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ABSTRACT Signal modulation identification (SMI) plays a very important role in orthogonal
frequency-division multiplexing (OFDM) systems. Currently, SMI methods are often implemented via
feature extraction based on machine learning. However, the traditional methods encounter a bottleneck
where the probability of correct classification (PCC) is very limited and hence it is hard to implement
in practical OFDM systems due to the fact that traditional methods are difficult to extract feature of the
OFDM signals. In order solve these problems, we propose a deep learning (DL) based SMI method for
identifyingOFDM signals. Specifically, convolutional neural network (CNN) is adopted to train in-phase and
quadrature (IQ) samples for OFDM signals. Then we choose dropout layer to prevent overfitting and improve
its identification accuracy. In addition, datasets with different modulation modes are adopted to verify our
trained CNN. Experiments are conducted to show that our proposed method achieves higher accuracy and
better consistency than traditional methods. Moreover, extensive results confirm that the proposed method
performs robustly in different datasets.

INDEX TERMS Orthogonal frequency-division multiplexing (OFDM), deep learning (DL), signal modu-
lation identification (SMI), convolutional neural network (CNN).

I. INTRODUCTION
Orthogonal frequency-division multiplexing (OFDM) is one
of most important techniques in designing advanced wireless
communications systems [1], [2] since it can achieve high
spectral efficiencywhilemitigate fading/interference [3], [4].
Conventional wireless communications focuses on cooper-
ative relationship since they share underlying protocol for
all of users [5]. As the fast development of wireless com-
munications, non-cooperative communications are becom-
ing ubiquitous in both civilian and military areas. In the
non-cooperative scenarios, signal modulation identify-cation
(SMI) techniques are required to recognize different modu-
lations of all of the received signals [6], [7]. For example,
it can identify various eavesdropping risks in wireless links
and ensure security and integrity of the communication sys-
tems [8]. It is also important in many civilian areas such as
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radio spectrum monitoring, interference source control and
cognitive radio [9]. Among these applications, the design
of SMI method poses a big technical challenge to identify
signal types in non-cooperative OFDM systems [10], [11].
Hence, it is necessary to develop accurate SMI technique
for identify OFDM signals [12], [13]. In electronic coun-
termeasures, by intercepting the electromagnetic waves in
the wireless channel, types of the signal modulation are first
required to demodulate and estimate [14], [15]. Then the
intercepted signal can be further decrypted. Hence, SMI is
considered one of the most important techniques in designing
non-cooperative communications systems.

Most of existing techniques on modulation identifica-
tion are based on feature extraction and machine learn-
ing classification algorithms [16], [17]. Traditional feature
extraction methods are available, such as higher order cumu-
lants (HOC) [18], discrete wavelet transform [19], adaptive
wavelet transform [20], and mixed parameters [21], [22].
Machine learning based classifiers are designed with
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k-nearest neighbor (KNN) [23], support vector machine
(SVM) [24], decision tree (DT) [25], naive Bayesian (NB),
et al. Many SMI methods can be developed via combin-
ing different feature extraction strategies with different clas-
sifiers [26]. However, these methods are hard to extract
the inherent signal features of different modulation modes
because traditional feature extraction methods are based on
statistics [27]. Hence, the classification results are vulnerable
to confuse.

However, machine learning based SMI methods still
encounter performance bottlenecks when meeting big data
problems. In other words, the probability of correct classi-
fication (PCC) is not high and it is hard to implement in
practical OFDM systems. In order to surmount the bottle-
neck, deep learning (DL) [28], [29] is considered as one
of effective methods for implementing SMI [30]. Xie et al.
propose an improved identification method with deep neural
network (DNN) [31]. Ramjee et al. use a long short-term
memory (LSTM) neural network and a deep residual net-
works (ResNet) to identify the modulation modes of the sig-
nal and significantly reduced training time [32]. Aslam et al.
combine genetic programming (GP) and KNN to accu-
rately identify four modulation modes, i.e., binary phase
shift keying (BPSK), quadrature phase shift keying (QPSK),
16 quadrature amplitude modulation (16QAM) and quadra-
ture amplitude modulation (64QAM) [33].

Unlike the aforementioned methods, we propose a
DL-SMI method using convolutional neural network (CNN)
to identify OFDM signals. It is worth noting that the proposed
CNN method which consists of two convolutional layers and
three fully connected layers. Furthermore, the addition of
dropout layer helps to reduce the interaction between neurons
in the same layer and prevents overfitting during network
training. Different datasets are adopted to test the generaliza-
tion of the proposed network and it can perform better with
higher signal-sampling rate. At last, experiment results are
given to verify the proposed DL-SMI method.

The reminder of the rest paper is organized as follows. The
system model and the deep learning model are introduced in
Section II. We propose DL-based SMI method in Section III.
Section IV gives experimental results to verify the proposed
method via giving the comparison between different meth-
ods and the performance analysis. Section V concludes our
work.

II. SYSTEM MODEL AND DL MODEL
A. SYSTEM ARCHITECTURE
Fig. 1 demonstrates the system architecture of the proposed
DL-SMI methods for identifying signal modulations in non-
cooperative OFDM systems. Transmit symbols are converted
into OFDM signals by OFDM modulation and Rician fading
channel. It is assumed that each sub-carrier uses the same
modulation mode. IQ samples are generated via simulation
data to train CNN. Then our proposed DL-SMI can rec-
ognize modulation of the OFDM signals. In initial work,
the trained CNN can accurately identify five mixed unknown

FIGURE 1. Architecture of the proposed DL-SMI method for identifying
OFDM signals.

FIGURE 2. Production process of OFDM signals.

modulated signals, i.e., BPSK, QPSK, 8 phase shift keying
(8PSK), 16QAM and 64QAM.

B. GENERATION OF OFDM SIGNALS
The generations of OFDM signal is shown in Fig. 2. The
multiplexing of the data stream is achieved from transmit
symbols by serial-to-parallel (S/P) conversion. The corre-
sponding modulation is performed by using inverse fast
Fourier transform (IFFT) to convert the frequency domain
signals into time domain signals. After that, the cyclic pre-
fix (CP) of the entire system signal is added to reduce the
inter symbol interference (ISI) between the sub-channels.
Then, the S/P sub-stream is converted into a serial data stream
by parallel-to-serial (P/S) conversion and sent to the Rician
fading channel. Additive Gaussian white noise (AWGN) is
added to obtain the OFDM signals.

We consider that the signal passes through the Rician
fading channel and the received signal can be expressed as

y (n) = x (n)⊗ h (n)+ w (n) (1)

where ⊗ is represented as the circular convolution, while
x (n) and w (n) are represented as the modulated transmitted
signal andAWGN, respectively. Here, we assumed that only a
line of sight (LOS) between mobile terminal and base station
over Rician fading channel, where it has amain path and other
paths. The PCC of the Rician distribution can be expressed as

f (z) =
z
σ 2 exp

(
−
z2 + A2

2σ 2

)
· I0

(
zA
σ 2

)
(2)
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FIGURE 3. Basic structure of CNN.

where A is the peak of the amplitude of the main signal, σ 2 is
the power of the multipath signal component, and I0 (·) is the
modified Bessel function of the first kind of 0-th order. The
Rician fading channel can be modeled as

h (n) =
√

κ

κ + 1
σejθ +

√
1

κ + 1
N
(
0, σ 2

)
(3)

where the first term corresponds to a mirror path that arrives
at a uniform phase θ , and the second term corresponds to
a large number of reflection paths and scattering paths that
are independent of θ . The parameter κ commonly referred to
the Rician factor is used to determine the Rician distribution,
which is defined as the ratio of the power of the main signal
to the power of the multipath component. When the factor κ
gradually approaches 0, the Rician distribution is converted
to Rayleigh distribution,

κ =
A2

2σ 2 (4)

As shown in Fig. 2, the generated OFDM signal will be
converted to IQ samples, which are utilized to train the CNN.

III. OUR PROPOSED DL-SMI METHOD
A. CNN FOR DL-SMI
Neural network is a hot research topic in artificial intel-
ligence. CNN is a commonly used network model, which
has a unique effect on the processing of graphic images.
Fig. 3 depicts the basic structure of CNN which mainly
consists of input layer, convolution layer, pooling layer, fully
connected layer and output layer.

The three characteristics of CNN are introduced as follows:
• Local connection: Each neuron is no longer connected to
all neurons in the upper layer, but only to a small number
of neurons. This reduces a lot of parameters.

• Weight sharing: A set of connections can share the same
weight, rather than having a different weight for each
connection. This reduces many parameters too.

• Down sampling: Pooling layer is used to reduce the
number of samples per layer, further reducing the num-
ber of parameters, while also improving the robustness
of the model.

The most important part of the CNN in Fig. 3 is the
convolution layer, in which the convolution operation can
be compared to the convolution in calculus. For example,
to calculate the convolution s (t) of two time-domain signals

x (t) and w (t). Then s (t) can be expressed as

s (t) =
∫
x (t − a)w (a) da (5)

In the discrete case, it can also be denoted as

s (n) =
∑
a

x (n− a)w (a) (6)

The above formula can be obtained by using a matrix
representation.

s (n) = (X ⊗W ) (n) (7)

If it is a two-dimensional convolution, it can be obtained
according to recursion as follows:

s (i, j) =
∑
m

∑
n

x (i− m, j− n)w (m, n) (8)

In CNN, although we also say convolution, our convolution
formula is slightly different from the definition in strictly
mathematical. For example, for two-dimensional convolu-
tion, it is defined as:

s (i, j) =
∑
m

∑
n

x (i+ m, j+ n)w (m, n) (9)

CNN is the deep learning network that has been developed
in recent years and is widely used by academics and in
enterprises. Representative CNNs include LeNet-5, VGG,
AlexNet, et al.

B. DL-SMI METHODS
The proposed DL-SMI method is mainly implemented by
CNN, which consists of two convolutional layers and three
fully connected layers. There are 128 convolution kernels
in the first convolutional layer, where the dimension of
each convolution kernel matrix is 1 × 16. The second
convolu-tional layer has 64 convolution kernels with each
size of 2 × 8. The number of neurons in the three fully
connected layers is 256, 128 and m, which represents the
number of modulation modes. The parametric rectified linear
unit (PReLU) is selected as the activation function for all
available layers except the last fully connected layer, where
Softmax is applied to obtain the probability distribution
matrix of the last layer. Compared to the earliest proposed
nonlinear activation functions Tanh and Sigmoid, the use of
PReLU can be much less computation in the entire process
when calculating the error gradient. For deep networks. It can
also reduce the appearance of gradient disappearance during
backpropagation, thus effectively completing the training of
deep networks. The basic structure of CNN is shown in the
Fig. 4.

In the network structure we proposed, the first four layers
are added with the dropout layer, which can significantly
reduce over-fitting. Dropout is one of the most efficient and
commonly used regularization methods for neural networks.
In a cycle, we randomly select some neurons in the neural
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FIGURE 4. Structure of CNN for SMI.

layer and temporarily hide them. Then we carry out the train-
ing and optimization process of the neural network. In the
next loop, we will hide some other neurons, until the end
of the training. This approach can reduce the interaction
between neurons in the same layer and make the model more
generalizable.

C. DATASET
For the SMI task, we create two datasets with different mod-
ulation modes. Dataset 21 includes modulation of BPSK,
QPSK, 8PSK and 16QAM, while dataset 22 consists of
BPSK, QPSK, 8PSK, 16QAM and 64QAM. The above two
datasets are used to verify the robustness of the proposed
method. The signal-to-noise ratios (SNRs) range from 0 to
30 dB with the interval of 5 dB, and there are 20,000 data
samples for each modulation for training and testing. So tak-
ing dataset21 as an example, under a specific SNR, there are
80,000 data input into the neural network, which are divided
into training samples and test samples by 7:3.

1) IQ SAMPLES
Through OFDMmodulation and the influence of the wireless
channel, the ith sampling data we obtained can be represented
by a complex vector as follows

Si = [s1, s2, s3, · · · , sn] (10)

where n represents the number of sampling points. sn denotes
the value of the nth sampling point, which is a complex
number. So sn can be expressed as

sn = Ren + jImn (11)

where Ren represents the real part of the nth sampling point,
while Imn denotes the imaginary part of it. They are in-phase
and quadrature components of signals respectively.

2) AP SAMPLES
On the basis of IQ Samples, the module A and the phase angle
θ of sn can be expressed as

A =
√
Re2n + Im2

n (12)

θ = arctan
Imn

Ren
(13)

where A and θ are the amplitude and phase components of
signals respectively.

3) MANMADE FEATURES
By calculating the higher-order cumulants, the HOC features
set can be obtained. Combining the extracted instantaneous
features of the signal constitutes manmade features.

D. IMPLEMENTATION PLATFORM
The architecture of CNN is based on keras, which is a high-
level neural network API. The above work is implemented
with python. Matlab is used to generate the datasets for train-
ing and testing. GPUwith four NVIDAGeForce GTX1080Ti
are adopted for network training and testing to improve com-
putational efficiency.

IV. EXPERIMENT RESULTS
We conduct several experiments to demonstrate the perfor-
mance of DL-based SMI method in non-cooperative OFDM
system. The CNNmodel is trained on the simulation datasets,
and the identification accuracy at different SNRs is compared
with conventional methods and machine learning methods.
In the following experiments, the comparison of kappa coef-
ficient and identification accuracy under different datasets
proves that DL based method performs well than traditional
methods. In our experiments, a non-cooperative OFDM sys-
temwith 16 sub-carriers, 6 symbols of each sub-carrier, CP of
length 2 and 256-point FFT is considered. The wireless chan-
nel follows Rician fading channel, where Sampling frequency
is 10kHz, frequency shift of Doppler is 500Hz, and Rician
factor is 20. Each sub-carrier uses the same modulation
method.

A. PCC ANALYSIS
In the experiment, we compare three common classification
methods based onmachine learningwith three neural network
based methods, which are CNN trained on IQ samples, CNN
trained on AP samples, Deep Neural Network (DNN) trained
on manmade features, manmade features extraction followed
by random forest (RF), support vector machine (SVM) and
logistic regressive (Logistic). This part of the experiment is
performed on dataset 21.
As the SNR increases, the correct classification probability

of proposed method is constantly improving, while the others
remain basically the same. The performance curve is shown
in Fig. 5. IQ samples are easier to identify than AP samples.
When the SNR is greater than 20dB, the performance of our
proposed method performs well with the accuracy of nearly
100%. On the other hand, the effect of CNN-based signal
modulation identification is significantly better than others.
CNN can automatically extract the features of data by using
convolution kernel. Through the continuous training of the
model, the accurate identification of the signal modulation
can be realized.
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FIGURE 5. PCC of the proposed method v.s. traditional methods in
various SNRs(dataset 21).

FIGURE 6. PCC of different modulation modes (dataset 21).

The correct classification probability of different modula-
tions in CNN trained on IQ samples is depicted in Fig. 6.
BPSK can always be correctly identified in both low SNR
and high SNR,while a considerable increase occurs from 0dB
to 15dB of others. In the case of higher SNR, the rate of rise
slows down and gradually stabilizes. The experimental results
show that the proposed method has high accuracy in signal
modulation identification.

B. CONSISTENCY ANALYSIS
The Kappa (κ) coefficient is used for consistency testing
and is also an indicator for measuring classification accuracy.
It can be expressed as

Kappa =
p0 − pe
1− pe

(14)

where p0 is the proportion of correctly classified samples
to the total number of samples, that is the overall classifi-
cation accuracy. Consider that the number of real samples

FIGURE 7. Confusion matrices of proposed method in various SNRs: (a)
SNR = 0dB, (b) SNR = 10dB, (c) SNR = 20dB, (d) SNR = 30dB.

for each category is [a1, a2, a3, · · · , ai], the number of pre-
dicted samples is [b1, b2, b3, · · · , bi], and the total number of
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FIGURE 8. Kappa coefficients (κ) of different methods (dataset 21).

samples is N . So pe is denoted as

pe =

∑
i
aibi

N 2 (15)

From four confusion matrices in Fig. 7, it can be found
that 16QAM has a great influence on the identification of
the remaining modulation when the SNR is 0dB. This also
explains the reason why the remaining identification results
are poor except for BPSK at low SNR. In the case of 10dB,
8PSK and 16QAMare confused. Explain that it is easy tomis-
judge when the SNR is not very high. As the SNR increases,
the influence of 16QAM gradually decreases. Finally, all
modulation modes can be accurately identified.

Usually kappa falls between 0∼1 and can be divided into
five groups to indicate the consistency of different levels:
slight consistency (0.0∼0.20), fair consistency (0.21∼0.40),
moderate consistency (0.41∼0.60), substantial consistency
(0.61∼0.80) and 0.81∼1 are almost perfect. Fig. 8 shows the
general trend in Kappa coefficient. Experiments show that the
proposed method has high consistency in classification when
the SNR is greater than 10dB.

C. ROBUSTNESS ANALYSIS
In the above experiments, we use dataset 21 to verify that
our proposed DL-based SMI has high identification accuracy
and consistency. However, in the actual application, the intro-
duction of new modulation modes may affect the original
performance. Therefore, the method we propose must be
relatively robust to this dataset mismatch. This part of the
experiment is performed on dataset 22 (increased 64QAM
modulation) to verify the robustness of our proposed method.

In terms of curves trend, there is not a great deal of differ-
ence between Fig. 5 (based on dataset 21) and Fig. 9 (based
on dataset 22). The identification accuracy of the proposed
method is always remained steady above 90%with increasing
SNR. It can be seen from the figure that the change of the

FIGURE 9. Comparisons of different methods via PCC in various SNRs
(dataset 22).

FIGURE 10. PCC of proposed method with different signal-sampling point
(Dataset 21).

dataset does not have damage on the performance of signal
modulation identification.

D. IMPACT OF SIGNAL LENGTH
In this experiment, we increased signal-sampling points.
It can be seen from Fig. 10 that under the same SNR, the CNN
trained on the samples obtained with 256 sampling points
have higher identification accuracy for different modulation
modes than 128 sampling points. Especially at low SNR,
performance is more obvious. The signal is described in more
detail due to the increase in sampling points. The use of CNN
can extract more features of signals in different modulation
modes, thus effectively improving the identification accuracy.

V. CONCLUSION
In this paper, we propose an effective DL-SMI for identifying
OFDM signals in non-cooperative systems. The proposed
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DL-SMI method achieves high identification accuracy, high
consistency and robustness. Simulation results show that
CNN trained on IQ samples performs better than traditional
machine learning based methods, since CNN can effectively
extract the features of OFDM signals. Considering the prac-
tical applications, the proposed DL-SMI method has a good
generalization ability via training different datasets.
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