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ABSTRACT Fast simultaneous localization and mapping (FastSLAM) is one of the most popular methods
for autonomous navigation of mobile robots. However, FastSLAM is essentially a particle filter (PF) that
suffers from particle impoverishment and degeneracy problems. To improve its localization performance,
this paper proposes an improved FastSLAM algorithm that contains an intelligent bat-inspired resampling
whose iteration times can be adaptively tuned based on the degree of filter diverging. Additionally,
the square root cubature filter is merged into the algorithm for better proposal distribution and mapping
results. The advantages of the proposed method are verified by simulation and dataset-based tests. The test
result demonstrates that the proposed IFastSLAM has better accuracy, computational efficiency and filter
consistency compared to that of the square root unscented FastSLAM (SRUFastSLAM) and strong tracking
square root central difference FastSLAM (STSRCDFastSLAM). Finally, a pool experiment is demonstrated
to further verify the advantages of the proposed algorithm.

INDEX TERMS Particle filter, adaptive bat-inspired resampling, filter-based SLAM, mobile robots.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM), also
referred to as concurrent mapping and localization (CML),
is a popular method to improve localization accuracy of
mobile robots. By fusing different sensor data, the uncer-
tainty of the robot pose can be significantly reduced in
SLAM. One of the most popular SLAM algorithms is
the extended Kalman filter SLAM (EKF-SLAM) [1], [2].
Conventional EKF-SLAM has the filter inconsistency prob-
lem caused by the hypothesis of the Gaussian noise type
and the linearization process [3]. Moreover, the compu-
tational burdens of computing Jacobian matrixes with the
growing map size also restricts the algorithm to large-scale
environments.

To overcome these defects, a number of particle
filter-based SLAM algorithms have been proposed [4]–[6].
A typical variant of those algorithms is Rao-Blackwellised
particle filter based SLAM, which is extensively used in
SLAM community and known as FastSLAM [7]. The major
advantage of FastSLAM is that it can factorize the full
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posterior distribution into a product of landmark distributions
and a vehicle path distribution, thus reducing the computa-
tional burdens of the algorithm. Moreover, by representing
the vehicle pose with samples (particles), the FastSLAM
can address the non-linearity issues and the accumulated
error caused by assumption of Gaussian noise. So far, many
FastSLAM variants have shown particular advantages in
real-world dataset test or experiment [8]–[10]. In general,
FastSLAM contains two essential operations: 1) importance
sampling, 2) resampling. There have been various represen-
tative non-linear filters serving as the importance sampling
functions, such as the unscented Kalman filter (UKF) [11]
and cubature Kalman filter (CKF) [12]. However, the inherent
drawbacks of the filters and limited number of particles
would cause severe degeneration of FastSLAM. Therefore,
a resampling step is generally followed by the importance
sampling step in FastSLAM to improve the algorithm per-
formance [13]. The common resampling methods, such as
the systematic resampling, multinomial resampling and the
residual resampling, have proved to be well-performed in
preventing deterioration of particle filters. However, their
redundant particles would lower diversity of the particles and
thus cause imprecise approximation of the robot state.
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To overcome the above-mentioned problem, this paper
proposes an intelligent resampling step to FastSLAM, which
is inspired by microbat behaviors to obtain the optimized
state of the robot [14]. Moreover, the proposed resampling
only operates on small-weight particles and thus reduce the
computational burden. In the proposed FastSLAM algorithm,
the square root cubature Kalman filter (SRCKF) is fused
for stepwise update of robot poses and map features [15],
instead of updating in an augmented way [16]. In this paper,
the improved FastSLAM is referred to as IFastSLAM. The
proposed algorithm is verified by comparing to the square
root unscented FastSLAM (SRUFastSLAM) and the strong
tracking square root central difference FastSLAM (STSRCD-
FastSLAM) in simulation and dataset tests [17], [18]. Finally,
a pool experiment is demonstrated to further validate the
performance of IFastSLAM.

The rest of this paper is organized as follows. Section II
introduces the robot state and measurement functions.
Section III introduces the proposed IFastSLAM algorithm
with adaptive bat-inspired resampling. Section IV and V
demonstrate the numerical test and experiment using the
simulator and datasets collected in Car Park and Victoria
Park, respectively [19], [20]. Section VI demonstrates the
pool experiment, and section VII draws a conclusion and
discusses the future work.

II. ROBOT STATE AND MEASUREMENT FUNCTIONS
This paper studies on the horizontal location of the robot and
uses a three-dimensional vector to describe the robot pose.
The i-th cubature point regarding the robot state is

χ
[i][m]
t−1 =


χ
[i][m]
x,t−1

χ
[i][m]
y,t−1

χ
[i][m]
θ,t−1

 (1)

where (χ [i][m]
x,t−1 χ

[i][m]
y,t−1)

T and χ [i][m]
θ,t−1 denote the robot position

and azimuth angle of the i-th cubature point, respectively.
The control inputs, velocity Vt and steering angle Gt of the
robot, with the added control noise component χu[i][m]t , are
demonstrated as follows[

Vn
Gn

]
=

 Vt + χ
u[i][m]
V ,t

Gt + χ
u[i][m]
G,t

 (2)

where

χ
u[i][m]
t =

χu[i][m]V ,t

χ
u[i][m]
G,t

 (3)

Here, the Ackerman model is the process state function,
and it is used for four-wheel robots. The propagation of the
cubature points of the state χ [i][m]

t−1 is (4), as shown at the top of
the next page, where L is the wheel base and1t is the sample
interval. The geometry of parameter a and b is shown in Fig.1.

FIGURE 1. Parameters of the four-wheel robot.

FIGURE 2. Localization schematic diagram of the four-wheel robot.

The measurement function of the robot is given by

zj,t =
[
ρ

θ

]
=

√(sx,t − xj)2 + (sy,t − yj)2

arctan( sy,t−yjsx,t−xj
)− sθ,t + π

2

 (5)

where zj,t is the measurement vector of the j-th feature in the
polar coordinate, (xj, yj) is the j-th observed feature in the
Cartesian coordinate, and (sx,t , sy,t , sθ,t ) is the robot state at
time step t .

Fig.2 demonstrates the schematic diagram of a four-
wheel robot, which is equipped with a laser radar and rear
wheel encoders. The laser radar can detect the environ-
mental landmarks and the wheel encoder can provide the
velocity and steering angle of the robot. It’s noted that the
proposed IFastSLAM is not restricted to the system model
or equipped sensors. For example, the laser radar can be
changed to cameras or underwater sonars for underwater
environment, and the wheel encoder can be changed to
the inertia measurement unit (IMU) or other sensor suite
which can provide the velocity and angle information as
long as the model and sensor information can match with
each other.

III. IFASTSLAM
This section introduces the fundamental theory of Fast-
SLAM, update process of robot and feature states, adaptive
bat-inspired resampling, and optimization process of particle
distribution,
respectively.
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χ
[i][m]
t = χ

[i][m]
t−1 +


1t
{
Vn cos(χ

[i][m]
θ,t−1)−

Vn tan(Gn)
L

(a sin(χ [i][m]
θ,t−1)+ b cos(χ

[i][m]
θ,t−1))

}
1t
{
Vn sin(χ

[i][m]
θ,t−1)−

Vn tan(Gn)
L

(a cos(χ [i][m]
θ,t−1)− b sin(χ

[i][m]
θ,t−1))

}
Vn1t tan(Gn)/L

 (4)

A. FUNDAMENTAL THEORY OF FASTSLAM
Generally, the posterior probability of the robot trajectory and
the map can be represented from a probabilistic view [7]

p(st , θ | zt , ut , nt ) (6)

where the trajectory of the vehicle is given by
st = {s1, . . . , st }, and θ represents the map. Each land-
mark is denoted by θk for k = 1, . . . ,N where N is the
number of stationary landmarks perceived by the vehicle.
zt = {z1, . . . , zt } and ut = {u1, . . . , ut } are the measurements
and controls/odometry information until time t , respectively.
nt = {n1, . . . , nt } denotes the data association information
where nt determines the identity of the landmark observed
at time t . The factorization of the posterior probability is
demonstrated as follows [7]

p(st , θ |zt , ut , nt )︸ ︷︷ ︸
SLAM posterior

= p(st |zt , ut , nt )︸ ︷︷ ︸
Trajectory posterior

K∏
k=1

p(θk |st , zt , ut , nt )︸ ︷︷ ︸
Feature posterior

(7)

Each particle m is given by:

S[m]t = {s
t,[m], µ

[m]
1,t ,

∑[m]

1,t
, . . . , µ

[m]
K ,t ,

∑[m]

K ,t
} (8)

where [m] is the index of the particle, st,[m] is the estimated
path of them-th particle, µ[m]

K ,t and
∑[m]

K ,t are the mean and the
covariance of the Gaussian distribution of the K -th feature
location updated by m-th particle. Hence, the robot pose st is
sampled by

st ∼ p( st | st−1,[m], zt , ut , nt ) (9)

The importance weight w[m]
t of each particle is given

by [21], [22]

w[m]
t =

target distribution
proposal distribution

=
p( st,[m]

∣∣ zt , ut , nt )
p( st−1,[m]

∣∣ zt−1, ut−1, nt−1)p( s[m]t

∣∣∣ st−1,[m]zt , ut , nt )
(10)

B. ESTIMATION OF THE ROBOT STATE
To improve the localization performance of FastSLAM,
the SRCKF is used to generate the proposal distribution [15].
Firstly, the state vector is augmented by adding the mean

and covariance of the process noise. Assuming that the
mean of the process noise is zero, the augmented state is
formulated as

sa[m]t−1 =

[
s[m]t−1
0

]
, s[m]t−1 =


s[m]x,t−1

s[m]y,t−1

s[m]θ,t−1

 (11)

Pa[m]t−1 =

[
P[m]
t−1 0
0 Qt−1

]
(12)

where sa[m]t−1 denotes the augmented vector, s[m]t−1 and P[m]
t−1

denote the mean and covariance of the robot at the last time
step t−1, and (s[m]x,t−1, s

[m]
y,t−1, s

[m]
θ,t−1)

T denotes the state vector

of the robot. The dimension of sa[m]t−1 is na. Applying the
Cholesky factorization to decompose the matrix Pa[m]t−1 , it can
be calculated as

Ma[m]
t−1 = chol

(
Pa[m]t−1

)
(13)

where the operator chol(·) denotes the Cholesky factor-
ization which decomposes a positive-definite matrix Pa[m]t−1
into the product of (Ma[m]

t−1 )
TMa[m]

t−1 , and Ma[m]
t−1 denotes its

upper triangular matrix. The set of 2na cubature points are
calculated as

χ
a[i][m]
t−1 = sa[m]t−1 + (Ma[m]

t−1 )
T ζ [i], i = 1, 2, . . . , 2na (14)

where

ζ =
√
na



1
0
...

0

 ,

0
1
...

0

 , · · · ,

0
0
...

1

 ,

−1
0
...

0

 ,


0
−1
...

0

 ,

· · · ,


0
0
...

−1



na×2na

(15)

and ζ [i] is the i-th column vector of (15). Each χa[i][m]t−1
contains the state and process noise components that
given by

χ
a[i][m]
t−1 =

[
χ
[i][m]
t−1

χ
u[i][m]
t

]
(16)
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The set of cubature points are propagated through the
nonlinear process function as (4):

χ̄
[i][m]
t|t−1 = f (ut + χ

u[i][m]
t , χ

[i][m]
t−1 ) (17)

where χ̄ [i][m]
t|t−1 is the propagated cubature points of the robot

state. The predicted state is calculated based on the weights
as follows:

s[m]t|t−1 =

2na∑
i=1

W χ̄ [i][m]
t|t−1 (18)

where W = 1/(2na). It is computationally expensive
to carry out the Cholesky factorization because it con-
tains a set of weighted deviation ei as shown in (19).
Hence, the QR decomposition is performed on the matrix of
A = [e1e2 . . . e2na ] to reduce the computational efforts as [23]

ei =
√
W
(
χ̄
[i][m]
t − s[m]t|t−1

)
, i = 1, . . . , 2na (19)

M̄[m]
t|t−1 = qr(A) = qr[e1 e2 . . . e2na ] (20)

where M̄[m]
t|t−1 is the predicted factor. The treatment of the

measurement is demonstrated in a similar way. If some land-
marks are observed, the data association will provide their
identities. Therefore, the predicted measurement ẑ[m]t is cal-
culated as follows

γ̄
[i][m]
t = h(χ̄ [i][m]

t|t−1 , µ
[m]
t−1)

ẑ[m]t =

2na∑
i=1

W γ̄ [i][m]
t (21)

where γ̄ [i][m]
t is the propagated measurement by the SRCKF

where h(·) denotes the measurement function as (5). The
weighted and centered matrix is

9[m]
zt =

1
√
W

[ς1 ς2 . . . ς2na ] (22)

where

ςi = γ̄
[i][m]
t − ẑ[m]t , i = 1, . . . , 2na (23)

The square root of the innovation covariance matrix is thus
given by

S̄[m]zt = qr[9[m]
zt

√
Rt−1] (24)

where Rt−1 is the measurement noise covariance. S̄[m]zt is the
upper triangular matrix of the covariance matrix of ẑ[m]t . The
cross covariance of the state is given by

P[m]
st zt = β

[m]
st

(
9[m]
zt

)T
(25)

where

β[m]st =
1
√
W

[
χ̄
[i][m]
t − s[m]t|t−1, χ̄

[i][m]
t − s[m]t|t−1,

. . . , χ̄
[2na][m]
t − s[m]t|t−1

]
.

The Kalman gain matrix and measurement update are
given by

K[m]
t =

(
P[m]
st zt /S̄

[m]
zt

)
/
(
S̄[m]zt

)T
(26)

ŝ[m]t = s[m]t|t−1 +K[m]
t (zt − ẑ

[m]
t ) (27)

M[m]
t = qr(β[m]st −K[m]

t S̄[m]zt , K
[m]
t

√
Rt−1) (28)

where zt is the observation input, s[m]t is the state mean, and
M[m]

t is the upper triangular decomposition of the covariance
matrix. For theGaussian distribution, the state of each particle
is sampled by

s[m]t ∼ N (ŝ[m]t ,
(
M[m]

t

)T
M[m]

t ). (29)

Eqs.(31) is known as the importance sampling step. The
robot state can be calculated by themethod of weightedmean,
and the weight of each particle is calculated as [21]

w[m]
t = w[m]

t−1

p(zt |ŝ
[m]
t )p(s[m]t |s

[m]
t−1, ut )

N (ŝ[m]t ,P[m]t )
. (30)

Normalize the weight of each particle as

ŵ[m]
t = w[m]

t /

M∑
i=1

w[i]
t (31)

where ŵ[m]
t denotes the normalized weight of m-th particle

and M denotes the particle number. Base on the previous
calculation, the robot state can be updated as

st =
M∑
i=1

ŵ[m]
t s[m]t . (32)

C. ESTIMATION OF MAP FEATURES
The feature estimate can be divided into two cases. One case
is that the robot revisits the landmark stored in the map, and
the other case is that the robot observes new features, which
should be added to the map.

1) UPDATE REVISITED LANDMARKS
The SRCKF is used to estimate the feature location here.
If a landmark nt is revisited at time t , the cubature points of
the feature are defined using the previously registered mean
µ
[m]
nt ,t−1

as follows

δ[i][m] = µ
[m]
nt ,t−1

+�
[m]
nt ,t−1

λ[i], i = 1, . . . , 2n (33)

λ =
√
n



1
0
...

0

 ,

0
1
...

0

 , · · · ,

0
0
...

1

 ,

−1
0
...

0

 ,


0
−1
...

0

 ,

· · · ,


0
0
...

−1



n×2n

(34)
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where �[m]
nt ,t−1

is the square root of the feature covariance
matrix, and n is the dimension of the feature state. If the
environmental landmarks are all located on one plane, n can
be set at 2. The cubature points are propagated through the
measurement model as follows

Z̄ [i][m]
t = h(δ[i][m], s[m]t ) (35)

0̂
[m]
t =

2n∑
i=1

WnZ̄
[i][m]
t . (36)

The weighted matrixes for the measurement and feature
state are defined as

4z,t =
√
Wn

[
Z̄ [1][m]
t − 0̂

[m]
t , . . . , Z̄ [2n][m]

t − 0̂
[m]
t

]
(37)

4µ,t =
√
Wn

[
δ[1][m] − µ

[m]
nt ,t−1

, . . . , δ[2n][m] − µ
[m]
nt ,t−1

]
.

(38)

The square root factor of the innovation covariance and the
cross covariance are calculated as

S̄[m]0t
= qr

(
4z,t ,

√
Rt

)
(39)

3̄[m]
zt st = 4µ,t

(
4z,t

)T (40)

whereWn = 1/(2n). The Kalman gain is calculated as

K̄[m]
t =

(
3̄[m]
zt st /S̄

[m]
0t

)
/
(
S̄[m]0t

)T
. (41)

Finally, the mean and the square root factor of the feature
covariance are updated as

µ
[m]
nt ,t = µ

[m]
nt ,t−1

+ K̄[m]
t (zt − 0̂

[m]
t ) (42)∑[m]

t
= qr

(
4µ,t − K̄[m]

t 4z,t , K̄
[m]
t

√
Rt

)
. (43)

2) INITIALIZING NEW LANDMARKS
If a new landmark is observed at the time step t , the measure-
ment zt of the sensor and the measurement noise covariance
Rt are used to initialize the features whose cubature points
are given by

ψ [i][m]
= zt +

√
Rtζ

[i], i = 1, . . . , 2n. (44)

The mean and square root factor of covariance of the newly
visited feature are given by:

ϑ
[i][m]
t = h−1

(
ψ [i][m], ŝ[m]t

)
(45)

µ
[m]
nt ,t =

2n∑
i=1

Wnϑ
[i][m]
t (46)

τi =
√
Wn

(
ϑ
[i][m]
t − µ

[m]
nt ,t

)
, i = 1, . . . , 2n (47)

�
[m]
t = qr[τ1 τ2 . . . τ2n]. (48)

D. ADAPTIVE BAT-INSPIRED RESAMPLING
Common resampling methods overcome the degeneracy
problem by copying the large-weight particles to replace
the small-weight particles. However, the resulting redundant
particles cannot well approximate the PDF of the true state
due to loss of particle diversity. Some improved methods
only conduct the resampling on partial particles, in order
to overcome the impoverishment problem [17], [18], while
the replaced particles are empirically selected. Additionally,
these approaches still contain some repeated particles and
thus cause the particle degeneracy. Therefore, an adaptive
resampling inspired by bat behaviors is proposed to enhance
the performance of FastSLAM. Note that the bat algorithm
is originally used for multi-objective optimization problems
[18]. Here, it is modified as an intelligent resampling step.

1) CALCULATION OF RESAMPLING THRESHOLD
The degeneracy degree of the proposed IFastSLAM can be
evaluated by the effective particle number Neff which is
calculated as follows [17], [24]

Neff =
1∑M

m=1 (ŵ
[m]
t )2

. (49)

If the effective particle number is smaller than the thresh-
old, the resampling step will be carried out.

2) ADAPTIVE PARTICLE CLASSIFICATION
The particle set {s[m]t , ŵ[m]

t } is sorted in a descending order
denoted as2 = {ŵ[1]

t , ŵ
[2]
t , . . . , ŵ

[M ]
t } where m = 1, . . . ,M .

It’s approved that a particle with higher weight is more likely
to tend to the true posterior distribution compared to that
with a smaller weight [25]. Therefore, the particle with the
highest weight in 2 is regarded as the optimal particle and it
is denoted as sbest . To improve the computational efficiency
of the IFastSLAM, the resampling step is only conducted on
the small-weight particles. An adaptive segment threshold is
proposed as:

αth = ceil(Neff ) (50)

where the function ceil(·) can return the value of a number
rounded upwards to the nearest integer. If the order of a
particle in 2 is larger than αth, it should be resampled. The
resampled particle set is denoted as 2small.

3) BAT-INSPIRED OPTIMIZATION
In the bat-inspired resampling, a bat corresponds to a particle
in the PF. The algorithm includes three steps:

First, generate new solutions for global search. In this
step, each bat is randomly assigned a frequency drawn from
[f min, fmax], and it locates at position si with velocity vi where
i denotes the order in 2. Driven by the globally best bat,
the off-spring would tend to a better position.

Second, randomly walk around a selected best solution.
This step is used to prevent the algorithm from the local
minimal. Once a solution is selected as the best solution,
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a random walk strategy is used to extend the search space
where ε is a random number vector whose components are
drawn from the uniform the distribution [−1, 1] and Aavg is
the average loudness of all the bats at this time step.

Third, update the bat population. If the bat has a higher
weight than that of parents, it means the robot localization is
improved. Then, the bat location, pulse rate ri and loudness
Ai will be updated for the next period.

4) CALCULATION OF ITERATION TIMES
Different from the case in conventional optimization prob-
lems, the particles which need to be resampled have already
located around the true state. Therefore, the resampling step
doesn’t need many optimization iterations. Particle filter fail-
ure/diverging sometimes occurs when the noise is small or the
particle number is not adequate. The feature of filter failure is
presented in the way that no samples or only a few samples of
predicted measurement fall within the measurement ellipse.
Here, the filter diverging degree is used to determine the
BA iteration times, which is evaluated by the Mahalanobis
distance Dt of the measurement [26]:

s̄t =
M∑
m=1

ŵ[m]
t s[m]t (51)

Z̄t = h(s̄t ) (52)

Dt = (zt − Z̄t )TR−1t (zt − Z̄t ) (53)

where s̄t denotes the mean of the posterior particles, Z̄t
denotes the predicted measurement. When Dt is less than
the chi-square value χ2, the PF can be regarded to normally
work, otherwise the PF gets trapped in diverging. Based on
the above-mentioned analysis, an adaptive tuning strategy is
proposed to calculate the iteration times of bat optimization
in the resampling step as

p =


Nmin,

Dt
χ2 ≤ 1

ceil(Nmin +
(Dt/χ2

−1)(Nmax−Nmin)
(a1−1)

), 1 < Dt
χ2 ≤ a1

Nmax,
Dt
χ2 > a1

(54)

where p denotes the iteration times. Nmin denotes the initial
iteration times, and it should be a small number to decrease
the computational burdens. Nmax denotes the upper bound of
the iteration times. a1 denotes a threshold to distinguish the
degree of diverging. In this paper, χ2 is set to 4.61 for a 90%
confidence level of the two-order observation function, and
a1 will be discussed in the numerical test.

The pseudocode of the proposed resampling is shown in
Algorithm 1 where the operator W () denotes the weight
of the corresponding particle, and it is calculated as (32).
The operator BA(·) denotes the particles after the proposed
intelligent resampling step, and q denotes a random number
drawn from the uniform distribution of U(0,1). The basic
parameters of the resampling step are selected as suggested
in [14], and they are shown in Table 1.

TABLE 1. Resampling parameters.

Algorithm 1 Bat-Inspired Resampling

Inputs: p, {s[m]t , ŵ[m]
t }, M

Results: BA(s̄t )

for (itr=0; itr < p;itr ++)
for i = αth to M //Resample on small-weight particles

//Generate new solutions
fi = fmin+(fmax − fmin)×U (0, 1)
v′i = vi+(si − sbest )×fi //vi is set to 0 for initial-

ization
s′i = si + v′i (Global search)
//Random walk around a selected best solution
if q > ri
s′i = sbest + εAavg (Local search)

end if
//Update the bat population
ifW (s′i) > W (si) // Update the bat population
Ai = αAi //Ai is firstly substituted by A0i
ri = r0i (1−e

−γ ·itr )
si = s′i // Update the bat location

end if
end for

end for
normalize particles as (31)
update the optimized robot state as (32)
reset particle as ŵ[m]

t = 1/M

E. OPTIMIZATION PROCESS OF PARTICLES
IN IFASTSLAM
The schematic diagram of improving particle distribution in
IFastSLAM is demonstrated in Fig.3, in which a larger size
and darker color particle corresponds to a particle that has
larger weight. Compared to the conventional methods by
sampling from the prior distribution [27], [28], IFastSLAM
samples from the proposal distribution generated by SRCKF,
and thus the particles can tend to a higher posterior PDF
region. Additionally, the intelligent resampling can optimize
the particles with small-weight and drives the particles to
better locations, i.e., the weights of the optimized particles
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FIGURE 3. Schematic diagram of improving particle distribution in
IFastSLAM.

TABLE 2. Importance sampling function and resampling method.

become larger and the particle locations become closer to the
high posterior PDF region than that before resampling. There-
fore, improved by the proposed algorithm, IFastSLAM can
theoretically better estimate the robot state. The verification
of the algorithm is demonstrated in the following sections.

IV. NUMERICAL TESTS IN THE SIMULATOR
To evaluate the performance of the proposed IFastSLAM, it is
compared to the square root unscented FastSLAM and strong
tracking square root central difference FastSLAM in the sim-
ulator [17], [18], which is developed by Tim Bailey’s group
[19]. The composition of three algorithms is demonstrated
in Table 2.

A. TEST ENVIRONMENT
In the simulator, the robot moves at a speed of 3m/s with
a maximum steering angle of 30◦. Moreover, the robot
has a 4-m wheel base and a range-bearing sensor with a
maximum range of 20-m and a 180◦ frontal view. The
number of particles is set to 20. Fig.4 demonstrates the
designed trajectory of the robot and landmarks location in

FIGURE 4. True trajectory and landmarks location (The direction of the
red arrow denotes the motion direction of the robot).

TABLE 3. Noise levels.

the test environment. The cross-shaped points denote the
known stationary landmarks in the simulation environment.
The control and observation frequencies are set to 40Hz
and 5Hz, respectively. For each test, the results are obtained
over 20 Monte Carlo runs, and each run is carried out with
5 loops. The data association is assumed known throughout
the process.

Here, four noise levels are used to evaluate the performance
(stability and accuracy) of the proposed algorithm, and they
are demonstrated in Table 3. Based on the given noise levels,
the algorithm can be tested under different control noise with
the same measurement noise, or under different control noise
with the same measurement noise.

B. NUMERICAL TESTS
1) PARAMETER DESIGN
To determine an appropriate parameter of a1 in (54), the per-
formance of different a1 are tested within the range of [2], [8]
under four noise levels. Fig.5 demonstrates the root-mean-
square error (RMSE) of different test conditions. It can be
observed that when a1 = 2 or a1 = 3, the RMSE of the robot
location can be reduced to a good result. Therefore, a1 is set
at 3 as it has possibly less iteration times.

2) PERFORMANCE OF INTELLIGENT RESAMPLING
To test the performance of proposed adaptive bat-inspired
resampling (ABR), it is compared with the systematic
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FIGURE 5. RMSE of robot location using different a1.

FIGURE 6. (a) RMSE and cost time of each algorithm. (b) Iteration times
of proposed resampling.

resampling (SR) [13], partial rank-based resampling (PRR)
[17], and adaptive genetic resampling (AGR) under noise
level B [22]. Fig.6 (a) demonstrates the RMSE and cost time
of IFastSLAM with different resampling methods. It can be
observed that IFastSLAM with ABR has the best accuracy
among four algorithms, and reduces the RMSE by 7.8%,
16.5% and 22.8% compared to that with AGR, PRR and SR,
respectively. This is because the ABR has a better search
ability compared to AGR as it combines the main advan-
tages of genetic algorithms and particle swarm optimization.
Additionally, the ABR can adaptively determine the particles
that needed to be resampled rather than using an empirical
threshold in PRR. In contrast to SR, the ABR does not

FIGURE 7. Comparison of effective particles.

contain redundant particles due to the bat optimization and
thus can better address the particle impoverishment problem.
It’s observed that the IFastSLAM with ABR has the similar
CPU running time compared to that with PRR, and reduces
the computational time by 2.5% compared to that with SR.
Although the algorithm with ABR has better accuracy than
that with AGR, the iteration process adds additional running
time to the algorithm. On the whole, the proposed intelligent
resampling has better comprehensive performance compared
to the other three resampling methods.

Fig.6 (b) illustrates the iteration times of the intelligent
resampling during the simulation process. When the filter
updates in a normal condition, the tuning strategy will not be
triggered, and the iteration times maintain 3. When the filter
diverges, the iteration times will be adjusted according to the
degree of diverging. Note that the tuning strategy is rarely
triggered under given conditions because the proposed resam-
pling enhances the performance of FastSLAMand suppresses
filter diverging.

In Fig.7, the effective particles of SRUFastSLAM, STSR-
CDFastSLAM and IFastSLAM are presented to evaluate
the degeneracy degree of the filter. It can be observed that the
effective particles of IFastSLAM are mostly higher than the
other two algorithms at each time step. More specifically,
the average effective particles of IFastSLAM is 24.7% and
8.3% larger than SRUFastSLAM and STSRCDFastSLAM
respectively, i.e., IFastSLAM has the best anti-degeneracy
performance among three algorithms.

3) LOCATION PERFORMANCE
Fig.8 shows the RMSE of the robot location under noise
level B. It’s observed that the IFastSLAM has the smallest
location RMSE during the given time. This is mainly because
the intelligent resampling maintains the diversity of particles
and suppresses the filter diverging, improving the location
accuracy of the robot.

Fig.9 demonstrates the estimated paths and feature
location of SRUFastSLAM, STSRCDFastSLAM and
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FIGURE 8. RMSE of robot position.

IFastSLAM, respectively. It is observed that the IFastSLAM
has better robot and feature location accuracy compared to
the other two algorithms. This result corresponds to the result
in Fig.8.

Fig.10 demonstrates the RMSE of the estimated robot posi-
tion under different particles and noise levels. It’s observed
that the RMSE and variance of the robot location decrease as
the number of particles increases. Moreover, the IFastSLAM
has a better accuracy than the SRUFastSLAM and STSRCD-
FastSLAM algorithms with the same number of particles. It’s
noted that the RMSEof IFastSLAMwith 5 particles is smaller
compared to that of SRUFastSLAM and STSRCDFastSLAM
with 30 particles. This result reveals that the less particles are
needed for IFastSLAM to maintain a specified location accu-
racy. Based on the test results from the given conditions, it is
concluded that the proposed IFastSLAMhas better estimation
accuracy than SRUFastSLAM and STSRCDFastSLAM.

4) COMPUTATIONAL COST
The computational cost of the proposed algorithm is
analyzed using Matlab software on Intel(R) Core (TM)
i7-7700 CPU@3.6GHz PC. The CPU running time of each
algorithm is utilized to evaluate the computational com-
plexity of the algorithms. As shown in Table 4, the CPU
running time of three algorithms increases as the number
of particles increases. Because the proposed IFastSLAM
only operates the resampling step on small-weight particles,
IFastSLAM can averagely improve the computational effi-
ciency by 3.3% compared to SRUFastSLAMwith systematic
resampling. Although the proposed resampling step has an
iteration process, it can improve the quality of all particles
and thus reduce the possibility of executing the resampling
step; Therefore, the computational efficiency of the IFast-
SLAM algorithm is comparable to STSRCDFastSLAM even
if the resampling step of STSRCDFastSLAM doesn’t need
iteration.

FIGURE 9. Comparison of estimated paths of SRUFastSLAM and
IFastSLAM.

5) FILTER CONSISTENCY
Here, the normalized estimation error squared (NEES) is
used to evaluate the consistency of the filter, and it is given
by [17], [18]

εt = (st − ŝt )TP−1t (st − ŝt ) (55)

113292 VOLUME 7, 2019



M. Lin et al.: Intelligent Filter-Based SLAM for Mobile Robots With Improved Localization Performance

TABLE 4. CPU running time/RMSE with different particles.

FIGURE 10. RMSE of the robot location under different noise levels and
particles.

where st , ŝt and Pt represent the truth, estimated, and the
covariance of the robot trajectory, respectively. Filter con-
sistency is calculated by Monte Carlo runs. With NR runs,
the average NEES (ANESS) is calculated as follows

ε̄t =
1
NR

NR∑
i=1

εit . (56)

For the 3-dimensional robot pose, the 95%-confidence
level is bounded by interval [2.36, 3.72]. As shown in Fig.11,
the filter consistency of the proposed method is better than
SRUFastSLAM and STSRCDFastSLAM. More specifically,
94.0% ANEES of IFastSLAM locates in the bounded region,
and it is larger than that of 38.5% of SRUFastSLAM and
24.6% of STSRCDFastSLAM.

V. VERIFICATION USING REAL-WORLD DATASET
In this section, the performance of IFastSLAM is compared to
SRUFastSLAM and STSRCDFastSLAM using the datasets
collected in Car Park and Victoria Park, respectively [19],
[20]. The robot used for collecting datasets was equippedwith
a wheel encoder (ROD-430), GPS (Ashtech GG24), and a
laser radar (SICKLMS221)with a 180◦ frontal field-of-view.
Here, the individual compatibility nearest neighbor (ICNN)
test with a 2σ acceptance region is used for data association
of features.

FIGURE 11. Comparison pf the average NEES.

TABLE 5. RMSE of robot position and CPU running time.

In the tests, the GPS provided the ground truth of the robot
and stationary landmarks. The wheel encoders were utilized
to measure the steering angle and the velocity of the robot.
In Car Park, some man-made rods covered with reflective
tape were used to be the environmental landmarks. In Victoria
Park (Sydney, Austria), the robot moved around covering
a path of 4 km approximately. Due to the obstruction by
trees and buildings, the GPS data was sometimes unavailable.
Nevertheless, the ground-truth position of the robot given by
GPS was good enough to verify the estimated trajectory.

Fig.12 and Fig.13 (a) demonstrate the odometry and GPS
paths of the robot in Car Park and Victoria Park, respectively.
Without the laser information, the estimated path of the robot
does not well match with the GPS path. It’s observed that
the estimated trajectories of IFastSLAM have better accuracy
than that of the SRUFastSLAM and STSRCDFastSLAM in
two benchmark environments as its estimated trajectories
better coincide with the GPS path.

Table 5 shows the RMSE of the robot trajectory and CPU
running time of three algorithms. The test result demonstrates
that IFastSLAM improves the localization accuracy by 25.0%
and 14.3% compared to SRUFastSLAM and STSRCDFast-
SLAM when using Car Park dataset, and improves the local-
ization accuracy by 20.7% and 10.2% when using Victoria
Park dataset. These results correspond to the results shown
in Fig.12 and Fig.13.

Additionally, compared to SRUFastSLAM, the proposed
algorithm reduces the running time by 5.9% and 4.4%
in Car Park and Victoria Park, respectively. Compared to
STSRCDFastSLAM, IFastSLAM also has a competitive
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FIGURE 12. Trajectory comparison using car park dataset.

computational efficiency. These results correspond to the test
results using the simulator.

VI. EXPERIMENT IN UNDERWATER ENVIRONMENT
To further validate the performance of IFastSLAM, it is
tested in an underwater environment (swimming pool) using
a four degree-of-freedom (DOF) underwater robot, as shown
in Fig.14.

The underwater robot is equipped with a gyro-
scope (HWT901B), two cameras (SY002HD), four thrus-
ters (ROVMAKER) and an ultra-wide bandwidth (UWB)
positioning module (DW1000) whose localization error is
within 10 cm. The buoyancy of the underwater robot is
adjusted to let the UWB antenna just come out of the water so
that the robot can receive localization information according
to the position of three UWB stations beside the pool and
approximately move in a horizontal plane. The UWB stations
are shown in Fig.15. Here, the UWB positioning system is
regarded as the ground truth reference system to evaluate the
localization accuracy of the proposed algorithm. FIGURE 13. Trajectory comparison using victoria park dataset.
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FIGURE 14. 4-DOF underwater robot.

FIGURE 15. UWB localization staions.

To apply the proposed algorithm to the underwater robot,
the process state function and measurement function are
changed to the following form

χ
[i][m]
t =


χ
[i][m]
x,t−1

χ
[i][m]
y,t−1

χ
[i][m]
θ,t−1


︸ ︷︷ ︸

χ
[i][m]
t−1

+


un cos(χ

[i][m]
θ,t−1)1t + vn sin(χ

[i][m]
θ,t−1)1t

un sin(χ
[i][m]
θ,t−1)1t − vn cos(χ

[i][m]
θ,t−1)1t

ωn1t

 (57)

zt =


χ
[i][m]
x,t−1

χ
[i][m]
y,t−1

χ
[i][m]
θ,t−1

 (58)

where (un, vn) and ωn denote the linear and angular velocity
of the underwater robot, respectively. The linear velocity is
obtained via a model-based velocity prediction method of our
previous work [29], and the angular velocity is provided by
the gyroscope. Parameter zt denotes the measurement vector

FIGURE 16. Underwater matched features.

FIGURE 17. Comparison of localization performance in the pool
experiment.

at time step t , and it is given by the open-source binocular
visual SLAM method [30].

Fig.16 demonstrates the feature matching result of two
images synchronously captured from the cameras. The major
features in the observed environment are leaves and mud on
the water bottom. According to the SLAM method, the pose
and location of the underwater robot can be calculated, and
they are taken as the actual measurement in the algorithm.
One should note that the captured images should be calibrated
before feature extraction in order to reduce image distor-
tion caused by the reflection from the media of water and
watertight shell, and this process is achieved using Zhang’s
calibration method [31]. Moreover, the maximum extracted
features are set to 100 to maintain a good computational
efficiency of the algorithm. The update rate of the algorithm
is 6Hz in the experiment.

In real-world missions, mobile robots would inevitably
acquire some unreliable measurements. For example,
the underwater robot would capture blurry and degraded
images in high-turbidity and low-illumination environ-
ment; as a result, different features may be identified as
the same one, causing feature mismatch and inaccurate
robot localization. To improve the robustness of the
algorithm, an additional examination step is added to the
algorithm based on the Mahalanobis distance. The Maha-
lanobis distance in (51)-(53) is used to determine the iteration

VOLUME 7, 2019 113295



M. Lin et al.: Intelligent Filter-Based SLAM for Mobile Robots With Improved Localization Performance

times of the bat-inspired resampling. Here, the Mahalanobis
distance is repeatedly calculated after the resampling step.
If Dt/χ2

≤ 1, the measurement is deemed to be reliable;
otherwise, the measurement is deemed to be unreliable,
and the algorithm only executes the state prediction process
of (11)-(18). The algorithm with the outlier removal process
is denoted as IFastSLAM∗.
Fig.17 demonstrates the trajectories of the proposed

algorithm and comparison results with SRUFastSLAM and
STSRCDFastSLAM. It’s observed that the IFastSLAM
algorithm with the outlier removal process has the best local-
ization accuracy. Moreover, the proposed algorithm reduces
the computational time by 3.8% and 1.4% compared to
SRUFastSLAM and STSRCDFastSLAM respectively in the
experiment, further verifying the advantages of the proposed
algorithm.

VII. CONCLUSION
This paper proposes an intelligent filter-based SLAM to
improve localization performance of mobile robots, and it
is verified by comparing to two state-of-the-art FastSLAM
algorithms. The proposed algorithm can not only be applied
to terrestrial scenarios, but also aerial and underwater cases,
as long as the process function and measurement function can
be established appropriately.

One should note that IFastSLAM is more suitable for the
environment with sparse features, such as trees, beacons, and
seafloor rocks. This is because a particle filter-based algo-
rithm cannot well address a mass of features by updating each
particle in real-time. Furthermore, to maintain robustness and
efficiency of the algorithm, it is necessary to remove unreli-
able/outlier measurements and limit the maximum number of
measurements.

The main contributions of this paper are concluded as
follows:

1) The SRCKF is fused to the FastSLAM algorithm for
stepwise estimation of robot and feature locations.

2) An adaptive bat-inspired resampling is proposed to
overcome the problems of particle degeneracy and
impoverishment, and it proves to have better opti-
mization effects compared to the SR, PRR and AGR
methods.

3) The proposed IFastSLAM algorithm can remove out-
lier measurements and has better localization accuracy
and computational efficiency compared to SRUFast-
SLAMand STSRCDFastSLAM in the simulation, real-
world dataset test and pool experiment.

The future study is going to focus on optimizing the frame-
work of the algorithm for real-time applications even if the
robot is in a feature-rich environment.
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