in \Gamma_{h_{bal}}.
$$

The decoding is described in Algorithm [3.](#page-4-0)

Algorithm 3 Decoding Algorithm

Input: *Y C* = *E*₂(*E*₁(*Z*)), where *Z* ∈ $\mathbb{Z}_2^{\tilde{k}}$, *Y* ∈ \mathbb{Z}_2^k and $C \in \mathbb{Z}_2^r$. **Output**: $Z = E_1^{-1}(E_2^{-1}(Y \cap C)).$ **1 begin 2** calculate $h_{bal} \in [0, p - 1]$ such that $C \in \Gamma_{h_{bal}}$; $X = E_2^{-1}(YC);$ 4 $Z = E_1^{-1}(X);$ **5 end**

Here, the idea is to exploit the degree of freedom of selecting from more than one possible balancing index *hbal* in row 12 of Algorithm [2,](#page-3-1) to transmit extra auxiliary data. For example, we apply the Algorithms [2](#page-3-1) and [3](#page-4-0) to the m_0 -balanced word $X = 110001100110$, where $k = 12$. Therefore, considering

$$
M_1 \stackrel{\text{def}}{=} \frac{n(n+1)}{n} - \frac{kr}{2} = 105 - 48 = 57,
$$

the Algorithm [2](#page-3-1) executes the steps *S*1 and *S*2 in rows 8-13 and 15-18 respectively, as follows.

S1 (for $h = 0$ and $d_0 = 0$) Compute:

$$
\langle \Gamma_0 \rangle(X) = X^{(0)} = 110001100110(= X)
$$

\n
$$
m_1(X^{(0)}) = 37
$$

\n
$$
\mu_1 = M_1 - m_1(X^{(0)}) = 57 - 37 = 20
$$

The check word $C = 00110110 \in \Gamma_0$ is such that $m_1(C) = \mu_1 = 20 \in m_1(\Gamma_0) = [10, 26]$. So, $h_{bal} = 0$ is an *m*1-balancing index and the corresponding *m*1-balancing check is $C_0 = 00110110$.

S1 (for $h = 1$ *and* $d_1 = 15$ *) Compute:*

$$
\langle \Gamma_1 \rangle(X) = X^{(15)} = 100011 \underline{00011} \underline{1}
$$

\n
$$
m_1(X^{(15)}) = 45
$$

\n
$$
\mu_1 = M_1 - m_1(X^{(15)}) = 57 - 45 = 12
$$

The check word $C = 11100100 \in \Gamma_1$ is such that $m_1(C) = \mu_1 = 12 \in m_1(\Gamma_1) = [12, 24]$. So, $h_{bal} = 1$ is an *m*1-balancing index and the corresponding *m*1-balancing check is $C_1 = 11100100$.

S1 (for $h = 2$ *and* $d_2 = 27$ *) Compute:*

$$
\langle \Gamma_2 \rangle(X) = X^{(27)} = \underline{0}00011\underline{0}1011\underline{1}
$$

\n
$$
m_1(X^{(27)}) = 52
$$

\n
$$
\mu_1 = M_1 - m_1(X^{(27)}) = 57 - 52 = 5
$$

We have $\mu_1 = 5 \notin m_1(\Gamma_2) = [13, 23]$, then there is no check word $C \in \Gamma_2$ such that $m_1(C) = \mu_1$.

$$
\langle \Gamma_3 \rangle(X) = X^{(37)} = \underbrace{001001100111}_{\equiv m_1(X^{(37)}) = 49}
$$
\n
$$
\mu_1 = M_1 - m_1(X^{(37)}) = 57 - 49 = 8
$$

We have $\mu_1 = 8 \notin m_1(\Gamma_3) = [14, 22]$, then there is no check word $C \in \Gamma_3$ such that $m_1(C) = \mu_1$.

S1 (for $h = 4$ *and* $d_4 = 46$) *Compute:*

$$
\langle \Gamma_4 \rangle(X) = X^{(46)} = \underbrace{01}_{\text{10011010011}}
$$
\n
$$
m_1(X^{(46)}) = 44
$$
\n
$$
\mu_1 = M_1 - m_1(X^{(46)}) = 57 - 44 = 13
$$

We have $\mu_1 = 13 \notin m_1(\Gamma_4) = [14, 22]$, then there is no check word $C \in \Gamma_4$ such that $m_1(C) = \mu_1$.

S1 (for $h = 5$ *and* $d_5 = 53$ *) Compute:*

 $$

$$
\langle \Gamma_5 \rangle(X) = X^{(53)} = \underbrace{011010100011}_{\mu_1(X^{(53)})} = 40
$$
\n
$$
\mu_1 = M_1 - m_1(X^{(53)}) = 57 - 40 = 17
$$

The check word $C = 10101001 \in \Gamma_5$ is such that $m_2(C) = \mu_1 = 17 \in m_1(\Gamma_5) = [16, 20]$. So, $h_{bal} = 5$ is an *m*1-balancing index and the corresponding *m*1-balancing check is $C_5 = 10101001$.

S1 (for $h = 6$ *and* $d_6 = 56$) *Compute:*

$$
\langle \Gamma_6 \rangle(X) = X^{(56)} = \underbrace{011}_{011000011}^{011000011}
$$

\n
$$
m_1(X^{(56)}) = 39
$$

\n
$$
\mu_1 = M_1 - m_1(X^{(56)}) = 57 - 39 = 18
$$

The check word $C = 10100101 \in \Gamma_6$ is such that $m_2(C) = \mu_1 = 18 \in m_1(\Gamma_6) = [18, 18]$. So, $h_{bal} = 6$ is an *m*1-balancing index and the corresponding *m*1-balancing check is $C_6 = 10100101$.

S1 (for $h = 7$ *and* $d_7 = 57$ *) Compute:*

$$
\langle \Gamma_7 \rangle(X) = X^{(57)} = \underbrace{011011000011}_{\text{m}_1(X^{(57)}) = 39}
$$
\n
$$
\mu_1 = M_1 - m_1(X^{(57)}) = 57 - 39 = 18
$$

The check word $C = 11000011 \in \Gamma_7$ is such that $m_2(C) = \mu_1 = 18 \in m_1(\Gamma_7) = [18, 18]$. So, $h_{bal} = 7$ is an *m*1-balancing index and the corresponding *m*1-balancing check is $C_7 = 11000011$.

Now, execute *S*2.

S2: for the m_0 -balanced information word $X =$ 010101110001, we can choose one of the following *m*1-balanced codewords as the encoding of *X*:

$$
E_2(X) = X^{(0)}C_0 = 11000110011000110110
$$

\n
$$
E_2(X) = X^{(15)}C_1 = 100011001111100100
$$

\n
$$
E_2(X) = X^{(53)}C_5 = 01101010011111001001
$$

\n
$$
E_2(X) = X^{(56)}C_6 = 01101100011110100101
$$

\n
$$
E_2(X) = X^{(57)}C_7 = 01101100001111000011
$$

TABLE 1. Results of the proposed scheme from $n = 4$ to $n = 128$, with

 $n \in 4/N$.

 72.356

76.22

80.094

83.971

91.740

95.631

99.52

 $\frac{0.004}{103.42}$

107.32

111.233

74

78

 $\overline{82}$

84

 $\overline{88}$

 $\overline{92}$

96

 $\overline{100}$

 104

108

14

14

14

16

 $\overline{16}$

16

16

 $\overline{16}$

16

16

 $\overline{16}$

88

 92

96

100 87.

104

108

112

 $\overline{116}$ $\overline{120}$

124

Note that, there is more than one balancing index for the information word $X = 110001100110$. This fact holds for all the information words in *S*(12, 6). Therefore, we can exploit the freedom of choice of the balancing indices to convey extra auxiliary data, thereby reducing the overall redundancy.

In the decoding phase, by using Algorithm [3,](#page-4-0) on receiving for example the 2-OSN word

YC = 01101010001110101001

the last 8 bits 10101001 represent the check word that allows of identifying the m_1 -balancing function $\langle \Gamma_h \rangle$ used in the encoding procedure. Since $C \in \Gamma_5$, the remaining sequence 011010100011 is decoded into the m_0 -balanced word

$$
E_2^{-1}(YC) = \langle \Gamma_5 \rangle^{-1}(Y) = 110001100110.
$$

Refer to the complexity of Algorithm [2,](#page-3-1) note that step at row 2 can be accomplished in space *O*(*k*) memory bits and time $O(k \log k)$ bit operations by using any of the methods given in [2], [3], [8], [13], [13], [18], [19], [29]. The step in rows 3-14 can be accomplished in space $O(r^5 + k)$ memory bits and time $O(r^3)$ bit operations (see [28]). Moreover, the step for computing $E_2(X)$ takes time $O(1)$ bit operations. Hence, Algorithm [2](#page-3-1) has a space complexity of $O(r^5 + k)$ = $O(k)$ memory bits and a time complexity of $O(r^3 \log r +$ $k \log k$ = $O(k \log k)$ bit operations.

With regard to the decoding, on receiving a codeword $Y C = X^{(d_{h_{bal}})} C$, a table look-up indexed by *C* can be maintained to compute $i = d_{h_{bal}}$ from *C*. Once $d_{h_{bal}}$ is known, *X* can be computed from $(d_{h_{bal}}, Y)$ with the giant-baby step based algorithm in [28]. In this way, $T = O(k \log k)$ bit operations are essentially needed to compute *X* from $(d_{h_{bal}}, Y)$ and $S = O(k^2 \log k)$ memory bits are essentially needed to compute $d_{h_{bal}} \in [0, k(k-1)/2]$ from $C \in \bigcup_{h=0}^{p-1} \Gamma_h$ with the table look-up.

III. RESULTS AND DISCUSSION

Algorithm [2](#page-3-1) is run for computing the amount of information coming from the balancing index choice freedom. The Tables [1-](#page-5-1)[9](#page-7-1) show the parameters of the 2-OSN coding scheme. The second column shows the quantity $k_{opt} = \log |SN(n, 2)|$; for $n \geq 18$ the values of the second column are obtained for $n \ge 18$ the values of the second column are obtained
with the approximation $|SN(n, 2)| \approx |(4\sqrt{3}/\pi)2^n/n^2|$ given in [20], [22], that is $k_{opt} = \log | (4\sqrt{3}/\pi)2^n/n^2 |$. The fifth column contains the values of \vec{k} which come from relation [\(2\)](#page-1-1). The quantity δ_k represents the extra auxiliary information which comes from the degree of freedom to select between more than one possible balancing indices of each information word.

Tallini *et al.* [28] proposed a method to design nonrecursive efficient 2-OSN codes. If $k \in 2*IN*$ is the 1-OSN code length, then the second-Order Spectral Null coding scheme has length $n = k + r \in 4*IN*$ with an extra redundancy, $r \in 2*IN*$ such that $r = 2 \log k + \Theta(\log \log k)$. Here, to improve the redundancy, the choice freedom among the possible balancing indices of a given information word is proposed.

66

 $\overline{70}$

74

 $\overline{78}$

80

84

88

 $\overline{92}$

 $\overline{96}$

 $\overline{100}$

104

3.106

3.118

3.186

3.165

3.264

3.231

 $\frac{3.323}{3.323}$

3.246

3.379

3.348

3.372

3.353

69.106

73.118

77.186

81.165

83.264

87.231

 $\frac{0.1251}{91.323}$

95.246

99.379

103.348

107.372

 111.35

TABLE 2. Results of the proposed scheme from $n = 132$ to $n = 256$, with $n \in \mathcal{A}$ IN.

\boldsymbol{n}	k_{opt}	\boldsymbol{k}	$r = n - k$	\boldsymbol{k}	$\delta \bar{k}$	$k'=k+\delta k$	$\Delta = k_{opt} - k'$
132	119.052	116	16	112	3.411	115.411	3.641
136	122.966	120	16	116	3.435	119.435	3.531
140	126.882	124	16	120	3.404	123.404	3.478
144	130.801	128	16	124	3.456	127.456	3.345
148	134.722	132	16	128	3.516	131.516	3.207
152	138.645	136	$\overline{16}$	132	3.516	135.516	3.129
156	142.570	140	$\overline{16}$	136	3.571	139.571	2.999
160	146.497	144	16	140	3.551	143.551	2.946
164	150.426	148	16	144	3.566	147.566	2.860
168	154.356	150	$\overline{18}$	146	3.588	149.588	4.769
172	158.288	156	16	152	3.561	155.561	2.727
176	162.222	160	16	156	3.608	159.608	2.614
180	166.157	162	18	158	3.629	161.629	4.528
184	170.094	164	$\overline{20}$	159	3.658	162.658	7.435
188	174.032	168	$\overline{20}$	163	3.684	166.684	7.348
192	177.971	172	$\overline{20}$	167	3.704	170.704	7.267
196	181.912	176	20	171	3.742	174.742	7.170
200	185.853	180	20	175	3.726	178.726	7.127
204	189.796	186	$\overline{18}$	181	3.702	184.702	5.094
208	193.740	188	20	183	3.758	186.758	6.982
$\overline{212}$	197.685	194	18	189	3.749	192.749	4.936
216	201.631	198	18	193	3.754	196.754	4.877
220	205.578	202	18	197	3.768	200.768	4.811
224	209.526	206	18	201	3.803	204.803	4.723
228	213.475	210	18	205	3.816	208.816	4.659
232	217.425	214	18	209	3.790	212.790	4.635
236	221.376	218	18	213	3.809	216.809	4.566
240	225.327	222	18	217	3.802	220.802	4.525
244	229.280	226	18	221	3.820	224.820	4.460
248	233.233	230	18	225	3.849	228.849	4.383
252	237.186	234	18	229	3.848	232.848	4.339
256	241.141	238	18	233	3.855	236.855	4.286

Algorithm [2](#page-3-1) has been run for all $n \in 4\mathbb{Z}$ from $n = 4$ to *n* = 1024 (see Tables [1](#page-5-1)[-8\)](#page-7-2) and for *n* = 2048, 4096, 8192, 16384, 32768 (see Table [9\)](#page-7-1). Up to $n = 28$, the computation is on all the information words in $S(k, k/2)$, whereas from $n =$ 32 to $n = 1024$, we have run our algorithm on randomized information words. In Table [1,](#page-5-1) the double line splits these two situations. The values of the quantity $\Delta = \tilde{k}_{opt} - \tilde{k}'$ (with $\tilde{k}' = \tilde{k} + \delta \tilde{k}$) are plotted versus log *n* (see Figure [1\)](#page-7-3).

3.250

3.104

2.907

 2.806

 $\frac{21880}{4.589}$

4.509

4.308

4.280

4.046

3.980

3.861

 3.78

TABLE 3. Results of the proposed scheme from $n = 260$ to $n = 384$, with $n \in 4/N$.

\boldsymbol{n}	k_{opt}	k	$r = n - k$	\boldsymbol{k}	δk	$k'=k+\delta k$	$\Delta = k_{opt} - k'$
260	245.096	242	18	237	3.882	240.882	4.214
264	249.052	246	18	241	3.886	244.886	4.166
268	253.009	250	18	245	3.906	248.906	4.103
272	256.966	254	18	249	3.881	252.881	4.085
276	260.924	258	18	253	3.896	256.896	4.028
280	264.882	262	18	257	3.931	260.931	3.952
284	268.841	266	18	261	3.916	264.916	3.926
288	272.801	270	18	265	3.943	268.943	3.858
292	276.761	274	18	269	3.948	272.948	3.814
296	280.722	278	18	273	3.966	276.966	3.756
300	284.683	282	18	277	3.965	280.965	3.719
304	288.645	286	18	281	3.990	284.990	3.656
308	292.607	290	18	285	3.994	288.994	3.614
312	296.570	294	18	289	3.979	292.979	3.591
316	300.533	298	18	293	3.986	296.986	3.547
320	304.497	302	18	297	4.013	301.013	3.484
324	308.461	306	18	301	3.999	304.999	3.463
328	312.426	310	18	305	4.032	309.032	3.394
332	316.391	312	20	307	4.060	311.060	5.331
336	320.356	314	$\overline{22}$	309	4.056	313.056	7.301
340	324.322	318	$\overline{22}$	313	4.068	317.068	7.254
344	328.288	322	$\overline{22}$	317	4.090	321.090	7.198
348	332.255	326	$\overline{22}$	321	4.088	325.088	7.167
352	336.222	330	$\overline{22}$	325	4.079	329.079	7.143
356	340.190	334	$\overline{22}$	$\overline{329}$	4.080	333.080	7.110
360	344.157	338	$\overline{22}$	$\overline{333}$	4.134	337.134	7.023
364	348.125	342	$\overline{22}$	337	4.148	341.148	6.978
368	352.094	346	$\overline{22}$	341	4.137	345.137	6.957
372	356.063	350	$\overline{22}$	$\overline{345}$	4.139	349.139	6.923
376	360.032	354	$\overline{22}$	349	4.149	353.149	6.883
380	364.001	358	$\overline{22}$	353	4.163	357.163	6.838
384	367.971	362	$\overline{22}$	357	4.165	361.165	6.806

TABLE 4. Results of the proposed scheme from $n = 388$ to $n = 512$, with $n \in 4/N$.

The vertical line represents the separation between exact and approximated computation. In the first case, we consider the balancing index choice freedom for all the information words, whereas in the second case, the computation is on a set of information words chosen in a random way. In the approximated case, the values of δ_k are computed by taking the average on 1 million samples. The solid line shows the trend of Δ over log *n*. Observing the graph of Figure [1,](#page-7-3) we can note that Δ tends to increase with $\log n$. Considering the

TABLE 5. Results of the proposed scheme from $n = 516$ to $n = 640$, with

 $n \in 4/N$.

TABLE 6. Results of the proposed scheme from $n = 644$ to $n = 768$, with $n \in 4/N$.

\boldsymbol{n}	k_{opt}	\boldsymbol{k}	$r = n - k$	\ddot{k}	$\delta \tilde{k}$	$k' = k + \delta k$	$\Delta = \ddot{k}_{opt} - \dot{k}'$
644	626.479	622	$\overline{22}$	617	4.506	621.506	4.973
648	630.461	626	$\overline{22}$	621	4.518	625.518	4.943
652	634.444	630	$\overline{22}$	625	4.543	629.543	4.900
656	638.426	634	$\overline{22}$	629	4.526	633.526	4.900
660	642.408	638	$\overline{22}$	633	4.526	637.526	4.882
664	646.391	642	$\overline{22}$	637	4.535	641.535	4.856
668	650.374	646	$\overline{22}$	641	4.531	645.531	4.843
672	654.356	650	$\overline{22}$	645	4.537	649.537	4.820
676	658.339	654	$\overline{22}$	648	4.560	652.560	5.779
680	662.322	658	$\overline{22}$	652	4.544	656.544	5.778
684	666.305	662	$\overline{22}$	656	4.560	660.560	5.745
688	670.288	666	$\overline{22}$	660	4.547	664.547	5.741
692	674.272	670	$\overline{22}$	664	4.558	668.558	5.714
696	678.255	674	$\overline{22}$	668	4.574	672.574	5.681
700	682.239	678	22	672	4.568	676.568	5.671
704	686.222	682	$\overline{22}$	676	4.578	680.578	5.644
708	690.206	686	$\overline{22}$	680	4.562	684.562	5.643
712	694.190	690	$\overline{22}$	684	4.579	688.579	5.610
716	698.173	694	$\overline{22}$	688	4.571	692.571	5.603
720	702.157	698	$\overline{22}$	692	4.581	696.581	5.576
$\overline{724}$	706.141	702	$\overline{22}$	696	4.574	700.574	5.568
728	710.125	706	$\overline{22}$	700	4.591	704.591	5.535
732	714.110	710	$\overline{22}$	704	4.603	708.603	5.506
736	718.094	714	$\overline{22}$	708	4.607	712.607	5.487
740	722.078	$\overline{718}$	$\overline{22}$	712	4.597	716.597	5.481
744	726.063	$\overline{722}$	$\overline{22}$	716	4.622	720.622	5.441
748	730.047	$\overline{726}$	$\overline{22}$	720	4.613	724.613	5.434
$\overline{752}$	734.032	730	$\overline{22}$	724	4.627	728.627	5.405
756	738.017	734	$\overline{22}$	728	4.623	732.623	5.393
760	742.001	738	$\overline{22}$	732	4.624	736.624	5.377
764	745.986	742	$\overline{22}$	736	4.638	740.638	5.348
768	749.971	746	$\overline{22}$	740	4.644	744.644	5.327

values of Δ in Table [1](#page-5-1) and following the outcomes of [8] and [20], we can define Δ as

$$
\Delta = 0.5 \log n + 0.5 \log \log n - 1.467,\tag{6}
$$

because the minimum redundancy of the balanced codes is $1/2 \log n + 0.326$ [8], whereas the minimum redundancy of 2-OSN codes is 2 log *n* − 1.141 [20]. Thus, the total 2-OSN redundancy is $2 \log n - 1.141 - (1/2 \log n + 0.326) =$ $3/2 \log n - 1.467$.

\boldsymbol{n}	k_{opt}	\boldsymbol{k}	$r = n - k$	\boldsymbol{k}	δk	$k'=k+\delta k$	$\Delta = k_{opt} - k'$
772	753.956	750	$\overline{22}$	744	4.626	748.626	5.330
776	757.941	754	$\overline{22}$	748	4.635	752.635	5.306
780	761.926	758	$\overline{22}$	752	4.632	756.632	5.294
784	765.912	762	$\overline{22}$	756	4.662	760.662	5.250
788	769.897	766	22	760	4.651	764.651	5.246
792	773.882	770	$\overline{22}$	764	4.655	768.655	5.228
796	777.868	774	$\overline{22}$	768	4.658	772.658	5.210
800	781.853	778	$\overline{22}$	772	4.677	776.677	5.176
804	785.839	782	$\overline{22}$	776	4.666	780.666	5.173
808	789.825	786	$\overline{22}$	780	4.659	784.659	5.166
812	793.810	790	22	784	4.664	788.664	5.146
816	797.796	794	$\overline{22}$	788	4.678	792.678	5.118
820	801.782	798	$\overline{22}$	792	4.698	796.698	5.084
824	805.768	802	$\overline{22}$	796	4.680	800.680	5.088
828	809.754	806	$\overline{22}$	800	4.683	804.683	5.071
832	813.740	810	$\overline{22}$	804	4.677	808.677	5.063
836	817.726	814	22	808	4.697	812.697	5.029
840	821.712	818	22	812	4.683	816.683	5.029
844	825.699	822	22	816	4.697	820.697	5.002
848	829.685	826	22	820	4.688	824.688	4.997
852	833.672	830	$\overline{22}$	824	4.701	828.701	4.970
856	837.658	834	$\overline{22}$	828	4.705	832.705	4.953
860	841.645	838	22	832	4.718	836.718	4.926
864	845.631	842	22	836	4.722	840.722	4.909
868	849.618	846	$\overline{22}$	840	4.718	844.718	4.900
872	853.605	850	22	844	4.704	848.704	4.901
876	857.591	854	22	848	4.717	852.717	4.874
880	861.578	858	$\overline{22}$	852	4.726	856.726	4.853
884	865.565	862	22	856	4.739	860.739	4.827
888	869.552	866	$\overline{22}$	860	4.740	864.740	4.812
892	873.539	870	22	864	4.739	868.739	4.800
896	877.526	874	$\overline{22}$	868	4.729	872.729	4.798

TABLE 8. Results of the proposed scheme from $n = 900$ to $n = 2014$, with $n \in 4/N$.

The trend of Δ as defined in [\(6\)](#page-6-0) is plotted in the graph of Figure [1](#page-7-3) (see the dashed line). Note that, the function Δ in [\(6\)](#page-6-0) well approximates the experimental values of Δ in Table [1.](#page-5-1) On the other hand, from the data in the table, we conjecture

$$
\delta_k = 0.5 \log k + \Theta(\log \log k) \tag{7}
$$

and

$$
r' = n - \tilde{k}' = 1.5 \log k + \Theta(\log \log k). \tag{8}
$$

TABLE 9. Results of the proposed scheme for $n = 2048$, 4096, 8192, 16384, 32768, with $n \in 4/N$.

FIGURE 1. Trend of the experimental $\Delta = \tilde{k}_{opt} - \tilde{k}'$ (solid line) and the function $\Delta = 0.5 \log n + 0.5 \log \log n - 1.467$ (dashed line) over log n.

This means that the redundancy is reduced comparing [\(8\)](#page-7-4) with $r = 2 \log k + \Theta(\log \log k)$ in [28]. In other terms, thanks to the extra information δ_k in [\(7\)](#page-7-5), an improvement of the 2-OSN codes designed in [28] is achieved.

IV. CONCLUSION

The idea to exploit the degree of freedom to select between more than one possible balancing encoding of a given information word, was proposed by Weber and Immink [29], Swart and Weber [18], Pelusi *et al.* [14] and Paluncic and Maharaj [12]. Auxiliary data can be used to reduce the redundancy of Knuth's simple balancing method. The proposed approach applies the balancing index choice freedom to the 2-order spectral null codes designed in [28]. In the proposed scheme, the algorithms are run over all the information words for *n* from 4 to 28 and averaged over 1 million samples from 32 to 1024. The results show that the extra information δ_k = $0.5 \log k + \Theta(\log \log k)$ is conveyed from the encoder. This means that the redundancy is equal to $1.5 \log k + \Theta(\log \log k)$. Therefore, the redundancy *r* is reduced in respect to the scheme proposed in [28], where $r = 2 \log k + \Theta(\log \log k)$. Finally, our scheme improves the 2-OSN codes in [28]. Future research directions will focus on the application of the proposed approach also to q -OSN(*n*; \tilde{k}) codes, with $q > 2$.

ACKNOWLEDGMENT

D. Pelusi thanks Prof. Luca Tallini for the precious suggestions and support.

REFERENCES

- [1] N. Alon, E. E. Bergmann, D. Coppersmith, and A. M. Odlyzko, ''Balancing sets of vectors,'' *IEEE Trans. Inf. Theory*, vol. IT-34, no. 1, pp. 128–130, Jan. 1988.
- [2] S. Al-Bassam and B. Bose, ''On balanced codes,'' *IEEE Trans. Inf. Theory*, vol. 36, no. 2, pp. 406–408, Mar. 1990.
- [3] S. Al-Bassam and B. Bose, ''Design of efficient balanced codes,'' *IEEE Trans. Comput.*, vol. 43, no. 3, pp. 362–365, Mar. 1994.
- [4] B. Bose, ''On unordered codes,'' *IEEE Trans. Comput.*, vol. 40, no. 2, pp. 125–131, Feb. 1991.
- [5] T. M. Cover, ''Enumerative source encoding,'' *IEEE Trans. Inf. Theory*, vol. IT-19, no. 1, pp. 73–77, Jan. 1973.
- [6] K. A. S. Immink, "Spectrum shaping with binary DC_2 -constrained channel codes,'' *Philips J. Res.*, vol. 40, no. 1, pp. 40–53, 1985.
- [7] K. A. S. Immink, *Codes for Mass Data Storage Systems*, 2nd ed. Eindhoven, The Netherlands: Shannon Foundation, 2004.
- [8] D. Knuth, ''Efficient balanced codes,'' *IEEE Trans. Inf. Theory*, vol. IT-32, no. 1, pp. 51–53, Jan. 1986.
- [9] R. Mascella and L. G. Tallini, ''On efficient high-order spectral-null codes over the *m*-ary alphabet,'' *J. Discrete Math. Sci. Cryptogr.*, vol. 8, no. 3, pp. 459–481, Jan. 2005.
- [10] R. Mascella and L. G. Tallini, "Efficient *m*-ary balanced codes which are invariant under symbol permutation,'' *IEEE Trans. Comput.*, vol. 55, no. 8, pp. 929–946, Aug. 2006.
- [11] R. Mascella, D. Pelusi, L. Pezza, S. Elmougy, L. G. Tallini, and B. Bose, ''On efficient second-order spectral-null codes using sets of *m*1-balancing functions,'' in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Istanbul, Turkey, Jul. 2013, pp. 141–145.
- [12] F. Palunčić and B. T. Maharaj, "Capacity-approaching non-binary balanced codes using auxiliary data,'' *IEEE Trans. Inf. Theory*, vol. 65, no. 1, pp. 159–173, Jan. 2019. doi: [10.1109/TIT.2018.2844834.](http://dx.doi.org/10.1109/TIT.2018.2844834)
- [13] D. Pelusi, L. G. Tallini, and B. Bose, "On *m*-ary balanced codes with parallel decoding,'' in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Austin, TX, USA, Jun. 2010, pp. 1305–1309.
- [14] D. Pelusi, S. Elmougy, L. G. Tallini, and B. Bose, ''*m*-ary balanced codes with parallel decoding,'' *IEEE Trans. Inf. Theory*, vol. 61, no. 6, pp. 3251–3264, Jun. 2015.
- [15] L. Pezza, L. G. Tallini, and B. Bose, ''Variable length unordered codes,'' *IEEE Trans. Inf. Theory*, vol. 58, no. 2, pp. 548–569, Feb. 2012.
- [16] R. M. Roth, P. H. Siegel, and A. Vardy, "High-order spectral-null codesconstructions and bounds,'' *IEEE Trans. Inf. Theory*, vol. 40, no. 6, pp. 1826–1840, Nov. 1994.
- [17] K. A. S. Immink and J. H. Weber, ''Very efficient balanced codes,'' *IEEE J. Sel. Areas Commun.*, vol. 28, no. 2, pp. 188–192, Feb. 2010.
- [18] T. G. Swart and J. H. Weber, ''Efficient balancing of q-ary sequences with parallel decoding,'' in *Proc. IEEE Int. Symp. Inf. Theory*, Seoul, South Korea, Jun./Jul. 2009, pp. 1564–1568.
- [19] L. G. Tallini, R. M. Capocelli, and B. Bose, "Design of some new efficient balanced codes,'' *IEEE Trans. Inf. Theory*, vol. 42, no. 3, pp. 790–802, May 1996.
- [20] L. G. Tallini and B. Bose, ''On efficient high-order spectral-null codes,'' *IEEE Trans. Inf. Theory*, vol. 45, no. 7, pp. 2594–2601, Nov. 1999.
- [21] L. G. Tallini and B. Bose, "Balanced codes with parallel encoding and decoding,'' *IEEE Trans. Comput.*, vol. 48, no. 8, pp. 794–814, Aug. 1999.
- [22] L. Tallini, ''Geometric properties of high-order spectral-null codes,'' *J. Pure Appl. Math.*, vol. 14, pp. 149–176, Oct. 2003.
- [23] L. G. Tallini, "Bounds on the capacity of the unidirectional channels," *IEEE Trans. Comput.*, vol. 54, no. 2, pp. 232–235, Feb. 2005.
- [24] L. G. Tallini, S. Elmougy, and B. Bose, "Analysis of plain and diversity combining hybrid ARQ protocols over the $m(\geq 2)$ -ary asymmetric channel,'' *IEEE Trans. Inf. Theory*, vol. 52, no. 12, pp. 5550–5558, Dec. 2006.
- [25] L. G. Tallini, S. Al-Bassam, and B. Bose, "Feedback codes achieving the capacity of the *Z*-channel,'' *IEEE Trans. Inf. Theory*, vol. 54, no. 3, pp. 1357–1362, Mar. 2008.
- [26] L. G. Tallini and U. Vaccaro, ''Efficient *m*-ary balanced codes,'' *Discrete Appl. Math.*, vol. 92, no. 1, pp. 17–56, Mar. 1999.
- [27] L. G. Tallini and B. Bose, ''On *L*¹ metric asymmetric/unidirectional error control codes, constrained weight codes and σ-codes,'' in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Istanbul, Turkey, Jul. 2013, pp. 694–698.
- [28] L. G. Tallini, D. Pelusi, R. Mascella, L. Pezza, S. Elmougy, and B. Bose, ''Efficient non-recursive design of second-order spectral-null codes,'' *IEEE Trans. Inf. Theory*, vol. 62, no. 6, pp. 3084–3102, Jun. 2016.
- [29] J. H. Weber and K. A. S. Immink, ''Knuth's balanced codes revisited,'' *IEEE Trans. Inf. Theory*, vol. 56, no. 4, pp. 1673–1679, Apr. 2010.
- [30] C.-N. Yang, "Efficient encoding algorithm for second-order spectralnull codes using cyclic bit shift,'' *IEEE Trans. Comput.*, vol. 57, no. 7, pp. 876–888, Jul. 2008.
- [31] C.-N. Yang, Z.-Y. Lin, and S.-L. Peng, "Reducing code length of second-order spectral-null code,'' *IEEE Trans. Comput.*, vol. 64, no. 2, pp. 492–503, Feb. 2015.
- [32] J.-H. Youn and B. Bose, "Efficient encoding and decoding schemes for balanced codes,'' *IEEE Trans. Comput.*, vol. 52, no. 9, pp. 1229–1232, Sep. 2003.

D. PELUSI (M'17) received the Ph.D. degree in computational astrophysics from the University of Teramo, Italy, where he is currently an Associate Professor with the Faculty of Communication Sciences. His research interests include fuzzy logic, neural networks, information theory, evolutionary algorithms, and machine learning. He has served as a Program Member of many conferences and as an Editorial Board Member of many journals. He is also an Associate Editor of the IEEE TRANSACTIONS

ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, IEEE ACCESS, the *International Journal of Machine Learning and Cybernetics*(Springer), and *Array* (Elsevier). He is also a Guest Editor for Elsevier, Springer, and Inderscience journals. He is also a Reviewer of reputed journals, such as the IEEE TRANSACTIONS ON FUZZY SYSTEMS and the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.