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ABSTRACT This paper is concerned with the multi-UUVs formation control problem and proposes the con-
trol protocol with an additional function when considering environmental disturbances. Firstly, the leader-
following configuration is adopted to discuss the consensus problem for multi-UUVs system, the leader’s
behavior directs the follower’s motion trajectory and the follower UUVs could, in turn, communicate
with each other, respectively. Secondly, three types of coordination control protocols are proposed: the
control protocol is designed without additional function and time delay; the control protocol with additional
function and without time delay; the control protocol with additional function and time-varying delay.
Sufficient consensus conditions are analyzed and derived by using the Lyapunov-Krasovskii functional
theory, algebraic graph theory and matrix theory. Finally, two simulation experiments are given to illustrate
the effectiveness of the proposed formation control methods.

INDEX TERMS Multiple unmanned underwater vehicles, leader-following consensus, uncertain factors,
time-varying delays.

I. INTRODUCTION
In the past decades, with the development of artificial intel-
ligence and new engineering techniques, the cooperation
and coordination problems of multi-Unmanned Underwater
Vehicles (multi-UUVs) system have been rapidly developed
and widely studied due to its broad applications in military
and commercial fields, especially in ocean-graphic obser-
vation, ocean exploration, plane crash searches, trajectory
tracking, etc. Compared with a single UUV, multi-UUVs
formation equipped with more sensors can accomplish more
complex and larger-scale deep-sea missions with efficient
and stable communications. It is worth mentioning that the
researches on motion control of a single UUV are getting
deeper in recent years, there are several control methods such
as robust control [1], adaptive control [2] and fuzzy control
approaches [3] in ocean engineering applications, but the
above algorithms cannot well applied to the formation prob-
lem of multi-UUVs system. The basic problem of formation
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control is the consensus algorithm, it is noteworthy that there
are two types of consensus control algorithms: leaderless
consensus [4] and leader-following consensus [5]–[8]. The
final states of the leaderless consensus of multi-UUVs are
deterministic which are related to the initial position and
velocity states of every UUV. In this paper, we deal with
the latter case, the leader-following consensus is preferred
in complex underwater environment not only because of its
energy-saving and scalability, but also because this method
does not require the idealized hypothesis that the limited
information communication of the leader UUV is accessible
to all follower UUVs, the leader UUV only need to pass
information to a portion of the followers and the final con-
sensus is achieved only by using the neighboring information
of each UUVs.

It should be pointed out that the leader-following consen-
sus problem has been seen as a more important issue which
has been greatly studied on multi-agent systems in recent
years [9]–[12], some leader-following consensus algorithms
have been used in UUVs systems [13]–[15]. Taking note of
the fact that the limited communication distance underwater,
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communication delay or packet loss should be consid-
ered [16]–[18], and time-varying delays have been concerned
in some researches [19]–[22]. However, most of the above-
mentioned results didn’t consider uncertain interference in
UUVs systems. Some algorithms under external uncertain
disturbances were applied to a single UUV [1], [23]–[25].
In UUVs systems, uncertain interference mainly refer to the
influences of the environment on the position and velocity
states measured by sensors equipped with UUVs. External
disturbances are widespread in multi-UUVs systems which
often have significant negative effects on the UUVs system
performances. For example, wind, ocean waves and ocean
currents usually increase a negative impact on speed and
depth measurements of UUVs. Therefore, it is necessary to
investigate the consensus problem of multi-UUVs formation
with uncertain factors.

Inspired by the consensus algorithms of multi-UUVs,
in this paper, the leader-follower cooperative architecture is
used to realize formation control of the multi-UUVs system.
There will be creating an additional nonlinear factor during
the movement of UUV in the complicated ocean environ-
ment. Obviously, the additional nonlinear factor is related
to the states of each UUV at various times. So we focus
on the leader-following consensus formation control problem
of multi-UUV system with uncertain nonlinear factors and
time-varying delays.

Motivated by the discussions and the existing literatures
above, themain contributions of this paper can be emphasized
as follows:
(i) Different from previous works, we consider the leader-

following consensus problem of multi-UUVs with an
additional factor which is emerged in UUV’s own
movement and external interference in a complex
underwater environment.

(ii) The communication of information between multi-
UUVs through underwater acoustic sensors will cause
time delay due to the influence of underwater envi-
ronment and communication distance which are hard
to estimate, so we consider the multi-UUVs system
with time-varying delays. Based on the Lyapunov-
Krasovskii functional theory, sufficient conditions are
derived for the leader-following consensus of themulti-
UUVs system with time-varying delays.

The structure of the paper is as follows: Section II intro-
duces some preliminaries on graph theory and the model of
a UUV. Section III gives the main results for the formation
control of leader-following multi-UUVs with uncertain fac-
tors and time-varying delays in detail. Section IV presents
two numerical simulations to show the effectiveness of the
proposed theoretical results. Section V gives the conclusions
and our future work.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY FOR MULTI -UUVS SYSTEM
Assume that the communication topology between UUVs
is denoted by a directed graph G = (V, ε,A), in which

V = {1, · · · , n} is a node set, ε ⊆ V×V is a set of edges, and
A =

[
aij
]
∈ Rn×nis the adjacency matrix. Note that aji > 0

if and only if (i, j) ∈ ε, which represents that UUV j can get
the information of UUV i and UUV i is a neighbor of UUV j,
and aij = 0 otherwise. The neighbor set of UUV i is denoted
by Ni = {j ∈ V : (j, i) ∈ ε}. The Laplacian matrix is defined
as L =

[
lij
]
n×n with

lii =
n∑

j=1,j 6=i

aij, lij = −aij, i 6= j.

Suppose that the leader is represented by the node UUV L,
generally, the leader has no neighbors and the matrix between
the leader and the followers is defined byD = diag {a10, a20,
· · · an0} with ai0 > 0 if UUV i can receive information from
UUV L, and ai0 = 0 otherwise.

B. THE UUV MODEL WITH FIVE DEGREES OF FREEDOM
The 6 DOF motion equations of UUV with the body and
earth fixed can be written in a vectorial setting according to
Fossen [26]. In the case of irrotational ocean currents, and
ignores the roll speed, the nonlinear model of UUV can be
written with five degrees of freedom:{

η̇ = J (η) ṽ,
M ˙̃v+ C (ṽ) ṽ+ D (ṽ) ṽ+ g (η) = T ,

(1)

where η = [x, y, z, θ, ψ]T denotes the position vector of
the UUV, ṽ = [u, v, ω, q, r]T is the velocity vector, J (η) is
the rotational transformation matrix, M is the system inertia
matrix, C (ṽ) is the Coriolis and centripetal matrix, D (ṽ) is
the damping matrix, g (η) is the vector of weight and buoy-
ancy forces, T is the vector of control inputs. The specific
forms of J (η),M , C (ṽ),D (ṽ), g (η) are defined in Ref. [26].

Let g (η) = 0, and other parameters are given by

J (η) =
[
J1 (η) 0
0 J2 (η)

]
,

M =


m11 0 0 0 0
0 m22 0 0 m25
0 0 m33 m34 0
0 0 m43 m44 0
0 m52 0 0 m55

,

C (ṽ) =


0 0 0 c14 −c15
0 0 0 0 c25
0 0 0 −c25 0
−c14 0 c25 0 0
c15 −c25 0 0 0

,
D (ṽ) = −diag

{
Xu,Yv,Zw,Mq,Nr

}
,

T = [X ,Y ,Z ,M ,N ]T ,

where

J1 (η) =

 cosψ cos θ − sinψ cosψ sin θ
sinψ cos θ cosψ sinψ sin θ
− sin θ 0 cos θ

,
J2 (η) = diag {1, 1/cos θ},
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m11 = m−Xu̇,m22 = m−Yv̇,m33 = m−Zẇ,m44 = Iy−Mq̇,
m55 = Iz − Nṙ , m25 = −Yṙ , m34 = −Zq̇, m43 = −Mẇ,
m52 = Nv̇; c14 = mω + Zω̇ω, c15 = −mv − Yv̇v, c25 =
mu+ Xu̇u.
In order to study the coordination control of multi-UUVs

formation, the above nonlinear mathematical model of the
i-th UUV can be changed into a standard double integrator
dynamic model [4]: {

ẋi = vi,
v̇i = ui,

(2)

where xi ∈ R5, vi ∈ R5, ui ∈ R5, i = 1, 2, · · · , n.
Remark 1:We knowmulti-UUVs formation problem could

be described as all UUVs can reach the common velocity
states and desired position states through transmitting infor-
mation. From formula (2), we ignore the strong coupling
parameters of single UUV model, then the formation control
problem of multi-UUVs can be seen as a leader-following
consensus control problem when the system has a leader,
furthermore, when there aremanyUUVs in system, the leader
one can be seen as a point in three dimensions, that is,
ignoring the angles of leader UUV.

C. THE UUV MODEL WITH UNCERTAIN FACTORS
There will be creating an additional nonlinear function when
UUV is operating in a complex underwater environment due
to UUV’s movements and external interferences. Consider
the delayed multi-UUVs system consisting of n followers and
one leader, and the followers have the following dynamics:{
˙̃xi (t) = ṽi (t) , i = 1, 2, · · · , n,
˙̃vi (t) = ui (t)+ f (x̃i (t − τ (t)) , ṽi (t − τ (t)), t),

(3)

where x̃i = [xi, yi, zi, θi, ψi]T ∈ R5, ṽi = [ui, vi, ωi,
qi, ri]T ∈ R5, (i = 1, 2, · · · , n) are the position and velocity
of the ith UUV, respectively. f : R5×R5×R+→ R5 is a con-
tinuously differentiable nonlinear function with time-varying
delays. f (x̃i, ṽi, t) = (f1 (x̃i, ṽi, t) , · · · , f5 (x̃i, ṽi, t))

T , i =
1, 2, · · · , n, ui ∈ R5 is the control input of the ith UUV to be
designed.

The leader’s dynamics can be described by{
˙̃x0 (t) = ṽ0 (t),
˙̃v0 (t) = f (x̃0 (t − τ (t)), ṽ0 (t − τ (t)), t),

(4)

where x̃0 = [x0, y0, z0, θ0, ψ0]T , ṽ0 = [u0, v0, ω0, q0, r0]T

are the position and velocity of the leader UUV, respectively,

f (x̃0, ṽ0, t) = (f1 (x̃0, ṽ0, t) , · · · , f5 (x̃0, ṽ0, t))
T . (5)

For our analysis, we give the following Assumptions and
Lemmas.
Assumption 1: The interconnection graph G for followers

we adopt has a directed spanning tree, and the leader at least
sends its information to the root node of follower graph.
Assumption 2: The nonlinear continuous Lipschitz func-

tion f (·, ·, t) = (f1 (·, ·, t) , · · · , fn (·, ·, t))T described in (3)

and (4) satisfies the following inequality:

‖f (x1, v1, t)− f (x2, v2, t)‖ ≤ ‖G‖ ‖x1 − x2‖

+ ‖J‖ ‖v1 − v2‖, (6)

where x1, v1, x2, v2 ∈ Rn, G = (gik) ∈ Rn×n and J = (jik) ∈
Rn×n are constant matrices.
Remark 2: To achieve consensus for multi-agents systems,

the Lipschitz condition in Assumption 2 is commonly used in
many literatures [27], [28].
Assumption 3: The time-varying delay function τ (t) is

continuously differentiable and satisfies 0 ≤ τ (t) ≤ h,
τ̇ (t) < κ < 1, where h ≥ 0, κ ≥ 0.
Lemma 1 [29] (Schur Complement): Let S1, S2, S3 be given

matrices such that S1 > 0. Then

S =
[
S1 S2
ST2 S3

]
> 0, (7)

if and only if S3 − ST2 S
−1
1 S2 > 0.

Lemma 2 [30] (Young’s Inequality): Foy any x1, x2 ∈ Rn,
R is a positive semi-definite matrix, the following inequality
holds

xT1 Rx2 ≤ ρx
T
1 Rx1 +

1
4ρ

xT2 Rx2, (8)

where ρ > 0.
Lemma 3 [4]: Assume that p ∈ Rn, q ∈ Rm and M ∈

Rn×m are defined on the interval �. Then, for any matrices
X ∈ Rn×m, Y ∈ Rn×m and Z ∈ Rn×m, the following holds

−2
∫
�

pT (t)Mq (t) dt

≤

∫
�

[
p (t)
q (t)

]T [ X Y −M
(Y −M)T Z

] [
p (t)
q (t)

]
dt, (9)

where [
X Y
Y T Z

]
≥ 0.

Definition 1: The leader-following consensus of the multi-
UUVs system (3) and (4) are said to be achieved if the input
control satisfying:

lim
t→∞

∥∥∥x̃1i (t)− x̃10 (t)∥∥∥ = l, lim
t→∞

∥∥∥x̃1i (t)− x̃1j (t)∥∥∥ = l,

lim
t→∞

∥∥∥x̃2i (t)− x̃20 (t)∥∥∥ = 0, lim
t→∞
‖ṽi(t)− ṽ0(t)‖ = 0,

where

x̃1i = [xi, yi, zi]T , x̃2i = [θi, ψi]T , i, j = 1, 2, · · · , n,

l is the preset distance between each UUV in three-
dimensional space.

The goal of this paper is to present a consensus protocol to
ensure that the states of the follower UUVs can converge to
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that of the leader UUV. To achieve leader-following consen-
sus, for the ith follower UUV, the following control protocol
with time-varying delay is designed:

ui (t) = k1
∑
j∈Ni

aij
(
x̃j (t − τ (t))− x̃i (t − τ (t))

)
+ k1ai0 (x̃0 (t − τ (t))− x̃i (t − τ (t)))

+ k2
∑
j∈Ni

aij
(
ṽj (t − τ (t))− ṽi (t − τ (t))

)
+ k2ai0 (ṽ0 (t − τ (t))− ṽi (t − τ (t))), (10)

where k1 and k2 are positive gains to be designed, τ (t) is the
time-varying delay.

Let

x̄i (t) = x̃i (t)− x̃0 (t) , v̄i (t) = ṽi (t)− ṽ0 (t),

we have the error dynamics as follows:

˙̄xi (t) = v̄i (t),

˙̄vi (t) = f (x̃i (t − τ (t)) , ṽi (t − τ (t)) , t)

−f (x̃0 (t − τ (t)) , ṽ0 (t − τ (t)) , t)

−k1
n∑
i=1

hijx̄i (t − τ (t))− k2
n∑
i=1

hijv̄i (t − τ (t)),

(11)

where[
hij
]
n×n

= H = L + D

=



n∑
j=1

a1j + a10 −a12 · · · −a1,n

−a21
n∑
j=1

a2j + a20 · · · −a2,n

· · · · · · · · · · · ·

−an,1 −an,2 · · ·

n∑
j=1

an,j + an,0


.

(12)

Set

ε (t) =
[
x̄T (t) , v̄T (t)

]T
,

x̄ (t) =
[
x̄T1 (t) , x̄

T
2 (t) , · · · , x̄

T
n (t)

]T
,

v̄ (t) =
[
v̄T1 (t) , v̄

T
2 (t) , · · · , v̄

T
n (t)

]T
.

The system (11) can be recast in the following compact
form:

ε̇ (t) = (A⊗ I5) ε (t)+ (B⊗ I5) ε (t − τ (t))

+F (x̃ (t − τ (t)), ṽ (t − τ (t)), t), (13)

where

A =
[
0 In
0 0

]
, B =

[
0 0
−k1H −k2H

]
,

Fi (x̃ (t − τ (t)), ṽ (t − τ (t)), t)

= f (x̃i (t − τ (t)), ṽi (t − τ (t)), t)

− f (x̃0 (t − τ (t)), ṽ0 (t − τ (t)), t) , i = 1, 2, · · · , n.

F (x̃ (t − τ (t)), ṽ (t − τ (t)), t)

=


0

F1 (x̃ (t − τ (t)), ṽ (t − τ (t)), t)
...

Fn (x̃ (t − τ (t)), ṽ (t − τ (t)), t)


=

[
0

F̃ (x̃ (t − τ (t)), ṽ (t − τ (t)), t)

]
.

III. MAIN RESULTS
In this section, the leader-following multi-UUVs consen-
sus problem with uncertain factor and time-varying delay is
investigated, and three consensus control protocols will be
proposed, we have the following results:

A. LEADER-FOLLOWING CONSENSUS OF MULTI-UUVS
WITHOUT UNCERTAIN FACTOR AND
TIME-VARYING DELAYS
Firstly, we consider the case of τ (t) = 0 and

F̃ (x̃ (t − τ (t)), ṽ (t − τ (t)), t) ≡ 0.

For the following matrix form

ε̇ (t) = ((A+ B)⊗ I5) ε (t), (14)

we have:
Theorem 1: Let Assumption 1 hold, for the case of τ (t) =

0 and F̃ (x̃ (t − τ (t)), ṽ (t − τ (t)), t) ≡ 0, the leader-
following consensus of multi-UUVs system with (3) and (4)
can be achieved under control protocol (10), the consensus
gains k1, k2 are chosen as

k1 > max

{
α2,

2α2λmax (W )

αβ − λmax
(
M2
)},

k2 > max

{
α2β,

2α2βλmax (W )

αβ − λmax
(
M2
)}, (15)

where α > 0, β > 0, M = W − αβWH − HTW .
Proof: Firstly, following Lyapunov theorem, for

matrix H , there must exist a positive definite matrix W =
W T
∈ Rn×n satisfiesWH +HTW = In, then we consider the

following Lyapunov function candidate:

V (t) = εT (t)Qε (t), (16)

where

Q =
[
k1W αW
αW W

]
⊗ I5 = E ⊗ I5
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is positive definite and symmetric matrix with k1 > α2,
we also assume that k2 = βk1, β > 0, then the derivative
of V (t) satisfies

V̇ (t) = εT (t)
(
Q (A+ B)+ (A+ B)T Q

)
ε (t). (17)

Let P = Q (A+ B)+ (A+ B)T Q, then

P =
([

k1W αW
αW W

]
⊗ I5

)[
0 In
−k1H −k2H

]
+

[
0 In
−k1H −k2H

]T ([ k1W αW
αW W

]
⊗ I5

)
,

after convenient calculation, we get

P =
[
−k1αIn k1M
k1MT 2αW − k1βIn

]
⊗ I5, (18)

and M = W − αβWH − HTW .
Note that −k1αIn < 0, Let

2αW − k1βIn − k1MT (−1/k1α) Ink1M < 0,

from Lemma 1, we can get that matrix Pis negative definite
if k1, k1 satisfying (15), then we have V̇ (t) < 0. The proof is
completed.

B. LEADER-FOLLOWING CONSENSUS OF MULTI-UUVS
WITH UNCERTAIN FACTOR
In the case of F̃ (x̃ (t − τ (t)) , ṽ (t − τ (t)) , t) 6= 0. consider
the time-varying delay τ (t) = 0, for the following matrix
form:

ε̇ (t) = ((A+ B)⊗ I5) ε (t)+ F (x̃ (t), ṽ (t), t), (19)

we have:
Theorem 2: Let Assumption 1 and 2 hold, for the case of

τ (t) = 0, the leader-following consensus of multi-UUVs
system with (3) and (4) can be achieved under control pro-
tocol (10), the consensus gains k1, k2 are chosen as

k1 > max {k11, k12}, k2 > max {k21, k22} (20)

where

k11 =
(3α + 1) ρ0λmax (W )

α
,

k21 =
(3α + 1) βρ0λmax (W )

α

k12 =
2α2λmax (W )+

α(α+3)
2 ρ0λmax (W )

αβ − 2λmax
(
M2
) ,

k22 =
2α2βλmax (W )+

α(α+3)
2 βρ0λmax (W )

αβ − 2λmax
(
M2
) ,

α > 0, β > 0, ρ0 > 0,

M = W − αβWH − HTW . (21)

Proof: Take the positive definite function in Theorem 1
as the Lyapunov function candidate:

V (t) = εT (t)Qε (t). (22)

Then the derivative of V (t) along (19) gives

V̇ (t) = 2εT (t) (E ⊗ I5) (((A+ B)⊗ I5) ε (t)

+F (x̃(t), ṽ(t), t))

= εT (t)Pε (t)+ x̄T (t) (αW ⊗ I5)

· (f (x̃(t), ṽ(t), t)− 1n ⊗ f (x̃0(t), ṽ0(t), t))

+ v̄T (t) (W ⊗ I5) (f (x̃(t), ṽ(t), t)

− 1n ⊗ f (x̃0(t), ṽ0(t), t)). (23)

By Assumption 2 and Lemma 2, we have

x̄T (t) (αW ⊗ I5) (f (x̃ (t) , ṽ (t) , t)

−1n ⊗ f (x̃0 (t), ṽ0 (t) , t))

≤ αλmax (W )
n∑
i=1

x̄Ti (t) (f (x̃i (t) , ṽi (t), t)

− f (x̃0 (t), ṽ0 (t) , t))

≤ αλmax (W )
n∑
i=1

ρ0 ‖x̄i (t)‖ (‖x̄i (t)‖ + ‖v̄i (t)‖)

≤ αλmax (W )
n∑
i=1

ρ0

(
3
2
‖x̄i (t)‖2 +

1
2
‖v̄i (t)‖2

)
=

3
2
ρ0αλmax (W ) x̄T (t) x̄ (t)

+
1
2
ρ0αλmax (W ) v̄T (t) v̄ (t) (24)

and similarly, we have

v̄T (t) (W ⊗ I5) (f (x̃ (t), ṽ (t), t)

− 1n ⊗ f (x̃0 (t), ṽ0 (t), t))

≤
1
2
ρ0λmax (W ) x̄T (t) x̄ (t)

+
3
2
ρ0λmax (W ) v̄T (t) v̄ (t). (25)

Combining (23)-(25), we have

V̇ (t) ≤ εT (t) P̃ε (t), (26)

and

P̃ =
[
P̃11 P̃12
P̃21 P̃22

]
⊗ I5,

where

P̃11 = −k1αIn +
(3α + 1)

2
ρ0λmax (W ) In,

P̃12 = k1M ,

P̃21 = k1MT ,

P̃22 = 2αW − k1βIn +
(α + 3)

2
ρ0λmax (W ) In.

Similar to the proof of Theorem 1, the matrix M satis-
fies (21). Let

−k1αIn +
(3α + 1)

2
ρ0λmax (W ) In < −

1
2
k1αIn < 0,
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From Lemma 1, we obtain

2αW − k1βIn +
(α + 3)

2
ρ0λmax (W ) In

− k1M
(
1
/
−k1α +

(3α + 1)
2

ρ0λmax (W )
)
k1MT < 0.

For convenient calculation, we can get that matrix P̃ is neg-
ative definite if k1, k2 satisfying (20), then we have V̇ (t) < 0.
The proof is completed.

C. LEADER-FOLLOWING CONSENSUS OF MULTI-UUVS
WITH UNCERTAIN FACTORS AND
TIME-VARYING DELAYS
In the case of F̃ (x̃ (t − τ (t)) , ṽ (t − τ (t)) , t) 6= 0. Consider
the time-varying delay τ (t) 6= 0, and τ (t) is continuously
differentiable and satisfies Assumption 2, for the matrix
form (13), we have:
Theorem 3: Suppose that Assumption 1,2 and 3 hold, the

leader-following consensus of multi-UUVs system with (3)
and (4) can be achieved under control protocol (10) if there
are positive definite matrixQ, ψ,Z ∈ R2n×2n,8 ∈ Rn×n, and
any matrices X ,Y ∈ R2n×2n such that

4 =

411 412 413
421 422 423
431 432 433

 < 0, (27)

[
X Y
Y T Z

]
≥ 0, (28)

where

411 = QA+ ATQ+ hX + Y + Y T + hATZA+ ψ + Q1,

412 = QB− Y + hATZB, 413 = hATC2,

421 = BTQ− Y T + hBTZA,

422 = − (1− κ)ψ + hBTZB,

423 = hBTC2, 431 = hCT
2 A, 432 = hCT

2 B,

433 = hZ4 − (1− κ)8,

Z =
[
Z1 Z2
Z2 Z4

]
=
[
C1 C2

]
,

Zi ∈ Rn×n, i = 1, 2, 3, 4, Cj ∈ R2n×n, j = 1, 2,

Q1 =

[
2λmax

(
G2
)
8 0

0 2λmax
(
J2
)
8

]
.

Proof: Define Lyapunov function:

V (t) = V1 (t)+ V2 (t)+ V3 (t)+ V4 (t), (29)

with

V1 (t) = εT (t) (Q⊗ I5) ε (t), (30)

V2 (t) =
∫ 0

−τ(t)

∫ t

t+θ
ε̇T (s) (Z ⊗ I5) ε̇ (s)dsdθ, (31)

V3 (t) =
∫ t

t−τ(t)
εT (s) (ψ ⊗ I5) ε (s)ds, (32)

V4 (t) =
∫ t

t−τ(t)
F̃T (x̃ (θ) , ṽ (θ) , θ) (8⊗ I5)

·F̃ (x̃ (θ) , ṽ (θ) , θ) dθ. (33)

According to the Leibniz-Newton formula, it holds that

ε (t)− ε (t − τ (t))

=

∫ t

t−τ(t)
ε̇ (s) ds

=

∫ t

t−τ(t)
(ε (s) (A⊗ I5)+ (B⊗ I5) ε (s− τ (s))

+F (x̃ (s− τ (s)) , ṽ (s− τ (s)) , s)) ds. (34)

According to condition (9) in Lemma 3, the time derivative
of V1 (t) along system (13) is given by

V̇1 (t) ≤ εT (t)
((
QA+ ATQ+ Y + Y T

)
⊗ I5

)
ε (t)

+ hεT (t) (X ⊗ I5) ε (t)

+ 2εT (t) ((QB− Y )⊗ I5) ε (t − τ (t))

+

∫ t

t−τ(t)
ε̇T (s) (Z ⊗ I5) ε̇ (s) ds. (35)

V̇2 (t), V̇3 (t) and V̇4 (t) are given by

V̇2 (t)

≤ h ((A⊗ I5) ε (t)+ (B⊗ I5) ε (t − τ (t))

+ F (x̃ (t − τ (t)), ṽ (t − τ (t)) , t))T · (Z ⊗ I5)

· ((A⊗ I5) ε (t)+ (B⊗ I5) ε (t − τ (t))

+ F (x̃ (t − τ (t)) , ṽ (t − τ (t)), t))

−

∫ t

t−τ(t)
ε̇T (s) (Z ⊗ I5) ε̇ (s) ds

= hεT (t)
(
ATZA⊗ I5

)
ε (t)

+ hεT (t − τ (t))
(
BTZB⊗ I5

)
ε (t − τ (t))

+ hF̃T (x̃ (t − τ (t)) , ṽ (t − τ (t)) , t) (Z4 ⊗ I5)

·F̃ (x̃ (t − τ (t)) , ṽ (t − τ (t)) , t)

+ hF̃T (x̃ (t − τ (t)) , ṽ (t − τ (t)), t)
(
CT
2 A⊗ I5

)
ε (t)

+ hεT (t)
(
ATC2 ⊗ I5

)
F̃ (x̃ (t − τ (t)), ṽ (t − τ (t)), t)

+ hF̃T (x̃ (t − τ (t)), ṽ (t − τ (t)), t)
(
CT
2 B⊗ I5

)
× ε (t − τ (t))

+ hεT (t − τ (t))
(
BTC2 ⊗ I5

)
F̃ (x̃ (t − τ (t)),

ṽ (t − τ (t)) , t)

+ hεT (t)
(
ATZB⊗ I5

)
ε (t − τ (t))

+ hεT (t − τ (t))
(
BTZA⊗ I5

)
ε (t)

−

∫ t

t−τ(t)
ε̇T (s) (Z ⊗ I5) ε̇ (s) ds (36)

V̇3 (t)

=

∫ t

t−τ(t)
εT (s) (ψ ⊗ I5) ε (s)ds

≤ εT (t) (ψ ⊗ I5) ε (t)

− (1− κ) εT (t − τ (t)) (ψ ⊗ I5) ε (t − τ (t)), (37)
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By Assumption 2 and Lemma 2, we have

V̇4 (t) = F̃T (x̃ (t), ṽ (t), t) (8⊗ I5) F̃ (x̃ (t), ṽ (t) , t)

− (1− τ̇ (t)) F̃T (x̃ (t − τ (t)), ṽ (t − τ (t)), t)

· (8⊗ I5) F̃ (x̃ (t − τ (t)), ṽ (t − τ (t)), t)

≤ 2λmax

(
G2
)
x̄T (t) (8⊗ I5) x̄ (t)

+2λmax

(
J2
)
v̄T (t) (8⊗ I5) v̄ (t)

+ (κ − 1) F̃T (x̃ (t − τ (t)), ṽ (t − τ (t)), t)

· (8⊗ I5) F̃ (x̃ (t − τ (t)), ṽ (t − τ (t)) , t). (38)

Synthesizing (35)-(38), we have

V̇ (t) ≤ ςT (t) (4⊗ I5) ς (t) < 0, (39)

where 4 is defined in (27) and

ς (t) =
(
εT (t), εT (t − τ (t)), F̃T (x̃ (t − τ (t)),

ṽ (t−τ (t)), t)
)T
.

thus, the proof of the Theorem is completed.
Remark 3: Motivated by the control protocol (10) with

additional nonlinear function and the control protocol pro-
posed in literature [28], the Lyapunov function (29) is pro-
posed, and the part four of the Lyapunov function, that is,
equation (33), refers to the literature [28]. The difference
is that we take into account the fact that both the control
protocol and additional nonlinear function exist time-varying
delays simultaneously, and this design makes more sense in
practice.

IV. SIMULATION RESULTS
In this section, two numerical simulations are given to verify
the effectiveness of the above results.
Example 1: Consider the multi-UUVs system com-

posed of five followers labeled by UUV1-UUV5 and one
leader labeled by UUVL with additional nonlinear func-
tion F̃ (x̃ (t − τ (t)), ṽ (t − τ (t)), t) ≡ 0 and time-varying
delayτ (t) = 0. The desired path of the leader UUV is
expressed as follows:

x̃0 = 60 cos (0.0022π t)+ 25 sin (0.0011π t),
ỹ0 = 60 sin (0.0022π t)+ 25 cos (0.0011π t),
z̃0 = −0.12t.

The initial values of position and velocity u (0) of each
UUV is randomly distributed in the three-dimensional space
and [−2, 2], respectively. The initial value of pitch angles
are set in the interval [−π/18, π/18], and the heading
angles are in the interval [0, 2π ].The initial states of follower
UUV1-UUV5 and UUV L are shown in Table 1, and the
communication topology is shown in Fig.1. For convenience,
we use U1-U5 and UL to denote follower UUVs and leader
UUV in the following table.

TABLE 1. Initial states of multiple UUVs.

FIGURE 1. Communication topology.

The Laplacian matrix L and D are given as follows:

L =


1 0 −1 0 0
−1 2 0 0 −1
−1 0 1 0 0
0 0 0 1 −1
0 −1 0 −1 2

,

D =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

.
Clearly, Assumptions 1 is satisfied, and by the equation

WH + HTW = I5, we can obtain that

W =



0.4052 0.1128 0.1976 0.0972 0.0818

0.1128 0.3333 0.0363 0.1667 0.1667

0.1976 0.0363 0.3488 0.0431 0.0322

0.0972 0.1667 0.0431 0.8333 0.3333

0.0818 0.1667 0.0322 0.3333 0.3333

,

with λ1(W ) = 1.1167, λ2(W ) = 0.5506, λ3(W ) = 0.1650,
λ4(W ) = 0.1278, λ5(W ) = 0.2940. We choose α = 0.05,
β = 6.4, by some simple calculations, we can get:

λ1(M2) = 0.0168, λ2(M2)=0.2766, λ3(M2)=0.2372,

λ4(M2) = 0.2038, λ5(M2) = 0.1258.
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According to Theorem 1, the control protocol (10) is
designed and the related control parameters are shown
in Table 2:

TABLE 2. The designed parameters in example 1.

FIGURE 2. Position state x of multiple UUVs.

FIGURE 3. Position state y of multiple UUVs.

Based on theorem 1 and the chosen parameters, the leader-
following consensus of the multi-UUVs system with (3)
and (4) can be achieved under control protocol (10). The
simulation results are shown in Figs.2-12. The position and
attitude states of leader UUV and follower UUVs are shown
in Figs.2-6, and the velocity states shown in Figs.7-11. It is
obvious that the follower UUVs could track the position
states of the leader and converge to the leader UUV’s desired
path, and the velocity states of follower UUVs also finally
converge to the leader’s velocity states with high convergence
accuracy. Fig.12 shows the three-dimensional trajectory of

FIGURE 4. Position state z of multiple UUVs.

FIGURE 5. Position state θ of multiple UUVs.

FIGURE 6. Position state ψ of multiple UUVs.

leader and follower UUVs. It can be seen that the formation
control of the multi-UUVs system can be achieved stably
with any formation structure. The simulation results verify
the Theorem 1 comprehensively.

VOLUME 7, 2019 118799



Z. Yan et al.: Formation Control of Leader-Following Multi-UUVs With Uncertain Factors and Time-Varying Delays

FIGURE 7. Velocity state u of multiple UUVs.

FIGURE 8. Velocity state v of multiple UUVs.

FIGURE 9. Velocity state w of multiple UUVs.

Example 2: In this example, we illustrate the leader-
following consensus of the multi-UUVs system with (3) and
(4) can be achieved under control protocol (10) with uncertain
factors and time-varying delays. As mentioned previously,
consider the multi-UUVs system composed of five followers

FIGURE 10. Velocity state q of multiple UUVs.

FIGURE 11. Velocity state r of multiple UUVs.

FIGURE 12. 3D trajectory of leader and follower UUVs.

and one leader with additional nonlinear function:

F̃ (x̃ (t − τ (t)) , ṽ (t − τ (t)) , t) 6= 0,

and the time-varying delay τ (t) 6= 0.
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TABLE 3. The designed parameters in example 2.

FIGURE 13. Position state x of multiple UUVs with uncertain factors.

FIGURE 14. Position state y of multiple UUVs with uncertain factors.

Let

F̃ (x̃ (t − τ (t)) , ṽ (t − τ (t)) , t)

=


0.4 tanh (ṽ1 (t − τ (t)))

0.01 sin (x̃2 (t − τ (t)))− 0.45 tanh (ṽ2 (t − τ (t)))
−0.01 cos (x̃3 (t − τ (t)))
0.48 tanh (ṽ4 (t − τ (t)))

0.02 sin (x̃5 (t − τ (t)))− 0.5 tanh (ṽ5 (t − τ (t)))


Clearly, the nonlinear function F̃ satisfies Assumption 2,

and for this case, we have

λmax

(
G2
)
= 0.0004, λmax

(
J2
)
= 0.25.

We consider the case ofτ (t) = 0.1 + 0.05 cos(t) and
the initial value of position and velocity, the communication
topology, the Laplacian matrix Land matrix D, the desired
path and the control parameters are same as the first case.

FIGURE 15. Position state z of multiple UUVs with uncertain factors.

FIGURE 16. Position state θ of multiple UUVs with uncertain factors.

FIGURE 17. Position state ψ of multiple UUVs with uncertain factors.

According to Theorem 3, the control protocol (10) is designed
and the related parameters are shown in Table 3:

We choose the matrices X = 0.3I10×10, Y = 010×10,Z =
I10×10, ψ = 0.1I10×10,8 = 0.6I5×5, it’s easy to see that (28)
hold, and ψ , 8 and Zare positive definite matrices.
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FIGURE 18. Velocity state u of multiple UUVs with uncertain factors.

FIGURE 19. Velocity state v of multiple UUVs with uncertain factors.

Applying Theorem 3, the corresponding positive definite
matrix Q is solved as (40), as shown at the bottom of this
page. The simulation images are demonstrated in Figs.13-23.
The position and velocity states of leader UUV and follower
UUVs are shown in Figs. 13-17 and Figs.18-22, respectively.
From which we can see that the position and velocity states
curves are shown to be more oscillatory than the first case,

FIGURE 20. Velocity state w of multiple UUVs with uncertain factors.

FIGURE 21. Velocity state q of multiple UUVs with uncertain factors.

and all UUV’s position and velocity states can also finally
converge to the leader UUV’s fixed states after making a large
adjustment although the nonlinearity factor and time delay
are existed. Fig.23 shows the three-dimensional trajectory of
leader and follower UUVs. It can be seen that the formation
control of the multi-UUVs system can also be achieved.
The simulation results verify Theorem 3 comprehensively.

Q =



0.7417 0.1009 0.2145 0.0243 0.0431 −0.6227 −0.2095 −0.4206 −0.0926 −0.1099
0.1009 0.6674 0.0061 0.0613 0.1587 −0.2095 −0.4653 −0.0355 −0.1917 −0.3188
0.2145 0.0061 0.7135 0.0054 0.0064 −0.4206 −0.0355 −0.5526 −0.0312 −0.0302
0.0243 0.0613 0.0054 0.9972 0.2334 −0.0926 −0.1917 −0.0312 −1.2544 −0.5355
0.0431 0.1587 0.0064 0.2334 0.5884 −0.1099 −0.3188 −0.0302 −0.5355 −0.3689
−0.6227 −0.2095 −0.4206 −0.0926 −0.1099 0.8190 0.3632 0.6272 0.3378 0.2814
−0.2095 −0.4653 −0.0355 −0.1917 −0.3188 0.3632 0.5615 0.1484 0.5986 0.5061
−0.4206 −0.0355 −0.5526 −0.0312 −0.0302 0.6272 0.1484 0.6540 0.1446 0.1168
−0.0926 −0.1917 −0.0312 −1.2544 −0.5355 0.3378 0.5986 0.1446 2.3534 1.1360
−0.1099 −0.3188 −0.0302 −0.5355 −0.3689 0.2814 0.5061 0.1168 1.1360 0.6723



(40)
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FIGURE 22. Velocity state r of multiple UUVs with uncertain factors.

FIGURE 23. 3D trajectory of leader and follower UUVs.

FIGURE 24. Position tracking error of the leader and follower UUVs in
example 1.

The special case of τ (t) = 0 in Theorem 3 is the result
of Theorem 2 to be verified. So the verification process of
Theorem 2 is omitted to prevent repetition.

In order to compare the two convergences above, the preset
distance between each UUV is ignored. The position and

FIGURE 25. Position tracking error of the leader and follower UUVs in
example 2.

FIGURE 26. Velocity tracking error of the leader and follower UUVs in
example 1.

FIGURE 27. Velocity tracking error of the leader and follower UUVs in
example 2.

velocity tracking errors of the leader and follower UUVs in
the two examples are given in Figs.24-27. It can be seen that
the position and velocity states in example 1 converge to the
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desired formation value at about 100s with smooth curves,
and the consensus tracking is achieved in example 2 at about
400s with oscillation curves, which is obviously later than the
first case. The reason for this imagination is the change of the
additional nonlinear function with time-varying delay. It can
be observed that the leader-following formation consensus
problems of multi-UUVs system under control protocol (10)
are indeed achieved and the simulations verify the results
well.

V. CONCLUSION
Formation control problems of leader-following multi-UUVs
system were studied in this paper. We studied the consensus
problem with no time delays firstly. Then consider the envi-
ronmental disturbances in UUV’s movement, it was proved
that the leader-following consensus of the multi-UUVs sys-
tem could still be achieved with or without time-varying
delays when uncertain factors were concerned. Sufficient
conditions are derived based on the Lyapunov-Krasovskii
functional theory andmatrix theory. Finally, numerical exam-
ples have been given to demonstrate the validity of the theo-
retical results. In the future work, the consensus algorithm of
formation control for multi-UUVs with switching topologies
and packet loss will be discussed.
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