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ABSTRACT Different from linear and circular interpolation, feedrate fluctuation is inevitable for parametric
toolpath, which is caused by the nonlinear relation between spline parameters and arc-length. In order to
improve the accuracy and efficiency of real-time interpolation algorithm with minimal feedrate fluctuation,
this thesis presents an iterative feedback interpolator to restrain the feedrate fluctuation. Estimator and
corrector stage are two essential steps of our proposed method. The result of the first-order Taylor expansion
is used for the iterative initial value in the estimator stage. Thereafter, based on Steffensen iterative accelerator
method, the feedback of current feedrate and command feedrate will control to update parameters value
repeatedly until feedrate fluctuation rate reaches the allowable value in the corrector stage. By means
of the numerical method, it is proved that this iteration method can satisfy the high-order convergence
and fast convergence theoretically. In the simulation, the third-degree B-spline curve is utilized to test
the proposed method which is equipped with obvious effects on restraining the feedrate fluctuation and
improving computation efficiency compared with four existing methods.

INDEX TERMS Parametric toolpath, feedrate fluctuation, feedrate planning, CNC machining, iterative
feedback interpolator.

I. INTRODUCTION
With the development of CAD/CAM technology, traditional
linear and circular interpolation cannot meet the requirements
of modern CNC machining in grinding apparatus, aviation
and other fields [1]–[4]. In order to process complex surfaces,
parametric toolpath has played an important role in alter-
ing the traditional interpolation methods of small straight-
line segment approximating parametric curves. Straightway
interpolation parametric toolpath can prominently increase
machining efficiency and machining quality [5]. In addition,
parametric interpolator can prolong the service life of the
motors and reduce the burden of data storage and computation
for the hardware.

The spline curve is a presentation of the parametric tool-
path, which is usually determined by a group of control
points. B-spline curves and NURBS curves are widely used
to describe complicated toolpath in the numerical control
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system [6]. The reason why spline toolpath interpolation has
always been a research hotspot is that NURBS curves can
provide a universal mathematical presentation form for free
curves and surfaces and the NURBS curve is the only method
to exchange data between CAD/CAM and CNC system [7].

There are several methods proposed for spline interpola-
tion. However, an inaccurate mapping between arc length
of spline toolpath and curve parameters during interpolation
inevitably leads to truncation error, which will definitely
result in the discrepancy between the desired feedrate and the
actual feedrate command and stirs up the feedrate fluctua-
tion in current interpolation period. Moreover, the feedrate
fluctuation is the main factor to affect the process quality of
the surfaces. So it is the key to improve the accuracy and
efficiency of real-time interpolation algorithm with minimal
feedrate fluctuation.

In the past research, scholars have developed many meth-
ods to improve the accuracy of spline curve parameter calcu-
lation. These interpolation parameters can be roughly divided
into three types with Taylor Expansion (TE), Polynomial
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Fitting (PF) and Predictor-Corrector (PCI). Bedi [8] proposed
the uniform parameters interpolation method at the earliest.
This method utilizes constant micro parameters to calculate
the interpolation parameters in the next interpolation period,
which causes the unequal chord during each interpolation
period. This could rise the feedrate fluctuation obviously.
Huang [9] and Koren [10] made use of the first and second
order time-based Taylor expansion (TTE) to confirm the
parametric value of the approximate curve under constant
feedrate, but the truncation error still exists. It is the sim-
ple form of this method that satisfies normal requirements,
so TTE method could be frequently chosen. However, as the
expansion order increases, feedrate fluctuation will decline,
which brings large amount of calculation. In order to find a
solution to the above problems, Farouki [11] chose first order
time-based Taylor expansion and amended parameter, which
could make the fluctuation cut down a little. Afterwards,
Yeh and Hsu [12] also came up with an interpolation method
to control the feedrate by adding the compensation to reduce
the fluctuation. In the same year, Tsai and Cheng [13] intro-
duced Runge-Kutta interpolation method and compared dif-
ferent interpolation algorithms on the feedrate fluctuation and
computing time. While Runge-Kutta interpolation method
depends on Taylor series to avoid higher-order derivative
calculus, its interpolation accuracy is higher than the accu-
racy of the second-Taylor formula expansion. All methods
mentioned are based on Taylor formula expansion, which
are utilized to diminish feedrate fluctuation by means of
compensating error of calculation.

The core of the polynomial fitting method is to calculate
the corresponding relation between the parameter and arc
length and form the boundary at some points. Afterwards,
piecewise polynomials are chosen to fit the relation on the
basis of boundary condition. Erkorkmaz and Altintas [14]
adopted quintic polynomial to interpolate with feed cor-
rection. Liu [15] solved the quartic equation to eliminate
the feedrate fluctuation of secondary non-uniform ratio-
nal B-spline curves and deduced to higher order spline.
Heng and Erkorkmaz [16] applied the seventh order poly-
nomial to replace the quantic spline for polynomial wig-
gle. In the paper [17]–[19], the polynomial mapping method
was used to improve the accuracy of arc length estima-
tion and curve fitting with minimal feedrate fluctuation.
However, the approximation error will accumulate along
the parametric toolpath, especially for the curve with large
curvature variation or uneven parametrization. Furthermore,
in order to compensate the error in the form of closed-
loop, some other researchers tried to combine iterative
evaluation theory into interpolation parameters calculation.
It is such a feedback interpolation method [20]–[22] in
which the deviation of the desired feedrate and the sched-
uled feedrate could become the restricted condition of
iterative update parameters. Lo [23] came up with using
feedback to calculate interpolation parameters for the first
time. Lately, Cheng [24], [25] improved this method and
proposed a real-time algorithm based on predictor-corrector

interpolator (PCI). In the predictor stage, a simple algorithm
is used to estimate the servo command at the next time.
In the corrector stage, the feedback of current feed and feed
command controls to update parameters value. On this basis,
Lee [26] used Newton’s method to update parameters repeat-
edly until feedrate fluctuation rate reached the allowable
value. Zhao [27] thought feedrate fluctuation is caused by
interpolator and servo controller. In the interpolation, param-
eters approximation and trajectory deviation caused fluctu-
ation, after that he presented chord-tracing algorithm (CTA)
to eliminate feedrate fluctuation further. In CTA interpolation
process, an initial value of parameter is evaluated by second-
order Taylor expansion and Newton Iterative method is used
in feedback correction scheme. In contrast to PCI, CTA has
higher convergence rate and steadier computation. Therefore,
it could meet the requirements of real-time interpolation,
especially at sharp corners.

In this research paper, an iterative feedback interpolation
algorithm was proposed to eliminate the feedrate fluctuation
caused by the nonlinear relationship between curve parame-
ters and arc length in the interpolation process. By means of
the numerical method, the corresponding constraints could
ensure the machining accuracy. Furthermore, the theoretical
proof method is also presented, which proves that the inter-
polation method can satisfy the high-order convergence and
fast convergence. The feedback iterative method is adopted
in simulation experiments of parametric interpolator.

The remainder of this paper is organized as follows. Spline
curves matrix expression and calculation are presented in
Section 2. A kind of feedrate planning method of parameter
toolpath is recommended in Section 3. The smooth transfer
along a continuous segment of parameter toolpath is intro-
duced in Section 4. In Section 5, the iterative feedback inter-
polation algorithm with the minimal feedrate fluctuation is
presented and its convergence has been proved. In Section 6,
the iterative feedback interpolation algorithm mentioned is
compared with Taylor expansion method, Newton iterative
method and simple Newton iterative method in feedrate fluc-
tuation and computational efficiency in simulation experi-
ments. The conclusions are given in Section 7.

II. MATRIX PRESENTATION OF THE
PARAMETRIC TOOLPATH
Parametric toolpath becomes more and more popular in CNC
machining and it mainly includes two types: polynomial
curves and spline curves. However, in practice, when tool-
path is described by polynomial, the corresponding expres-
sion is much complex and the toolpath cannot be adjusted
partly [28]. To overcome these defects, B-spline and NURBS
curves are used to describe complicated toolpath in CNC
systems. SinceNURBS curves can construct CADmodelling,
its performance is better than B-spline curves [29]. In the
following, the matrix expression of NURBS curves could be
obtained from the recursive definition of B-spline curves and
the basic theory of NURBS curves.
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A third degree NURBS curve can be defined as
follows:

p (u) =

n∑
i=0
ωidiNi,3

n∑
i=0
ωiNi,3

(1)

where ωi(i = 0, 1, . . . , n) is the weight factor, which is
corresponding to control points di(i = 0, 1, . . . , n). The first
and the last weight factorω0,ωn meetω0,ωn > 0 respectively,
and others meet ωi ≥ 0. {di = (xi, yi, zi)|i = 0, 1, . . . , n} is
the control points range. For convenience, Ni,k is B-spline
basis function in this section, and they are recursively defined
as follows [30]:

Ni,0 (u) =

{
1 ui ≤ u ≤ ui+1
0 others

Ni,k (u) =
u− ui

ui+k − ui
Ni,k−1 (u)

+
ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1 (u)

define : 00 = 0

(2)

One subscript i ofNi,k (µ) stands for the sequence number,
and the other parameter k stands for the degree of the toolpath.
According to B-spline basis function, nonzero value Ni−3,3,
Ni−2,3, Ni−1,3, Ni,3 would be obtained in µ ∈ [µi, µi+1] as
follows:

Ni,3 =
(u− ui)3

(ui+3 − ui) (ui+2 − ui) (ui+1 − ui)

Ni−1,3 =
(u− ui−1)2 (ui+1 − u)

(ui+2 − ui−1) (ui+1 − ui−1) (ui+1 − ui)

+
(u− ui−1) (ui+2 − u) (u− ui)

(ui+2 − ui−1) (ui+2 − ui) (ui+1 − ui)

+
(ui+3 − u) (u− ui)2

(ui+3 − ui) (ui+2 − ui) (ui+1 − ui)

Ni−2,3 =
(u− ui−2) (ui+1 − u)2

(ui+1 − ui−2) (ui+1 − ui−1) (ui+1 − ui)

+
(u− ui−1) (ui+2 − u) (ui+1 − u)

(ui+2 − ui−1) (ui+1 − ui−1) (ui+1 − ui)

+
(ui+2 − u)2 (u− ui)

(ui+2 − ui−1) (ui+2 − ui) (ui+1 − ui)

Ni−3,3 =
(ui+1 − u)3

(ui+1 − ui−2) (ui+1 − ui−1) (ui+1 − ui)
(3)

where ∇i = ui+1 − ui,∇2
i = ui+2 − ui, t = u −

ui/ (ui+1 − u) ∈ [0, 1], m11 = (∇i)
2 /∇3

i−2∇
2
i−1, m212 =

∇i−1∇
2
i /∇

3
i−1∇

2
i−1, m222 = 1/∇3

i−1, m444 = (∇i)
2 /∇3

i ∇
2
i ,

m423 = (∇i)
2 /∇3

i−1∇
2
i ,1 = 1/∇i, the matrix of third-degree

NURBS curve is obtained as follows:

pi (t) =

[
1, t, t2, t3

]
Mi


ωi−3di−3
ωi−2di−2
ωi−1di−1
ωidi


[
1, t, t2, t3

]
Mi


ωi−3
ωi−2
ωi−1
ωi


(4)

Coefficient matrix Mi can be obtained by formula (5), as
shown at the bottom of this page. The expression of parame-
ters is assumed as formula (6).

a = m11ωi−3di−3 + m12ωi−2di−2 + m13ωi−1di−1
+m14ωidi

b = m21ωi−3di−3 + m22ωi−2di−2 + m23ωi−1di−1
+m24ωidi

c = m31ωi−3di−3 + m32ωi−2di−2 + m33ωi−1di−1
+m34ωidi

e = m41ωi−3di−3 + m42ωi−2di−2 + m43ωi−1di−1
+m44ωidi

a1 = m11ωi−3 + m12ωi−2 + m13ωi−1 + m14ωi

b1 = m21ωi−3 + m22ωi−2 + m23ωi−1 + m24ωi

c1 = m31ωi−3 + m32ωi−2 + m33ωi−1 + m34ωi

e1 = m41ωi−3 + m42ωi−2 + m43ωi−1 + m44ωi

(6)

Substituting formula (6) into (3), the NURBS toolpath is
simplified as:

pi(t) =
a+ bt + ct2 + et3

a1 + b1t + c1t2 + e1t3
(7)

Mi =

m11
m21
m31
m41

m12
m22
m32
m42

m13
m23
m33
m43

m14
m24
m34
m44



=



m11 ∇
2
i−21m11 + m212

∇i−1
∇
2
i
m212 0

−3m11

(
1− 2∇2i−21

)
m11 +

(
∇i
∇i−1

−
∇i
∇
2
i
− 1

)
m212 +∇

2
i m222 ∇i−1m222 +

(
2∇i−∇i−1
∇
2
i

)
m212 0

3m11

(
∇
2
i−21− 2

)
m11 +

(
∇i
∇
2
i
−
∇i
∇i−1

−
1

∇i−1∇
2
i 1

2

)
m212 − 2∇im222

(
(∇i)

2

∇i−1∇
2
i
−

2∇i
∇
2
i

)
m212+

(
∇i −

∇i−1∇i
∇
2
i

)
m222 +1∇

3
i m444 0

−m11 m11+
(∇i)

2

∇i−1∇
2
i
m212 + m423 −

(∇i)
2

∇i−1∇
2
i
m212 − m423−m444 m444


(5)

VOLUME 7, 2019 112955



J. Jiang et al.: Real-Time Feedrate Planning Method and Efficient Interpolator With Minimal Feedrate Fluctuation

TABLE 1. Common ways to determine the length of units.

where a, b, c, e, a1, b1, c1, e1 is determined byNURBS struc-
ture parameters. Since derivation is used to calculate length
and curvature of NURBS curves, it could be easier by
adopting matrix to express the first and second derivatives,
which increases the calculation efficiency in the real-time
interpolation.

III. A REAL-TIME FEEDRATE SCHEDULING
WITH JERK LIMITED PROFILE
There are some factors to be avoided in CNC machin-
ing, such as vibration and excess error. Therefore, machine
tool kinematics constraints, machining path geometric con-
straints and machining error constraints need to be overall
considered [31]. In addition, corresponding motion algo-
rithms should be designed to control acceleration and decel-
eration, which ensures machining accuracy and efficiency.
Taking NURBS curves as an example, the feedrate plan-
ning of parameter toolpath could be shown in the follow-
ing. Since the curvature is complex and unpredictable along
the NURBS toolpath, the feedrate vector is variable and
the acceleration is much difficult to control in machining
[32], [33]. Considering the different curvature characteristics
on the different trajectories, the feedrate planning algorithm
needs to confirm the suitable feedrate on each segment as
follows:

In the proposed feedrate planning method, a whole
NURBS curve is divided into several planning units. Theo-
retically, the length of units could be determined in random,
however, the number and length of units would affect the
machining efficiency. Therefore, the following table provides
the way to determine the length of units specifically.

The four ways have their advantages and disadvantages.
The feedrate command dynamic method lies in avoid-
ing cross-unit interpolation and simplifying the interpola-
tion algorithm. The fixed unit length method needs more
attention. When the feedrate command is high, cross-unit

FIGURE 1. Trajectory curvature and feedrate characteristics.

interpolation could be emergent. The real-time planning
unit method is used in certain conditions according to the
experimental fitting algorithm of meeting the real-time
requirements, but the process of planning is complex. The
curvature-based planning unit method can improve the
machining efficiency and ensure the machining quality when
the curvature changes a little.

After dividing the NURBS curve into planning units by
above methods, the feedrate limitation needs to be planned,
which is determined by the accuracy and acceleration [34].
At present, chord is widely used to describe the error of
machining accuracy, and we used parametric toolpath seg-
ment of arc-length approximation as an example, which is
shown in Figure 2.

FIGURE 2. Approximate arc interpolation schematic diagram.

In Figure 2, AB is an interpolation step-length of a segment
of NURBS curves. The maximum distance between each
point on the curve to AB is the chord error. O shows the
circle center. κu and Ru means curvature and curvature radius
respectively. ER is the maximum permissible error in the
machining process.

R2u = (
VRT
2

)2 + (Ru − ER)2 (8)
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Considering special circumstances, the feedrate limitation
related to the accuracy can be obtained as follows:

VR =
2Ru
T

√
1− (1− ER

Ru
)2 Ru > ER

VR =
2Ru
T

ER ≥ Ru

VR = +∞ κ = 0

(9)

When feedrate vector has changed, the feedrate will be
limited by acceleration in formula (10).{

VA =
√
amaxRu κ 6= 0

VA = +∞ κ = 0
(10)

F is the feedrate command. Under the circumstance of the
restraint by the acceleration and the chord error, the minimal
feedrate Vc could be obtained in a planning unit as follows:

Vc = min{VR,VA,F} (11)

At present, there is one NURBS curve divided into several
planning units, whose limited feedrate has been determined.
And these planning units are connected sequentially from the
first to the last. Vcn stands for the limited feedrate of the nth
unit. The endpoints of each planning unit are called transfer
points. If the transfer point B is connected smoothly and the
direction of the feedrate vector has not changed, the feedrate
of point B is expressed according to formula (12).

VB = min
{
Vcn,Vc(n+1)

}
others

VB = 0 B is the endpoint
of NURBS curve

(12)

The feedrate of endpoint has been determined, the accel-
eration or deceleration will not exceed the limited feedrate
in a unit. If certain unit appears |V 2

k − V 2
k−1|/2amax > Luk ,

the transfer points have to be adjusted, where Luk is the
length of the kth unit, amax shows the maximum acceleration,
Vk−1 and Vk represent the feedrate of two neighbor transfer
points respectively. It illustrates that feedrate could not reach
the transfer feedrate in the allowable acceleration range of
machine tool. Then the adjustment is formula (13).

{
Vk =

√
2amaxLuk + V 2

k−1

Vk−1 = Vk−1
Vk > Vk−1{

Vk−1 =
√
2amaxLuk + V 2

k

Vk = Vk
Vk < Vk−1

(13)

The second adjustment of the transfer point feedrate starts
from the starting point of the NURBS curve V0 = 0 and
the adjustment proceeds sequentially. If the starting point
feedrate of a unit is changed, the transfer point feedrate needs
to be recalculated in reverse. The calculation will carry on
until the transfer point feedrate of the whole curve has been
determined. Afterwards, output parameters of each feedrate
planning unit include control points, weight factors, node
vector interval and the feedrate of the transfer points, which
would prepare for interpolation.

TABLE 2. Type value points information.

IV. SMOOTH CONNECTION BETWEEN
PARAMETRIC TOOLPATH
The matrix expression of NURBS curves and the look-ahead
feedrate planning of the trajectory based on planning units are
introduced in previous section. In the expression of complex
curves, B-spline curves could not accurately represent circu-
lar arc and other quadric curves. But B-spline is easier to be
described and calculated for most of free-form curves [35].

Taking third-degree B-spline curves as an example, its
motion control algorithm is also divided into two parts: the
feedrate planning of the toolpath based on planning units
and parametric interpolation. Contrary to NURBS curves,
B-spline curves need to read the information of type value
points rather than control points in feedrate scheduling mod-
ule, so we need to do inverse calculation firstly and construct
the spline curves by control points.

In order to achieve real-time interpolation, the feedrate
planning module of third-degree B-spline needs to read
the type value points by groups. However, the two curves
which are generated from two groups of type value points in
sequence are G0 continuous. Therefore, direct interpolation
will not only generate errors, but also lead to direction jump of
feedrate at connection points. Furthermore, the acceleration
is difficult to control. For instance, the following table is the
sequence of type value points in the x-y plane.

At first, the third-degree B-spline curve 1 is interpolated
by five type value points. Then, the curve 2 is interpolated by
the first three type value points. The curve 3 is interpolated
by the last three type value points as shown.

FIGURE 3. Normal connection between two curves.

As shown in Figure 3, it is obvious that curve 1 is smoother
and the curvemade up of 2 and 3 is continuous but not smooth
at the point C. Besides, there is considerable error between
curve 1 and the curve 2 and 3. The specific analysis is as
following:
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Assuming read the sequence of type value points
{P1P2 . . .Pn}, the sequence of control points {C0 C1 · · ·

Cn+1} could be calculated by the inverse formula. If Cn =
Cn+1 is boundary condition, the derivative of the end point on

the first curve is calculated from
→

Cn−1Cn. Reading the sec-
ond sequence of type value points

{
Pn Pn+1 · · · Pn+m

}
,

the sequence of control points
{
Cn−1 Cn · · · Cn+m+1

}
could

be calculated. If Cn−1 = Cn is boundary condition,
the derivative of the end point on the second curve is calcu-
lated from Cn

−→
C n+1. Therefore, the smooth connection of the

two curves cannot be guaranteed.
Overlapping connection method is adopted in this section.

Two B-spline curves are calculated successively and con-
nected smoothly in interpolation. The main procedure is that
the control points at connection are calculated repeatedly,
and the reasonable part is selected to construct the curve to
ensure the smooth transition at the connection point.

For the sequence of type value points {P1 P2 . . . PN−1},
{P1 P2 . . . Pn} is read firstly and the sequence of con-
trol points

{
C0 C1 · · · Cn+1

}
is calculated by the inverse

formula. After reading{Pn−m Pn−m+1 . . . P2n−m−1},
the sequence of control points {Cn−m−1 Cn−m . . . C2n−m}

could be calculated, where 0 < m < n − 1, m is an odd
number. Then, there are overlapping control points
{Cn−mCn−m+1 . . .Cn}. After sieving these control points,
{Cn−m Cn−m+1 . . . Cn−(m+1)/2} is retained and {Cn−(m−1)/2
Cn−(m−3)/2 . . . Cn+1} is abandoned in the first sequence.
{Cn−(m−1)/2 Cn−(m−3)/2 . . . Cn} is retained and {Cn−m−1
Cn−m+1 . . . Cn−(m+1)/2} is abandoned in the second
sequence. Finally, the new sequence of control points
{C0 C1 . . . Cn−(m+1)/2} and {Cn−(m+5)/2 Cn−(m+3)/2 . . .
C2n−m} are constructed. The end point position of the first
curve and the starting point position of the second curve are
determined by {Cn−(m+5)/2 Cn−(m+3)/2 Cn−(m+1)/2}. There-
fore, it is obvious that two B-spline curves determined by
the new control point sequence are smoothly connected at
the connection. Taking m = 5 as an example, Figure 4 is as
following:

FIGURE 4. Schematic diagram of overlapping connection method.

As shown in Figure 4, when B-spline curves are planned,
control points are retained in the ellipse and the others near
the endpoints in the box are abandoned. The new control
point sequence is {C0 C1 . . .Cn−3}, which ensures that spline
interpolation is real-time and smooth.

After constructing the third-degree uniform B-spline by
overlapping joint method, we could complete the feedrate
planning as the same as following flow of NURBS curves.

V. THE FEEDRATE FEEDBACK INTERPOLATION
ALGORITHM OF STEFFENSEN ITERATIVE ACCELERATOR
The feedrate planning of parametric toolpath is presented
above. The output units of feedrate planning are about to be
interpolated in sequence. Different from linear interpolation,
parametric toolpath interpolation leads to feedrate fluctuation
due to the non-linear relationship between arc length of free
curves and curve parameters [36]. In order to eliminate fee-
drate fluctuation during the interpolation, a feedrate feedback
interpolation strategy based on Steffensen iterative accelera-
tor is introduced in this section. In the following, the algo-
rithm will be demonstrated theoretically, so as to show that
the algorithm satisfies the high-order convergence and fast
convergence, which will be fully proved in the numerical
simulation.

Traditionally, Taylor expansion method is the most widely
applied in interpolation, which could obtain the next
interpolation parameter ui+1 and then calculate the actual
interpolation points. However, because of the non-linear cor-
respondence between the curve arc length and the parameters,
there is deviation during parameters calculation by means
of Taylor formula according to the chain derivation [30] as
follows:

ṡ =
ds
dt
= ||r′(u)|| ·

dû
dsd
·
dsd
dt
= ||r′(u)|| ·

dû
dsd
· ṡd (14)

where s is arc length of the curve, ṡ is the actual feedrate
value at the moment, and û is the curve parameter estimated
from the numerical method. Because of the existing nonlinear
mapping, ||r′(u)|| · (dû/dsd ) is not equal to 1. Besides, in the
formula (14), sd is the arc length determined by expected
feedrate at the moment, which means sd = v∗kTs. Inevitably,
when the curve is interpolated, there exists the problem of
replacing arc length with chord length. As shown in the
Figure 5 [27].

FIGURE 5. The problem of replacing arc length with chord length.

Due to the reasons above, it is inevitable to find the devi-
ation between expected feedrate v∗k and actual feedrate vk ,
which could bring the feedrate fluctuation. The result is
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shown as formula (15). The actual feedrate could be calcu-
lated by the arc length and the interpolation period vk =
|r(uk+1)− r(uk )| /Ts.

ε =

∣∣v∗k − vk ∣∣
v∗k

× 100% (15)

For minimal feedrate fluctuation, it only needs to find uk+1
to establish f (u) = 0 in formula (16). However, the theoreti-
cal solution of the formula is much complex.

f (u) = ‖r(u)− r(uk )‖ /v∗k − Ts = 0 (16)

The Newton iterative method (CTA) is adopted in most
numerical methods. The iteration process is given as for-
mula (17). And the initial value of iteration can be obtained
from the traditional Taylor formula.

do :

ti = ti−1 −
f (ti−1)
f ′(ti−1)

, i = 1, 2, 3 · · ·

vi = ‖r(ti)− r(uk )‖ /Ts

until :

∣∣∣∣v∗k − viv∗k

∣∣∣∣ ≤ ε
then : uk+1 = ti (17)

where ti is the parameter obtained at the ith iteration for
calculating the curve parameter uk+1, vi is the estimated
feedrate at the ith iteration. ε is the upper bound of the given
feedrate fluctuation. If using a constantM to replace f ′(ti−1),
simple Newton iterative method (SCTA) avoids the derivative
calculation, but its convergence property is related to the
selection of constant M . In addition, it could only ensure
linear convergence and not improve calculating efficiency.

In order to get higher efficiency, the convergence order
needs to be increased on the basis of ensuring the accuracy.
Therefore, the Aitken accelerated iteration algorithm is intro-
duced. If xk is the predicted value of x∗, xk is corrected by
iterative formula for the first time as follows:

xk+1 = f (xk ) (18)

Formula (19) could be obtained by themean value theorem,
and ξ is between xk and x∗.

xk+1 − x∗ = f (xk )− f (x∗) = f ′(ξ )(xk − x∗) (19)

If f ′(ξ ) varies little in the interval, the estimated value is L.
Formula (20) could be defined.

xk+1 − x∗ = f ′(ξ )(xk − x∗) ≈ L(xk − x∗) (20)

xk is corrected again as follows:

xk+2 = f (xk+1)

xk+2 − x∗ ≈ L(xk+1 − x∗) (21)

By integrating formula (20) and formula (21), we can
obtain a formula as follows:

xk+1 − x∗

xk+2 − x∗
≈

xk − x∗

xk+1 − x∗
(22)

Then the formula above can be simplified as:

x∗ ≈
xkxk+1 − (xk+2)2

xk+2 − 2xk+1 + xk
= xk −

(xk+1 − xk )2

xk+2 − 2xk+1 + xk
(23)

Generally, the right side of the formula is regarded as the
new approximate value of x∗, which could be written as x̄k+1,
so we can derive Aitken accelerated iteration expression in
formula (24).

x̄k+1 = xk −
(xk+1 − xk )2

xk+2 − 2xk+1 + xk
(24)

Prove that the convergent rate of Aitken acceleration
sequence {x̄k} is faster than equivalent of original sequence
{xk} in mathematical analysis as follows:

First, ek = xk − x∗ then,

lim
k→∞

ek+1
ek
= c (25)

Further,

lim
k→∞

ek+2
ek
= lim

k→∞

ek+2
ek+1

·
ek+1
ek
= c2 (26)

According to the transformation of formula (24), we could
obtain formula (27):

x̄k+1 − x∗ = xk − x∗ −
(xk+1 − xk )2

xk+2 − 2xk+1 + xk

= xk − x∗ −
(ek+1 − ek )2

ek+2 − 2ek+1 + ek
(27)

ek = xk−x∗ is divided by both sides in formula (27), then:

x̄k+1 − x∗

xk−x∗
=1−

( ek+1ek
− 1)2

ek+2
ek
−2 ek+1ek

+ 1
=1−

( ek+1ek
− 1)2

ek+2
ek
−2 ek+1ek

+ 1

(28)

When k → ∞, formula (28) is translated into for-
mula (29). If (x̄k+1 − x∗)/(xk − x∗) → 0 could be proved,
the convergence feedrate of the Aitkin acceleration sequence
{x̄k} is faster than the convergence feedrate of the original
sequence {xk}.

lim
k→∞

x̄k+1 − x
xk − x∗

∗

= 1−
(c− 1)2

c2 − 2c+ 1
= 0 (29)

Steffensen Iterative Accelerator (SIA) could be defined
with fixed point iteration on the basis of the Aitken iteration
accelerator in formula (30).

xk+1 = xk −
f 2(xk )

f (xk + f (xk ))− f (xk )
(30)

The second-order convergence of SIA method is proved as
follows:
f (xk ) is developed through the Taylor formula of Peano

remainder:

f (xk ) = f ′(x∗)ek + 0.5f ′′(x∗)e2k + o(e
2
k ) (31)

f (xk + f (xk )) is developed through the Taylor formula of
Peano remainder:

f (xk + f (xk )) = f ′(x∗)[ek + f (xk )]

+ 0.5f ′′(x∗)[ek + f (xk )]2 + o(e2k ) (32)
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Then formula (32) minus formula (31) as follows:

f (xk + f (xk ))− f (xk ) = f
′2(x∗)ek + 0.5(3

+ f ′(x∗))f ′(x∗)f ′′(x∗)e2k + o(e
2
k )

(33)

Supposed that the first-order and second-order derivative
of f (x∗) are written as f ′, f ′′ respectively, formula (33) could
transform formula (34).

f (xk + f (xk ))− f (xk )
f (xk )

=
f ′2 + 0.5(3+ f ′)f ′f ′′e2k

f ′(x∗)+ 0.5f ′′ek
+ o(ek )

(34)

In order to prove the second-order convergence of f (x),
we only need to guarantee that formula (35) has boundary.

lim
k→∞

xk+1 − x∗

(xk − x∗)2
= lim

k→∞

ek+1
e2k

(35)

After analyzing above, ek+1 could be written as follows:

ek+1 = xk+1 − x∗

= xk+1 − xk + xk − x∗

= ek −
f (xk )

[ f (xk + f (xk ))− f (xk )]/f (xk )

= ek −
f ′(x∗)ek + 0.5f ′′(x∗)e2k + o(e

2
k )

f ′2(x∗)+0.5(3+f ′(x∗))f ′′(x∗)e2k
f ′(x∗)+0.5f ′′(x∗)ek

+ o(ek )

=

0.5(1+f ′(x∗))f ′(x∗)f ′′(x∗)e2k
f ′(x∗)+0.5f ′′(x∗)ek

+ o(e2k )

f ′2(x∗)+0.5(3+f ′(x∗))f ′′(x∗)ek
f ′(x∗)+0.5f ′′(x∗)ek

+ o(ek )
(36)

When k → ∞, we substitute formula (36) into formula
(35) as follows:

lim
k→∞

xk+1 − x∗

(xk − x∗)2
= lim

k→∞

ek+1
e2k
=

(1+ f ′(x∗))f ′′(x∗)
2f ′(x∗)

(37)

There is an upper boundary in formula (37), so SIAmethod
could ensure the second-order convergence at least.

Combined with curve interpolation process, the SIA
method with minimal feedrate fluctuation is presented.
As shown in formula (38):

do :

yi = f (ti−1), zi = f (yi + ti−1)

ti = ti−1 −
y2i

zi − yi

vi =
‖r(ti)− r(uk )‖

T

until :
|vi − v∗|

v∗
≤ ε

then : uk+1 = ti (38)

VI. SIMULATION AND EXPERIMENT RESULTS
It is from the previous demonstration that the interpolation
on the basis of SIA method is equipped with the second order
convergence. Besides, there is no curve derivation calculation
during the process, which could converge to the expected

value faster. In this section, we make comparison among SIA
method, Newton iterative method, simple Newton iterative
method, the second-order Taylor formula method and the
first-order Taylor formula method.

FIGURE 6. Parametric toolpath for simulations and the feedrate profile.

A cat-shaped in Fig. 6 (a) formed from the third-degree
B-spline curves is utilized to test the interpolation accuracy
and efficiency. Figure 6 (b) is the feedrate profile calculated
from interpolation points.

FIGURE 7. Feedrate fluctuation comparison of Taylor interpolation
methods.

The feedrate fluctuation in Fig. 7 is calculated from
formula (15) by means of the traditional Taylor formula.
Figure 7(a) shows that the first-order Taylor interpolation
could lead to apparent feedrate fluctuation andworsemachin-
ing accuracy. Furthermore, when Taylor formula is used
to calculate arc length, the more curved the trajectory is,
the bigger truncation error is. As a result, the feedrate fluc-
tuation becomes more and more apparent. Compared with
the first-order Taylor interpolation, the second-order Taylor
interpolation could reduce feedrate fluctuation evidently in
the Fig. 7(b). Nevertheless, the feedrate fluctuation of the
large curvature is still not satisfied, which causes that desired
machining results are difficult to achieve.

In order to test performance of algorithms, the constraint
value of the feedrate fluctuation is set as ε = 0.0001%. The
feedrate fluctuation curves are obtained from SIA method,
CTA method and SCTA method in Fig. 8. We could discover
that the feedrate fluctuation value of all interpolation points
meets anticipated restraint.

In contrast to the SIA method, we should pay atten-
tion to the calculation efficiency of the five methods men-
tioned in this section. The relative calculation efficiency is
defined as formula (39), where tSIAi is the time spent on the
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FIGURE 8. Feedrate fluctuation comparison of feedback interpolation.

ith interpolation point calculation.

η =
ti − tSIAi

tSIAi

× 100% (39)

Time consumed by CTA method is related to SIA method
at each interpolation point as shown in Fig. 9 (a). We could
find that the average time spent by CTA method is 1.48 times
consuming of SIA method. Because convergence rate of SIA
method is faster than the equivalent of CTA on each interpo-
lation point. In Fig. 9 (b) SCTA method is worse than SIA
method in terms of calculation efficiency. The average time
of each point is 1.39 times longer than SIA method. When
constantM is selected inappropriately, convergence rate will
be reduced. In order to show iteration step from one inter-
polation point to the next point, Fig. 9 (c) and Fig. 9 (d) are
compared SIA method with CTA method and SCTA method
respectively.

FIGURE 9. Relative efficiency and iteration step of CTA and SCTA method.

Iteration step is one of factors affecting efficiency, and
the calculation time of each step is also an important factor.
In Fig. 9 (c), the initial value of CTA is closer to the actual
value, so the iteration steps are less than SIA steps. But every
iteration period needs to calculate derivative in CTA method.
In Fig. 9 (d), there is not derivative calculation in SIA method
and SCTA method, therefore, step is a main factor, iteration
step of SIA method is less than SCTA method’s significantly.

FIGURE 10. Relative calculation efficiency of Taylor interpolation
methods.

Similarly, we would compare SIAmethod with two typical
Taylor interpolation methods. On the one hand, as shown
in Fig. 10 (a), the first-order Taylor interpolation method only
calculates the first-order derivative. However, the apparent
feedrate fluctuation is not allowed in the actual machining.
On the other hand, as shown in Fig. 10 (b), the second-order
Taylor interpolation method needs more complicated calcula-
tion with the second-order derivative. Therefore, comparing
with SIA method, the average time of each point is shorter
0.99 times. But there is strict limit of feedrate fluctuation by
means of SIA method.

VII. CONCLUSION
In this paper, the matrix expression of parametric curves
and feedrate planning are introduced. Furthermore, a fee-
drate feedback interpolation algorithm based on Steffensen
iterative acceleration is presented. The parametric toolpath
interpolation is optimally designed to guarantee the min-
imal feedrate fluctuation. Besides, the rapid convergence
and the second-order convergence are proved theoretically.
Compared with previous interpolation methods in literatures,
the proposed method has the following advantages:

(1) The smooth connection of parametric curves is
designed to reduce direction jump of feedrate at connection
points. (2) The minimal feedrate fluctuation is constrained
rigorously in parametric toolpath interpolation process.
(3) While improving the convergence speed, the strict con-
vergence is ensured. (4) The algorithm avoids the deriva-
tive computation, so computational load is reduced and hard
real-time task of interpolation is executed easily in motion
control system. Eventually, the proposed method is validated
by simulations and compared with Taylor expansion method,
Newton iterative method and simple Newton iterative method
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in feedrate fluctuation and computational efficiency respec-
tively. In conclusion, this interpolator is suitable for the CNC
machine tool with high feedrate and high precision.
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