
Received July 16, 2019, accepted August 5, 2019, date of publication August 13, 2019, date of current version August 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934847

On Redundancy Reduction of Non-Recursive
Second-Order Spectral-Null Codes
D. PELUSI , (Member, IEEE)
Faculty of Communication Sciences, University of Teramo, 64100 Teramo, Italy

e-mail: dpelusi@unite.it

This work was supported by the Academic Research Funds of the University of Teramo, Italy.

ABSTRACT The code design problem of non-recursive second-Order Spectral Null (2-OSN) codes is to
convert balanced information words into 2-OSN words employing the minimum possible redundancy. Let k
be the balanced information word length. If k ∈ 2IIN then the 2-OSN coding scheme has length n = k + r ,
with 2-OSN redundancy r ∈ 2IIN and n ∈ 4IIN . Here, we use a scheme with r = 2 log k + 2(log log k).
The challenge is to reduce redundancy even further for any given k . The idea is to exploit the degree of
freedom to select from more than one possible 2-OSN encoding of a given balanced information word.
To reduce redundancy, empirical results suggest that extra information δk = 0.5 log k + 2(log log k) is
obtained. Thus, the proposed approach would give a smaller redundancy r ′ = 1.5 log k +2(log log k) less
than r = 2 log k +2(log log k).

INDEX TERMS Balanced codes, high order spectral null codes, Knuth’s complementation method, parallel
decoding scheme, optical and magnetic recording.

I. INTRODUCTION
The spectral-null codes are an important class of codes
applied in recording systems. Such codes have zero power
spectral density at specific frequencies. The fields of applica-
tion of spectral-null codes are on transmission systems over
fiber or metallic cable and in storage media such as magnetic
or optical recording.

Let SN (n, q) indicate the set of qth-order spectral-null
words in φn, with φ = {−1,+1} a bipolar alphabet. This
set is defined as (see [6], [7], [16])

SN (n, q)
def
=
{
X ∈ φn|mi(X) = 0, i ∈ [0, q− 1]

}
. (1)

The quantity mi(X) = x11i + x22i + ... + xnni =
∑n

j=1 xjj
i

is the mi-weight of the word X = x1x2...xn ∈ φn, with
sums and products over IR; mi(X) is also referred to as the
i-th moment of X . All the words X ∈ SN (n, q) are called
qth-Order Spectral-Null (q-OSN) words. When mi(X) = 0,
the word X is mi-balanced. Let C be a binary code. C is
a q-OSN(n, k̃) code of length n and with k̃ information
bits, if, and only if C ⊆ SN (n, q) and |C| = 2k̃ . In the
case q = 1, the q-OSN(n, k̃) codes coincide with the bal-
anced codes [2]–[4], [6], [8], [10], [13]–[16], [19], [21],
[23]–[27], [32]. On the other hand, for q ≥ 2, the q-order
spectral null codes are applied in digital recording and

The associate editor coordinating the review of this article and approving
it for publication was Rui Wang.

partial-response channels [7], [16]. Considering the q-OSN
codes over the binary alphabet ZZ2 = {0, 1} [21] and replac-
ing the symbols −1 and +1 with 0 and 1 respectively,
SN (n, q) becomes equivalent to the set SN ′(n, q) ⊆ ZZn2

SN ′(n, q) =

X ∈ZZn2
∣∣∣∣∣∣mi(X) =

n∑
j=1

xjji =
1
2

n∑
j=1

ji


for all integer i ∈ [0, q−1]. Note that, the sums and products
are over IR.
In the design of a q-OSN code, the main issue is to

change the information words into qth-order spectral null
words using the minimum possible redundancy. Tallini and
Bose [20] found that, for q = 2, the minimum redundancy
is rmin(k) = 2 log n − 1.141. Some efficient 2-OSN codes
have been proposed in [9], [11], [16], [20], [22], [30], [31].
Tallini et al. [28] designed 2-OSN codes whose scheme
is based on the combination between the Knuth’s parallel
decoding proposal [2], [13], [14], [21] and the random walk
method for second-Order Spectral Null codes [9], [20], [30].
This approach gives a novel non-recursive efficient codes
design method which makes the cited codes less redun-
dant than other code designs. Moreover, the Knuth’s par-
allel decoding scheme has been also used by Weber and
Immink [29] and Swart and Weber [18] to convey extra
auxiliary data by exploiting the freedom degree to select
from more than one possible balancing indexes of a given

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

112171

https://orcid.org/0000-0003-0889-278X

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

information word. Pelusi et al. [14] gave a generalization of
Knuth’s scheme for obtaining efficient m-ary balanced codes
with a parallel decoding scheme. In this scheme, the extra
information δk = 0.5 logm k + 2(log log k) comes from
the choice of balancing index and the unused check symbol
contribution. A modification of this scheme has been pro-
posed in [12] with the derivation of an asymptotic amount of
auxiliary data for a variable length realization of a ternary
code construction modification of the scheme in [14].

In this paper, we propose to convey extra auxiliary data
using the freedom of choosing more than one possible bal-
anced encoding of a given 2-OSN information word [28].
In other words, we consider the combination between the
Knuth’s parallel decoding scheme and the random walk
method for second-Order Spectral Null codes. The target is
to reduce the redundancy r = 2 log k + 2(log log k) of the
second-order spectral null codes designed in [28].

Section II contains a detailed description of the proposed
scheme. The experimental results are discussed in Section III.
The concluding remarks are contained in Section IV.

II. PROPOSED SCHEME
The proposed scheme is based on the scheme described
in [28]. The 2-OSN information words are already
m0-balanced words. Let k̃ be the maximum number of infor-
mation bits that can bem0-balanced into k bits, it follows that

k̃ = log2

(
k
k/2

)
(2)

with k ∈ 2IIN . Therefore, starting from an even length
information word X that belongs to SN (k, 1), the design
problem is to convert this word into a word in the set SN (n, 2)
using

SN (n, 2) =

X ∈ZZ
n
2

∣∣∣∣∣∣∣∣∣∣
m0(X) =

n∑
j=1

xj =
n
2

and

m1(X) =
n∑
j=1

xjj =
n(n+ 1)

4


where n = k + r and r is the check words length. The
conversion is assured by suitable functions from an m1-
balancing functions set and appending appropriate check
words. In order to define the m1-balancing functions, the fol-
lowing quantities

S(k, µ0)
def
= {X ∈ ZZ k2 : m0(X) = µ0} ⊆ ZZ k2

S(k, µ0, µ1)
def
= {X ∈ ZZ k2 : m0(X) = µ0,m1(X) = µ1}

are defined. Note that S(k, µ0, µ1) ⊆ S(k, µ0), with
k, µ0, µ1 ∈ IIN . The sets S(k, µ0) and S(k, µ0, µ1) indicate
the set of all k-bit m0-balanced and m1-balanced data words,
respectively.

Let 〈0h〉be a function from S(k, k/2) into itself, i.e.

〈0h〉 : S(k, k/2)→ S(k, k/2)

with h ∈ [0, p − 1] and p ∈ IIN . Moreover, let k, r ∈ 2IIN be

given so that n
def
= k + r ∈4IIN . We define the set

CS
def
= {00, 01, . . . , 0p−1},

as the set of p ∈ IIN non-empty subsets of the set of all the
r-bit m0-balanced check words S(r, r/2).
The sets 00, 01, . . . , 0p−1 satisfies the following

conditions:

1) The sets 0h are pair-wise disjoint; i. e.,

0i ∩ 0j = ∅ ⇐⇒ i 6= j.

This feature avoids the ambiguity for recovering h ∈
[0, p− 1].

2) For every m0-balanced information word X ∈S(k, k/2)
there exists one hbal ∈ [0, p − 1] and Chbal ∈0hbal such
that

m1
(〈
0hbal

〉
(X) Chbal

)
=
n(n+ 1)

4
.

The meaning of symbol hbal is of an ‘‘m1-balancing
index’’ of X , with hbal(X) ⊆ [0, p − 1] as the set of
all possible balancing indices of X . Note that, for all
X ∈S(k, k/2),

m0
(〈
0hbal

〉
(X) Chbal

)
= m0

(〈
0hbal

〉
(X)
)
+ m0

(
Chbal

)
=

k
2
+
r
2
=
n
2
.

3) For all indices h ∈ [0, p − 1], the function 〈0h〉 is one-
to-one so that, from h and Y = 〈0h〉(X) it is possible to
unambiguously recover X .

Given a word X = x1, x2, ..., xk ∈ S(k, k/2), the random
walk method for 2-OSN codes consists of exchanging adja-
cent bits with any alteration ofm0-weight and with a variation
of m1-weight of −1, 0 or +1. The random walk terminates

once that the reverse XR
def
= xkxk−1...x1 is achieved. For-

mally, given

X = x1x2x3 . . . xi . . . xj . . . xk−1xk

let

X (i,j)
= x1x2x3 . . . xj . . . xi . . . xk−1xk

be the word obtained form X by exchanging the ith bit with
the jth bit, and

XR = xkxk−1 . . . xj . . . xi . . . x3x2x1

be the reverse of X .

112172 VOLUME 7, 2019

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

Formalizing as in [20], let us consider the sequence of
k(k − 1)/2+ 1 words,

X (0) def
= X = X ,

X (1) def
=
(
X (0)

)(1,2)
,

X (2) def
=
(
X (1)

)(2,3)
,

...

X (k−1) def
=
(
X (k−2)

)(k−1,k)
,

X (k) def
=
(
X (k−1)

)(k−2,k−1)
,

X (k+1) def
=
(
X (k)

)(k−3,k−2)
,

...

X (2k−3) def
=
(
X (2k−4)

)(1,2)
= X (1,k),

X (2k−2) def
=
(
X (2k−3)

)(2,3)
,

X (2k−1) def
=
(
X (2k−2)

)(3,4)
,

...

X (3k−6) def
=
(
X (3k−7)

)(k−2,k−1)
,

X (3k−5) def
=
(
X (3k−6)

)(k−3,k−2)
,

X (3k−4) def
=
(
X (3k−5)

)(k−4,k−3)
,

...

X (4k−10) def
=
(
X (4k−9)

)(2,3)
=
(
X (1,k)

)(2,k−1)
,

...

X (k(k−1)/2) def
=
(
X (k(k−1)/2)−1

)(k/2,k/2+1)
= XR.

For example, if k = 4 and X = x1x2x3x4 then the sequence
has cardinality k(k − 1)/2+ 1 = 7 and

X (0)
= x1x2x3x4 = X ,

X (1)
= x2x1x3x4

X (2)
= x2x3x1x4

X (3)
= x2x3x4x1

X (4)
= x2x4x3x1

X (5)
= x4x2x3x1

X (6)
= x4x3x2x1 = XR.

Given a set of m1-balancing functions, each m0-balanced
data word X ∈S(k, k/2) is encoded as

E2(X) =
〈
0hbal

〉
(X) Chbal

where hbal ∈hbal(X) is an ‘‘m1-balancing index’’ of X .
The check word partition CS is defined by the following

simple constructive rule.
For h = 0, 1, 2, . . . , p− 1, for all integers

µ1∈m1

S(r, r/2)− h−1⋃
j=0

0j

, (3)

the set 0h contains exactly one check word in
S(r, r/2, µ1)−

⋃h−1
j=0 0j.

This definition implies that

p ≤ max
µ
|S(r, r/2, µ)|

with µ ∈ IIN . For example, if r = 8 and

p = max
µ
|S(8, 4, µ)| = 8

then
S(r = 8, r/2 = 4, µ1 = 10) = {11110000},
S(r = 8, r/2 = 4, µ1 = 11) = {11101000},
S(r = 8, r/2 = 4, µ1 = 12) = {11011000, 11100100},
S(r = 8, r/2 = 4, µ1 = 13) = {10111000, 11010100, 11100010},
S(r = 8, r/2 = 4, µ1 = 14) = {01111000, 10110100, 11001100,

11010010, 11100001},
S(r = 8, r/2 = 4, µ1 = 15) = {01110100, 10101100, 10110010,

11001010, 11010001},
S(r = 8, r/2 = 4, µ1 = 16) = {01101100, 01110010, 10011100,

10101010, 10110001, 11000110, 11001001},
S(r = 8, r/2 = 4, µ1 = 17) = {01011100, 01101010, 01110001,

10011010, 10100110, 10101001, 11000101},
S(r = 8, r/2 = 4, µ1 = 18) = {00111100, 01011010, 01100110, 01101001,

10010110, 10011001, 10100101, 11000011},
S(r = 8, r/2 = 4, µ1 = 19) = {00111010, 01010110, 01011001,

01100101, 10001110, 10010101, 10100011},
S(r = 8, r/2 = 4, µ1 = 20) = {00110110, 00111001, 01001110,

01010101, 01100011, 10001101, 10010011},
S(r = 8, r/2 = 4, µ1 = 21) = {00101110, 00110101, 01001101,

01010011, 10001011},
S(r = 8, r/2 = 4, µ1 = 22) = {00011110, 00101101, 00110011,

01001011, 10000111},
S(r = 8, r/2 = 4, µ1 = 23) = {00011101, 00101011, 01000111},
S(r = 8, r/2 = 4, µ1 = 24) = {00011011, 00100111},
S(r = 8, r/2 = 4, µ1 = 25) = {00010111},
S(r = 8, r/2 = 4, µ1 = 26) = {00001111};

so that, for instance, CS = {00, 01, 02, 03, 04, 05, 06, 07},
where

00 = {11110000, 11101000, 11011000, 10111000, 01111000,
01110100, 01101100, 01011100, 00111100, 00111010,
00110110, 00101110, 00011110, 00011101, 00011011,
00010111, 00001111},

01 = {11100100, 11010100, 10110100, 10101100, 01110010,
01101010, 01011010, 01010110, 00111001,
00110101, 00101101, 00101011, 00100111},

02 = {11100010, 11001100, 10110010, 10011100, 01110001,
01100110, 01011001, 01001110, 01001101,
00110011, 01000111},

03 = {11010010, 11001010, 10101010, 10011010, 01101001,
01100101, 01010101, 01010011, 01001011},

04 = {11100001, 11010001, 10110001, 10100110, 10010110,
10001110, 01100011, 10001011, 10000111},

05 = {11000110, 10101001, 10011001, 10010101, 10001101},
06 = {11001001, 11000101, 10100101, 10100011, 10010011},
07 = {11000011}

The information word length k and the check word length r
must satisfy the (4) [2], [20], [21]

k(k − 1)
2

≤

(
r
r/2

)
. (4)

However, there are cases where

k(k − 1)
2

<

(
r
r/2

)
,

thus there will be l = k(k−1)
2 −

(r
r/2

)
unused check words.

Because the partition CS can be constructed in different
ways [28], the idea is a novel construction of 0’s. The pro-
posed construction of 0’s is described in Algorithm 1.

VOLUME 7, 2019 112173

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

Algorithm 1 Proposed 0’s Construction
Input: l,p,|0|
Output: |0|

1 begin
2 for i = (p− 1) : −1 : 0 do
3 while (|0i| > 1 and l > 0) do
4 |0i| − −;
5 α[i]++;
6 l −−;
7 if (|0i|>1 and l>0) then
8 |0i| − −;
9 β[i]−−;
10 l −−;
11 end
12 end
13 if l = 0 then
14 break;
15 end
16 end
17 end

For example, if k = 12 and r = 6 then (4) gives
66 ≤ 70. This means that there are l = 70 − 66 = 4 check
words unused. The partition CS is constructed according to
Algorithm 1, where the choice is to remove 4 unused check
words from the 0’s constructed above. The removal proce-
dure consists of removing the check words starting from the
last 0i (07 in our case) and taking off the check words from
0’s until their cardinality is equal to 1, i. e. |0i| = 1. In this
way, for the example above, the check words 11001001,
11000101, 10100011, 10010011 are removed from 06 and
so 06 = {10100101}.
Now, we define the m1-image of the words in 0h, m1(0h),

as the integer interval

m1(0h) = [αh, βh]

where

α
def
= min

C∈S(r,r/2)
m1(C)

and

β
def
= max

C∈S(r,r/2)
m1(C)

Thus, in the case r = 8

m1(00) = [10, 26],
m1(01) = [12, 24],
m1(02) = [13, 23],
m1(03) = [14, 22],
m1(04) = [14, 22],
m1(05) = [16, 20],
m1(06) = [18, 18],
m1(07) = [18, 18];

The cardinalities of0’s are necessary to define the p natural
numbers [28]

dh
def
=

{
0 if h = 0,
dh−1+b|0h−1|/2c+d|0h|/2e if h∈ [1, p−1]

(5)

In the example, |00| = 17, |01| = 13, |02| = 11, |03| = 9,
|04| = 9, |05| = 5, |06| = 1 and |07| = 1, therefore d0 = 0,
d1 = 15, d2 = 27, d3 = 37, d4 = 46, d5 = 53, d6 = 56 and
d7 = 57.
According to Theorem 2 in [28], the following m1-

balancing functions for k = 12, r = 8 and p = 8 are defined:

〈00〉(X) = X (0)
= x1x2x3x4x5x6x7x8x9x10x11x12

〈01〉(X) = X (15)
= x2x3x4x5x6x7x12x8x9x10x11x1

〈02〉(X) = X (27)
= x12x3x4x5x6x7x8x2x9x10x11x1

〈03〉(X) = X (37)
= x12x3x11x4x5x6x7x8x9x10x1x2

〈04〉(X) = X (46)
= x12x11x4x5x6x7x8x10x9x3x2x1

〈05〉(X) = X (53)
= x12x11x10x5x6x4x7x8x9x3x2x1

〈06〉(X) = X (56)
= x12x11x10x5x6x7x8x9x4x3x2x1

〈07〉(X) = X (57)
= x12x11x10x5x6x7x9x8x4x3x2x1

where the underlined parts represent the permutation of bit
position.

The steps of 2-OSN encoding is illustrated in Algorithm 2.

Algorithm 2 Encoding Algorithm

Input: Z ∈ ZZ k̃2
Output: YC = E2(E1(Z)), where Y ∈ ZZ k2 and C ∈ ZZ r2

1 begin
2 X = E1(Z);
3 d0 = 0;
4 for h = 0 : p− 1 do
5 if h 6= 0 then
6 dh = dh−1 + b|0h−1|/2c + d|0h|/2e;
7 end
8 〈0h〉(X) = X (dh);
9 w1 = m1(〈0h〉(X));

10 µ1 = n(n+ 1)/4− w1 − kr/2;
11 if m1(C) = µ1 then
12 hbal = h;
13 end
14 end
15

〈
0hbal (X)

〉
= X (dhbal);

16 Y =
〈
0hbal (X)

〉
;

17 C = Chbal ;
18 E2(X) = YC ;
19 end

Note that, the word X at row 2 of Algorithm 2 is the
m0-balanced word of length k associated with Z , i.e. X =
E1(Z). In this way, m0(X) = k/2. Moreover, refer to row 11,
an m1-balancing check exists in 0h if, and only if, µ1 ∈

m1(0h) = [αh, βh]. The value of hbal is one among all

112174 VOLUME 7, 2019

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

possible balancing indices obtained in row 12 and the cor-
responding m1-balancing check is

Chbal
def
= C ∈ 0hbal .

The decoding is described in Algorithm 3.

Algorithm 3 Decoding Algorithm

Input: Y C = E2(E1(Z)), where Z ∈ZZ k̃2 , Y ∈ZZ
k
2 and

C ∈ZZ r2 .
Output: Z = E−11 (E−12 (Y C)).

1 begin
2 calculate hbal ∈ [0, p− 1] such that C ∈0hbal ;
3 X = E−12 (Y C);
4 Z = E−11 (X);
5 end

Here, the idea is to exploit the degree of freedom of select-
ing from more than one possible balancing index hbal in
row 12 of Algorithm 2, to transmit extra auxiliary data. For
example, we apply the Algorithms 2 and 3 to them0-balanced
word X = 110001100110, where k = 12. Therefore,
considering

M1
def
=

n(n+ 1)
n

−
kr
2
= 105− 48 = 57,

the Algorithm 2 executes the steps S1 and S2 in rows 8-13
and 15-18 respectively, as follows.
S1 (for h = 0 and d0 = 0) Compute:

〈00〉(X) = X (0)
= 110001100110(= X)

m1(X (0)) = 37

µ1 = M1 − m1(X (0)) = 57− 37 = 20

The check word C = 00110110 ∈ 00 is such that
m1(C) = µ1 = 20 ∈ m1(00) = [10, 26]. So, hbal = 0 is
an m1-balancing index and the corresponding m1-balancing
check is C0 = 00110110.
S1 (for h = 1 and d1 = 15) Compute:

〈01〉(X) = X (15)
= 100011000111

m1(X (15)) = 45

µ1 = M1 − m1(X (15)) = 57− 45 = 12

The check word C = 11100100 ∈ 01 is such that
m1(C) = µ1 = 12 ∈ m1(01) = [12, 24]. So, hbal = 1 is
an m1-balancing index and the corresponding m1-balancing
check is C1 = 11100100.
S1 (for h = 2 and d2 = 27) Compute:

〈02〉(X) = X (27)
= 000011010111

m1(X (27)) = 52

µ1 = M1 − m1(X (27)) = 57− 52 = 5

We have µ1 = 5 /∈ m1(02) = [13, 23], then there is no
check word C ∈ 02 such that m1(C) = µ1.

S1 (for h = 3 and d3 = 37) Compute:

〈03〉(X) = X (37)
= 001001100111

m1(X (37)) = 49

µ1 = M1 − m1(X (37)) = 57− 49 = 8

We have µ1 = 8 /∈ m1(03) = [14, 22], then there is no
check word C ∈ 03 such that m1(C) = µ1.
S1 (for h = 4 and d4 = 46) Compute:

〈04〉(X) = X (46)
= 010011010011

m1(X (46)) = 44

µ1 = M1 − m1(X (46)) = 57− 44 = 13

We have µ1 = 13 /∈ m1(04) = [14, 22], then there is no
check word C ∈ 04 such that m1(C) = µ1.
S1 (for h = 5 and d5 = 53) Compute:

〈05〉(X) = X (53)
= 011010100011

m1(X (53)) = 40

µ1 = M1 − m1(X (53)) = 57− 40 = 17

The check word C = 10101001 ∈ 05 is such that
m2(C) = µ1 = 17 ∈ m1(05) = [16, 20]. So, hbal = 5 is
an m1-balancing index and the corresponding m1-balancing
check is C5 = 10101001.
S1 (for h = 6 and d6 = 56) Compute:

〈06〉(X) = X (56)
= 011011000011

m1(X (56)) = 39

µ1 = M1 − m1(X (56)) = 57− 39 = 18

The check word C = 10100101 ∈ 06 is such that
m2(C) = µ1 = 18 ∈ m1(06) = [18, 18]. So, hbal = 6 is
an m1-balancing index and the corresponding m1-balancing
check is C6 = 10100101.
S1 (for h = 7 and d7 = 57) Compute:

〈07〉(X) = X (57)
= 011011000011

m1(X (57)) = 39

µ1 = M1 − m1(X (57)) = 57− 39 = 18

The check word C = 11000011 ∈ 07 is such that
m2(C) = µ1 = 18 ∈ m1(07) = [18, 18]. So, hbal = 7 is
an m1-balancing index and the corresponding m1-balancing
check is C7 = 11000011.
Now, execute S2.
S2: for the m0-balanced information word X =

010101110001, we can choose one of the following
m1-balanced codewords as the encoding of X :

E2(X) = X (0)C0 = 110001100110 00110110

E2(X) = X (15)C1 = 100011000111 11100100

E2(X) = X (53)C5 = 011010100011 10101001

E2(X) = X (56)C6 = 011011000011 10100101

E2(X) = X (57)C7 = 011011000011 11000011

VOLUME 7, 2019 112175

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

Note that, there is more than one balancing index for the
information word X = 110001100110. This fact holds for all
the information words in S(12, 6). Therefore, we can exploit
the freedom of choice of the balancing indices to convey extra
auxiliary data, thereby reducing the overall redundancy.

In the decoding phase, by using Algorithm 3, on receiving
for example the 2-OSN word

YC = 01101010001110101001

the last 8 bits 10101001 represent the check word that allows
of identifying the m1-balancing function 〈0h〉 used in the
encoding procedure. Since C ∈ 05, the remaining sequence
011010100011 is decoded into the m0-balanced word

E−12 (YC) = 〈05〉−1(Y) = 110001100110.

Refer to the complexity of Algorithm 2, note that step at
row 2 can be accomplished in space O(k) memory bits and
time O(k log k) bit operations by using any of the methods
given in [2], [3], [8], [13], [13], [18], [19], [29]. The step in
rows 3-14 can be accomplished in space O(r5 + k) mem-
ory bits and time O(r3) bit operations (see [28]). Moreover,
the step for computing E2(X) takes time O(1) bit operations.
Hence, Algorithm 2 has a space complexity of O(r5 + k) =
O(k) memory bits and a time complexity of O(r3 log r +
k log k) = O(k log k) bit operations.
With regard to the decoding, on receiving a codeword

Y C = X (dhbal) C , a table look-up indexed by C can be
maintained to compute i = dhbal fromC . Once dhbal is known,
X can be computed from (dhbal ,Y) with the giant-baby step
based algorithm in [28]. In this way, T = O(k log k) bit oper-
ations are essentially needed to compute X from (dhbal ,Y)
and S = O(k2 log k) memory bits are essentially needed to
compute dhbal ∈ [0, k(k − 1)/2] from C ∈

⋃p−1
h=0 0h with the

table look-up.

III. RESULTS AND DISCUSSION
Algorithm 2 is run for computing the amount of informa-
tion coming from the balancing index choice freedom. The
Tables 1-9 show the parameters of the 2-OSN coding scheme.
The second column shows the quantity kopt = log |SN (n, 2)|;
for n ≥ 18 the values of the second column are obtained
with the approximation |SN (n, 2)| ≈

⌊
(4
√
3/π)2n/n2

⌋
given

in [20], [22], that is kopt = log
⌊
(4
√
3/π)2n/n2

⌋
. The fifth

column contains the values of k̃ which come from relation (2).
The quantity δk represents the extra auxiliary information
which comes from the degree of freedom to select between
more than one possible balancing indices of each information
word.

Tallini et al. [28] proposed a method to design non-
recursive efficient 2-OSN codes. If k ∈2IIN is the 1-OSN code
length, then the second-Order Spectral Null coding scheme
has length n = k+ r ∈4IIN with an extra redundancy, r ∈2IIN
such that r = 2 log k + 2(log log k). Here, to improve the
redundancy, the choice freedom among the possible balanc-
ing indices of a given information word is proposed.

TABLE 1. Results of the proposed scheme from n = 4 to n = 128, with
n ∈ 4IIN .

TABLE 2. Results of the proposed scheme from n = 132 to n = 256, with
n ∈ 4IIN .

Algorithm 2 has been run for all n ∈ 4ZZ from n = 4
to n = 1024 (see Tables 1-8) and for n = 2048, 4096, 8192,
16384, 32768 (see Table 9). Up to n = 28, the computation is
on all the information words in S(k, k/2), whereas from n =
32 to n = 1024, we have run our algorithm on randomized
information words. In Table 1, the double line splits these
two situations. The values of the quantity 1 = k̃opt − k̃ ′

(with k̃ ′ = k̃ + δk̃) are plotted versus log n (see Figure 1).

112176 VOLUME 7, 2019

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

TABLE 3. Results of the proposed scheme from n = 260 to n = 384, with
n ∈ 4IIN .

TABLE 4. Results of the proposed scheme from n = 388 to n = 512, with
n ∈ 4IIN .

The vertical line represents the separation between exact and
approximated computation. In the first case, we consider
the balancing index choice freedom for all the information
words, whereas in the second case, the computation is on
a set of information words chosen in a random way. In the
approximated case, the values of δk are computed by taking
the average on 1 million samples. The solid line shows the
trend of1 over log n. Observing the graph of Figure 1, we can
note that 1 tends to increase with log n. Considering the

TABLE 5. Results of the proposed scheme from n = 516 to n = 640, with
n ∈ 4IIN .

TABLE 6. Results of the proposed scheme from n = 644 to n = 768, with
n ∈ 4IIN .

values of 1 in Table 1 and following the outcomes of [8]
and [20], we can define 1 as

1 = 0.5 log n+ 0.5 log log n− 1.467, (6)

because the minimum redundancy of the balanced codes is
1/2 log n + 0.326 [8], whereas the minimum redundancy of
2-OSN codes is 2 log n − 1.141 [20]. Thus, the total 2-OSN
redundancy is 2 log n − 1.141 − (1/2 log n + 0.326) =
3/2 log n− 1.467.

VOLUME 7, 2019 112177

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

TABLE 7. Results of the proposed scheme from n = 772 to n = 896, with
n ∈ 4IIN .

TABLE 8. Results of the proposed scheme from n = 900 to n = 2014, with
n ∈ 4IIN .

The trend of 1 as defined in (6) is plotted in the graph of
Figure 1 (see the dashed line). Note that, the function1 in (6)
well approximates the experimental values of 1 in Table 1.
On the other hand, from the data in the table, we conjecture

δk = 0.5 log k +2(log log k) (7)

and

r ′ = n− k̃ ′ = 1.5 log k +2(log log k). (8)

TABLE 9. Results of the proposed scheme for n = 2048, 4096, 8192,
16384, 32768, with n ∈ 4IIN .

FIGURE 1. Trend of the experimental 1 = k̃opt − k̃ ′ (solid line) and the
function 1 = 0.5 log n+ 0.5 log log n− 1.467 (dashed line) over log n.

This means that the redundancy is reduced comparing (8)
with r = 2 log k+2(log log k) in [28]. In other terms, thanks
to the extra information δk in (7) , an improvement of the
2-OSN codes designed in [28] is achieved.

IV. CONCLUSION
The idea to exploit the degree of freedom to select between
more than one possible balancing encoding of a given infor-
mation word, was proposed by Weber and Immink [29],
Swart and Weber [18], Pelusi et al. [14] and Paluncic and
Maharaj [12]. Auxiliary data can be used to reduce the redun-
dancy of Knuth’s simple balancing method. The proposed
approach applies the balancing index choice freedom to the
2-order spectral null codes designed in [28]. In the proposed
scheme, the algorithms are run over all the information words
for n from 4 to 28 and averaged over 1 million samples from
32 to 1024. The results show that the extra information δk =
0.5 log k + 2(log log k) is conveyed from the encoder. This
means that the redundancy is equal to 1.5 log k+2(log log k).
Therefore, the redundancy r is reduced in respect to the
scheme proposed in [28], where r = 2 log k + 2(log log k).
Finally, our scheme improves the 2-OSN codes in [28].
Future research directions will focus on the application of the
proposed approach also to q-OSN(n; k̃) codes, with q > 2.

ACKNOWLEDGMENT
D. Pelusi thanks Prof. Luca Tallini for the precious sugges-
tions and support.

REFERENCES
[1] N. Alon, E. E. Bergmann, D. Coppersmith, andA.M.Odlyzko, ‘‘Balancing

sets of vectors,’’ IEEE Trans. Inf. Theory, vol. IT-34, no. 1, pp. 128–130,
Jan. 1988.

[2] S. Al-Bassam and B. Bose, ‘‘On balanced codes,’’ IEEE Trans. Inf. Theory,
vol. 36, no. 2, pp. 406–408, Mar. 1990.

[3] S. Al-Bassam and B. Bose, ‘‘Design of efficient balanced codes,’’ IEEE
Trans. Comput., vol. 43, no. 3, pp. 362–365, Mar. 1994.

112178 VOLUME 7, 2019

D. Pelusi: On Redundancy Reduction of Non-Recursive 2-OSN Codes

[4] B. Bose, ‘‘On unordered codes,’’ IEEE Trans. Comput., vol. 40, no. 2,
pp. 125–131, Feb. 1991.

[5] T. M. Cover, ‘‘Enumerative source encoding,’’ IEEE Trans. Inf. Theory,
vol. IT-19, no. 1, pp. 73–77, Jan. 1973.

[6] K. A. S. Immink, ‘‘Spectrum shapingwith binaryDC2-constrained channel
codes,’’ Philips J. Res., vol. 40, no. 1, pp. 40–53, 1985.

[7] K. A. S. Immink, Codes for Mass Data Storage Systems, 2nd ed.
Eindhoven, The Netherlands: Shannon Foundation, 2004.

[8] D. Knuth, ‘‘Efficient balanced codes,’’ IEEE Trans. Inf. Theory, vol. IT-32,
no. 1, pp. 51–53, Jan. 1986.

[9] R. Mascella and L. G. Tallini, ‘‘On efficient high-order spectral-null codes
over the m-ary alphabet,’’ J. Discrete Math. Sci. Cryptogr., vol. 8, no. 3,
pp. 459–481, Jan. 2005.

[10] R. Mascella and L. G. Tallini, ‘‘Efficient m-ary balanced codes which are
invariant under symbol permutation,’’ IEEE Trans. Comput., vol. 55, no. 8,
pp. 929–946, Aug. 2006.

[11] R. Mascella, D. Pelusi, L. Pezza, S. Elmougy, L. G. Tallini, and B. Bose,
‘‘On efficient second-order spectral-null codes using sets of m1-balancing
functions,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul, Turkey,
Jul. 2013, pp. 141–145.

[12] F. Palunčić and B. T. Maharaj, ‘‘Capacity-approaching non-binary bal-
anced codes using auxiliary data,’’ IEEE Trans. Inf. Theory, vol. 65, no. 1,
pp. 159–173, Jan. 2019. doi: 10.1109/TIT.2018.2844834.

[13] D. Pelusi, L. G. Tallini, and B. Bose, ‘‘On m-ary balanced codes with
parallel decoding,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Austin,
TX, USA, Jun. 2010, pp. 1305–1309.

[14] D. Pelusi, S. Elmougy, L. G. Tallini, and B. Bose, ‘‘m-ary balanced
codes with parallel decoding,’’ IEEE Trans. Inf. Theory, vol. 61, no. 6,
pp. 3251–3264, Jun. 2015.

[15] L. Pezza, L. G. Tallini, and B. Bose, ‘‘Variable length unordered codes,’’
IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 548–569, Feb. 2012.

[16] R. M. Roth, P. H. Siegel, and A. Vardy, ‘‘High-order spectral-null codes-
constructions and bounds,’’ IEEE Trans. Inf. Theory, vol. 40, no. 6,
pp. 1826–1840, Nov. 1994.

[17] K. A. S. Immink and J. H. Weber, ‘‘Very efficient balanced codes,’’ IEEE
J. Sel. Areas Commun., vol. 28, no. 2, pp. 188–192, Feb. 2010.

[18] T. G. Swart and J. H. Weber, ‘‘Efficient balancing of q-ary sequences
with parallel decoding,’’ in Proc. IEEE Int. Symp. Inf. Theory, Seoul,
South Korea, Jun./Jul. 2009, pp. 1564–1568.

[19] L. G. Tallini, R. M. Capocelli, and B. Bose, ‘‘Design of some new efficient
balanced codes,’’ IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 790–802,
May 1996.

[20] L. G. Tallini and B. Bose, ‘‘On efficient high-order spectral-null codes,’’
IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2594–2601, Nov. 1999.

[21] L. G. Tallini and B. Bose, ‘‘Balanced codes with parallel encoding
and decoding,’’ IEEE Trans. Comput., vol. 48, no. 8, pp. 794–814,
Aug. 1999.

[22] L. Tallini, ‘‘Geometric properties of high-order spectral-null codes,’’
J. Pure Appl. Math., vol. 14, pp. 149–176, Oct. 2003.

[23] L. G. Tallini, ‘‘Bounds on the capacity of the unidirectional channels,’’
IEEE Trans. Comput., vol. 54, no. 2, pp. 232–235, Feb. 2005.

[24] L. G. Tallini, S. Elmougy, and B. Bose, ‘‘Analysis of plain and diversity
combining hybrid ARQ protocols over the m(≥ 2)-ary asymmetric chan-
nel,’’ IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5550–5558, Dec. 2006.

[25] L. G. Tallini, S. Al-Bassam, and B. Bose, ‘‘Feedback codes achieving
the capacity of the Z -channel,’’ IEEE Trans. Inf. Theory, vol. 54, no. 3,
pp. 1357–1362, Mar. 2008.

[26] L. G. Tallini and U. Vaccaro, ‘‘Efficient m-ary balanced codes,’’ Discrete
Appl. Math., vol. 92, no. 1, pp. 17–56, Mar. 1999.

[27] L. G. Tallini and B. Bose, ‘‘On L1 metric asymmetric/unidirectional error
control codes, constrained weight codes and σ -codes,’’ in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 694–698.

[28] L. G. Tallini, D. Pelusi, R. Mascella, L. Pezza, S. Elmougy, and B. Bose,
‘‘Efficient non-recursive design of second-order spectral-null codes,’’
IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3084–3102, Jun. 2016.

[29] J. H. Weber and K. A. S. Immink, ‘‘Knuth’s balanced codes revisited,’’
IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1673–1679, Apr. 2010.

[30] C.-N. Yang, ‘‘Efficient encoding algorithm for second-order spectral-
null codes using cyclic bit shift,’’ IEEE Trans. Comput., vol. 57, no. 7,
pp. 876–888, Jul. 2008.

[31] C.-N. Yang, Z.-Y. Lin, and S.-L. Peng, ‘‘Reducing code length of
second-order spectral-null code,’’ IEEE Trans. Comput., vol. 64, no. 2,
pp. 492–503, Feb. 2015.

[32] J.-H. Youn and B. Bose, ‘‘Efficient encoding and decoding schemes for
balanced codes,’’ IEEE Trans. Comput., vol. 52, no. 9, pp. 1229–1232,
Sep. 2003.

D. PELUSI (M’17) received the Ph.D. degree in
computational astrophysics from the University of
Teramo, Italy, where he is currently an Associate
Professor with the Faculty of Communication Sci-
ences. His research interests include fuzzy logic,
neural networks, information theory, evolutionary
algorithms, and machine learning. He has served
as a ProgramMember of many conferences and as
an Editorial BoardMember ofmany journals. He is
also an Associate Editor of the IEEE TRANSACTIONS

ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, IEEE ACCESS, the Inter-
national Journal ofMachine Learning andCybernetics (Springer), andArray
(Elsevier). He is also a Guest Editor for Elsevier, Springer, and Inderscience
journals. He is also a Reviewer of reputed journals, such as the IEEE
TRANSACTIONS ON FUZZY SYSTEMS and the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS.

VOLUME 7, 2019 112179

http://dx.doi.org/10.1109/TIT.2018.2844834

	INTRODUCTION
	PROPOSED SCHEME
	RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	D. PELUSI

