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ABSTRACT The flower pollination algorithm is a new metaheuristic optimization technique that simulates
the pollination behavior of flowers in nature. The global and local search processes of the algorithm are per-
formed by simulating the self-pollination and cross-pollination of flowers. However, the conventional flower
pollination algorithm has several limitations. To overcome the problem of slow convergence and prevent
the algorithm from becoming stuck around local optimum, this paper describes an enhanced metaheuristic
wind-driven flower pollination algorithm (WDFPA). Experiments are conducted using 29 benchmark test
functions and two engineering design problems, and the proposed WDFPA is compared against other
metaheuristic optimization algorithms and several classical optimization approaches. The results show that
WDFPA achieves better performance than the conventional flower pollination algorithm, especially in high-
dimensional optimization problems. The convergence speed and accuracy of WDFPA exhibit significant
improvements over other metaheuristic algorithms in many of the test cases. Additionally, WDFPA produces
optimal results for engineering design problems involving a welded beam and a spring structure.

INDEX TERMS Enhanced metaheuristic optimization, flower pollination algorithm, wind driven, wind-
driven flower pollination algorithm.

I. INTRODUCTION
Traditional optimization algorithms are useful for solving
simple continuous or linear problems, but are limited in terms
of solving large-scale combinatorial optimization problems,
there are often great limitations, such as low efficiency, high
cost, and high energy consumption. In practical applications,
the accuracy of the solution often falls short of the require-
ments. For this reason, many scholars have begun to study
other techniques, such as metaheuristic algorithms.

With the continuous expansion of the sphere of human
activity, our understanding and transformation of nature
have continued to develop. Inspired by intelligent behavior
and natural evolution, many intelligent optimization algo-
rithms have been proposed for solving complex optimization
problems [66]. For example, particle swarm optimization
(PSO) [1] is based on the simulation of bird predation behav-
ior in nature, genetic algorithms (GAs) [2]–[5] simulate the
evolutionary process of inheritance, variation, and natural
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selection of biological populations, and ant colony optimiza-
tion (ACO) [6] is inspired by the path selection behavior of
ants during foraging. The cuckoo search (CS) [7] simulates
the random phenomenon of cuckoos looking for nest posi-
tions, and the firefly algorithm (FA) [8] simulates the natural
phenomenon of firefly night clustering activities.

Inspired by the pollination process of plant flowers in
nature, Yang proposed a metaheuristic bionic optimization
technique called the flower pollination algorithm (FPA) [9].
There are numerous flowering plants in nature, and many
different means of pollination to achieve the purpose of
reproduction. Pollination methods can mainly be divided
into two types: self-pollination and cross-pollination. Self-
pollination is often referred to as asexual pollination, and
mainly uses non-biological media such as the wind to com-
plete the pollination process. Cross-pollination, or called sex-
ual pollination, usually occurs between different individuals
and typically relies on biological media such as insects and
birds to complete the pollination process. Because the insects
and birds on which cross-pollination depends can fly long
distances, this can be considered as a global process, whereas
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Algorithm 1 Flower Pollination Algorithm
Define Objective function f (x), x = (x1, x2, ......xd ),
Initialize a population of n flowers/pollen gametes with
random solutions,
Find the best solution gbest in the initial population,
Define a switching probability P ∈ [0, 1],
Define a stopping criterion (either a fixed number of gen-
erations/iterations or accuracy),
While (t< MaxGeneration)
For i = 1 : n (all n flowers in the population)
If (rand < P)
Draw a (d-dimensional) step vector L
which obeys a Lėvy distribution,
Global pollination using (1) and obtain new
solution xi,

Else
Draw ε from a uniform distribution in (0,1),
Do local pollination using (3) and obtain new

solutionxi,
End If
Evaluate the new solutions,
If new solutions are better, update them in the popu-

lation,
End For
Find the current best solution gbest,

End While
Output the best solution found.

self-pollination is considered a local process. Therefore, FPA
is divided into a global search process and a local search
process.

In recent years, researchers have conducted extensive
studies on FPAs. In 2015, Bayraktar et al. [10] devel-
oped the attribute reduction method of a modified FPA;
Zawbaa et al. [11] proposed a technique for feature
selection in a mixed pollination algorithm and rough set
approach. In 2016, Binh et al. [12] used an improved CS
and chaotic FPA to maximize the area of a wireless sen-
sor network. In 2017, Xu and Wang [13] applied FPA to
solar photovoltaic (PV) parameter estimation; in the same
year, Oda et al. [5] adopted FPA for distributed generation
planning to improve the voltage stability of a distribution
system. Emary et al. [14] used FPA and a pattern search
technique to locate retinal vessels with multiple targets.
In 2018, Samy et al. [15] applied FPA to off-grid PV fuel
cell hybrid renewable systems [15], while Zawbaa et al. [16]
used FPA in a feature selection and knapsack problem.
In 2019, Ramadas and Abraham [17] proposed a flower pol-
lination search strategy algorithm with differential evolution;
Zhang et al. [18] used FPA to optimize the trend of uncertain
renewable energy [18]; and Deepa and Rasi [19] improved
the global biological cross-pollination algorithm based on an
evolutionary strategy, and used the resulting method for color
image segmentation.

Algorithm 2Wind Driver Flower Pollination Algorithm
Define Objective function f (x), x = (x1, x2, ..., xd )
Initialize a population of n flowers/pollen gametes with
random solutions
Initialize a speed of n flowers/pollen gametes with random
solutions
Find the best solution gbest in the initial population
Define a switching probability P ∈ (0, 1)
Define a stopping criterion (either a fixed number of gen-
erations/iterations or accuracy)
While (t < MaxGeneration)
For i = 1 : n (all n flowers in the population)
If rand < P
Draw a (d-dimensional) step vector L
which obeys a Lévy distribution
Update speed of pollen using (12)
Perform global pollination using (1) and obtain new
solution xi

Else
Draw ε from a uniform distribution in (0,1)
Update speed of pollen using (12)
Perform local pollination using (3) and obtain new
solution xi

End If
Evaluate the new solutions
If new solutions are better, update them in the population
End For
Find the current best solution gbest

End While
Output the best solution found

FPA has been successfully applied in solving a variety of
optimization problems [20]–[24], but is typically described
by a complex model with limited optimization ability. The
algorithm also suffers from slow convergence and easily
becomes trapped around local optima. Thus, improving the
algorithm’s design and selection method to enable its appli-
cation to new problems is an important aspect of future
research.

The remainder of this paper is organized as follows.
Section II briefly introduces the original FPA, before
Section III introduces an enhancedmetaheuristic wind-driven
FPA (WDFPA). Section IV describes simulation experiments
and analyzes the results. Finally, our conclusions and ideas
for future work are presented in Section V.

II. FLOWER POLLINATION ALGORITHM
The pollination algorithm simulates the process of flower
pollination in nature. The cross-pollination process relies
on insects or birds as pollinators. These pollinators often
exhibit Lėvy flight behavior, and the flight steps obey Lėvy
distribution. Thus, cross-pollination can occur randomly over
a relatively long distance, and so this process provides the
global search ability of FPA. Self-pollination usually spreads
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TABLE 1. High-dimensional unimodal benchmark functions.

pollen into its own flowers by means of wind and other
factors, so this process is considered as a local search in
FPA. However, in real life, each flowering plant can produce
different numbers of flowers, and each flower will produce
a different number of pollen gametes. To simplify the polli-
nation process, FPA must satisfy the following four idealized
assumptions:

(1) Cross-pollination is considered to be a global pollina-
tion [25], [26] process, and pollinators carrying pollen move
in accordance with Lėvy flight.
(2) Self-pollination is considered a local pollination

process.
(3) The probability of reproduction is usually constant for

a given flower, and its value is proportional to the similarity
between the two flowers.

(4) There is a probability P of switching between global
pollination and local pollination. When some randomly gen-
erated number is greater than P, cross-pollination is carried
out; otherwise, self-pollination is carried out.

The cross-pollination process of the algorithm corresponds
to the global search process. First, the initial population is
generated randomly, assuming the population size is n and
the search space dimension is d . The initial population is
then evaluated to determine the current optimal solution.
When a new solution is produced, the pollination type is first
determined based on a preset probability P. When rand > P,
pollen i is considered to have been cross-pollinated at time t.

The location update formula is as follows:

x t+1i = x ti + L(λ)(x
t
i − gbest) (1)

where x t+1i denotes the position of pollen i at t + 1, gbest
denotes the position of the best pollen in the current pop-
ulation, and L is a control parameter. This parameter is a
random step size obeying the Lėvy distribution, and satisfies
the formula:

L ∼
λ0(λ) sin(πλ/2)

π

1
S1+λ

, (S ≥ S0 > 0) (2)

where 0(λ) is a standard gamma function. When the step
size S > 0, the distribution is valid. An empirical value of
λ = 1.5 has been obtained from multiple experiments. When
rand < P, self-pollination is carried out. The formula for
updating the position of pollen i at time t is as follows:

x t+1i = x ti + ε(x
t
j − x

t
k ) (3)

where x tj and x
t
k represent the positions of pollens j 6= i and

k 6= i. ε ∈ [0, 1] is a proportional coefficient that obeys
a uniform distribution. To better simulate the two different
stages of pollination, we use the switching probability in Rule
4 to switch between cross-pollination and self-pollination.
According to previous experimental results, P = 0.8 is
considered the most suitable setting [9], [27]. The imple-
mentation of pollination is embodied in the pseudocode of
Algorithm 1.
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TABLE 2. High-dimensional multimodal benchmark functions.

FIGURE 1. Pollinators and pollination types.

III. AN ENHANCED WIND-DRIVEN FLOWER
POLLINATION ALGORITHM
A. WIND-DRIVEN OPTIMIZATION
In 2010, Bayraktar et al. [10] proposed a Wind-Driven Opti-
mization algorithm that simulates the process of continu-
ous air flowing due to different atmospheric pressures until

FIGURE 2. D = 50, evolution curves of fitness value for f1.

the air pressure is balanced. This is an overall optimization
technique for solving multidimensional problems. Infinite air
masses are distributed in d-dimensional space, and their ini-
tial velocities are randomly allocated to update the position of
air masses according to the physical formula of atmospheric
motion in each iteration update.
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TABLE 3. Fixed-dimension multimodal benchmark functions.

Atmospheric motion occurs under the combined action of
various forces, among which the four main forces are gravity
(FG), the pressure gradient (FPG), the Coriolis force (FC ), and
friction (FF ). Gravity refers to the force perpendicular to the
center of the Earth; when mapped to the n-dimensional space,
it becomes a force pointing to the origin of the coordinate

system. The pressure gradient force refers to the force formed
by the different pressures in different regions, directed from
high-pressure areas to low-pressure areas. The Coriolis force
is the wind caused by the rotation of the earth. Its position
and direction change from one dimension to another. Friction
is what we usually call the opposite of work. The physical
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TABLE 4. Results of high-dimensional unimodal benchmark functions.

FIGURE 3. D = 50, evolution curves of fitness value for f2.

formulas of these four forces are as follows:
⇀

FG = ρδV
⇀g (4)

⇀

FPG = −∇ρδV (5)

FIGURE 4. D = 50, evolution curves of fitness value for f3.

⇀

FC = −2�×
⇀u (6)

⇀

FF = −ρα
⇀u (7)

where ρ denotes the density of a very small air particle,
δV denotes the finite volume of air, g denotes the acceleration
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FIGURE 5. D = 50, evolution curves of fitness value for f4.

FIGURE 6. D = 50, evolution curves of fitness value for f1.

FIGURE 7. D = 50, evolution curves of fitness value for f2.

of gravity,∇ρ denotes the gradient of pressure,� denotes the
angular velocity of the earth’s rotation, ⇀u denotes the vector
of wind velocity, and α denotes the coefficient of friction.
Newton’s second law is needed to calculate the original start-
ing point of an air particle:

p⇀α =
∑ ⇀

F i (8)

where ⇀
α is the acceleration and

⇀

F i is the force act-
ing on the air mass point. Substituting (4)–(7) into (8),

FIGURE 8. D = 50, evolution curves of fitness value for f3.

FIGURE 9. D = 50, evolution curves of fitness value for f4.

FIGURE 10. D = 50, evolution curves of fitness value for f5.

we have:

ρ
1
⇀u
1t
= (ρδV⇀g)+ (−∇ρδV )+ (−2�× ⇀u)+ (−ρα⇀u)

(9)

To simplify the calculation, for a very small air particle,
it is assumed that 1t = 1 and δV = 1. To establish the
relationship between the pressure, density, and temperature
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FIGURE 11. D = 50, evolution curves of fitness value for f6.

FIGURE 12. D = 50, evolution curves of fitness value for f7.

of the particles, we use the ideal gas law equation
(P = ρRT ). Therefore, (9) can be simplified to the following
formula, which is used to update the velocity of the air
particles:

⇀unew
= ((1− α)⇀uold )− g

⇀x old

+

[∣∣∣∣Pmax

Pold
− 1

∣∣∣∣RT (xmax − xold )
]
+(
−cuother dimold

Pold
) (10)

In (10), ⇀unew represents the updated velocity of the next
generation of air particles, ⇀uold represents the velocity of the
current generation of air particles, ⇀x old represents the current
position of air particles, xmax represents the position of the
current optimal solution, Pold represents the current position
of the pressure value, Pmax represents the optimal point of
the current pressure, and T is the temperature. R, c, and α
are constants. Updating the velocity will inevitably lead to
a change in position, so the following is used to update the
position of the air particles:

⇀x new =
⇀x old + (⇀unew ×1t) (11)

FIGURE 13. D = 50, evolution curves of fitness value for f8.

FIGURE 14. D = 50, ANOVA test of global minimum for f1.

FIGURE 15. D = 50, ANOVA test of global minimum for f2.

B. ENHANCED WIND-DRIVEN FLOWER POLLINATION
ALGORITHM
Flowerswith colorful petals, a pleasant fragrance, and appeal-
ing nectar are particularly attractive to pollinators. Pollina-
tors such as insects and birds can attract other individuals
to complete pollination through attraction. In some cases,
however, flowers can only be pollinated by the spread of
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TABLE 5. Results of p-value Wilcoxon rank-sum test on high-dimensional unimodal benchmark functions.

TABLE 6. Results of high-dimensional multimodal benchmark functions.

pollen via wind, water, or gravity, as shown in Fig. 1. The
original FPA can easily solve low-dimensional problems,
but converges slowly when dealing with high-dimensional

problems. To solve this problem, inspired by the latter abiotic
pollination process, a wind-driven pollination algorithm is
proposed to simulate the influence of wind on the pollination
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TABLE 7. Results of p-value Wilcoxon rank-sum test on high-dimensional multimodal benchmark functions.

FIGURE 16. D = 50, ANOVA test of global minimum for f3.

FIGURE 17. D = 50, ANOVA test of global minimum for f4.

process. The purpose of accelerating the pollination and
pollination process is achieved by increasing the driving force
of the wind.

FIGURE 18. D = 50, ANOVA test of global minimum for f5.

FIGURE 19. D = 50, ANOVA test of global minimum for f6.

Because both self-pollination and cross-pollination can
be accomplished via wind driving, this paper intro-
duces a wind-driven expression for updating the speed.
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TABLE 8. Results of fixed-dimension multimodal benchmark functions.

Under the action of the wind, pollen individuals can
move faster to better positions, and the pollen quality is
maximized. Individuals occupy the current best position,

and all pollen individuals are driven by wind, which
improves the exploration ability of the algorithm. The speed
update formula for the wind-driven pollination algorithm is
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TABLE 9. Results of p-value Wilcoxon rank-sum test on fixed-dimension multimodal benchmark functions.

FIGURE 20. D = 50, ANOVA test of global minimum for f7.

as follows:

vt+1i = (1− α)vti − gx
t
i

+

[
RT

∣∣∣∣1− 1
i

∣∣∣∣ (x t+1i − x ti )+ (
cv−other dimi

i
)

]
(12)

where vt+1i represents the speed of the first pollen i at
t + 1, vti represents the current pollen speed, x t+1i represents
the position of pollen i at t + 1, x ti represents the current

FIGURE 21. D = 50, ANOVA test of global minimum for f8.

pollen position, T is the temperature, and R, c, and α are
constants. The implementation steps of the proposedWDFPA
are described in Algorithm 2.

To solve the shortcomings of the basic FPA algorithm in
terms of the slow convergence of high-dimensional complex
problems, we introduce the wind-driven optimization algo-
rithm to improve the convergence speed of the later stages
of execution. To verify the effectiveness of the wind driving,
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FIGURE 22. D = 50, evolution curves of fitness value for f9.

FIGURE 23. D = 50, evolution curves of fitness value for f10.

FIGURE 24. D = 50, evolution curves of fitness value for f11.

experiments were conducted using four high-dimensional
functions. The original FPA algorithm is compared with the
improvedWDFPA in Figs. 2–5. TheWDFPA curves decrease
much faster than those of FPA, indicating that the conver-
gence speed of WDFPA is much higher than that of FPA.
It can also be seen that the accuracy of WDFPA is higher
than that of FPA, especially for function f3. Thus, the accuracy

FIGURE 25. D = 50, evolution curves of fitness value for f12.

FIGURE 26. D = 50, evolution curves of fitness value for f13.

FIGURE 27. D = 50, evolution curves of fitness value for f14.

of WDFPA is much higher than that of FPA. Only four test
functions are compared here, and not all the experimental
results are indicated. More experimental comparisons will be
presented in Section IV.

IV. SIMULATION EXPERIMENTS AND RESULTS
To verify the effectiveness of the algorithm, 29 benchmark
functions taken from CEC 2015 [28]–[30] were tested.
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FIGURE 28. D = 50, evolution curves of fitness value for f15.

FIGURE 29. D = 50, evolution curves of fitness value for f16.

FIGURE 30. D = 50, ANOVA test of global minimum for f9.

Because of the variety of these functions, the algorithm strug-
gles to find all of the global optima. However, this ensures the
objectivity of the experimental results. The number of dimen-
sions, ranges, optimal values, and iterations of the bench-
mark functions used are listed in Tables 1–3. In addition,
the WDFPA algorithm was applied to two engineering exam-
ples (design of welded beams and design of spring pressure),

FIGURE 31. D = 50, ANOVA test of global minimum for f10.

FIGURE 32. D = 50, ANOVA test of global minimum for f11.

FIGURE 33. D = 50, ANOVA test of global minimum for f12.

and its ability to solve functional constraints was tested. All
algorithms were programmed in MATLAB R2016a.

A. COMPARISON OF EACH ALGORITHM’S PERFORMANCE
The 29 benchmark functions can be divided into three
categories: high-dimensional unimodal functions (Table 1),
high-dimensional multimodal functions (Table 2), and fixed
multimodal functions (Table 3). To verify the optimization
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FIGURE 34. D = 50, ANOVA test of global minimum for f13.

FIGURE 35. D = 50, ANOVA test of global minimum for f14.

FIGURE 36. D = 50, ANOVA test of global minimum for f15.

performance of the algorithms, the test functions were inde-
pendently optimized 50 times, and all algorithms used the
same set of parameters. The population size N was set to 20,
the switching probability was set to 0.8, and the dimension
of each function is given in Tables 1–3. fmin is the theoretical
optimal value of the standard test function. The termination
criterion was set to the maximum number of iterations. The
proposedWDFPAwas comparedwith the original pollination

FIGURE 37. D = 50, ANOVA test of global minimum for f16.

FIGURE 38. D = 2, evolution curves of fitness value for f17.

FIGURE 39. D = 4, evolution curves of fitness value for f18.

algorithm and several improved versions: the elite duality-
based FPA (EOFPA) [31]–[34], dimensional evolution FPA
(MFPA) [22], [35], quantum coding FPA (QFPA) [36]–[38],
and bee FPA (BPFPA) [39].

The test results using the high-dimensional unimodal func-
tions are given in Table 4. The test results using the high-
dimensional multimodal functions are listed in Table 6 and
the test results using the fixed multidimensional functions
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FIGURE 40. D = 2, evolution curves of fitness value for f19.

FIGURE 41. D = 2, evolution curves of fitness value for f20.

FIGURE 42. D = 2, evolution curves of fitness value for f21.

are presented in Table 8. The Best, Mean, Worst, and Std
represent the best, average, worst, and standard deviation
of the independent experiments. The Rank in Tables 4, 6,
and 8 indicates the best-performing algorithms. A Wilcoxon
p-value test [40] was applied to verify whether there were
any significant differences between two groups of data.
Considering the randomness of metaheuristic algorithms, it is
necessary to compare similar statistical experiments to ensure

FIGURE 43. D = 3, evolution curves of fitness value for f22.

FIGURE 44. D = 6, evolution curves of fitness value for f23.

FIGURE 45. D = 4, evolution curves of fitness value for f24.

the validity of data. When p < 0.05, there is a significant
difference between the results of two algorithms. The p-value
comparisons between WDFPA and the other algorithms are
presented in Tables 5, 7, and 9.

1) TEST RESULTS USING HIGH-DIMENSIONAL UNIMODAL
FUNCTIONS
The experimental results in Table 4 indicate that WDFPA
outperforms the other algorithms in terms of optimizing
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FIGURE 46. D = 4, evolution curves of fitness value for f25.

FIGURE 47. D = 4, evolution curves of fitness value for f26.

FIGURE 48. D = 2, evolution curves of fitness value for f27.

high-dimensional unimodal benchmark functions. With the
exception of f8, the average value given by WDFPA is less
than that of the other comparison algorithms, and its con-
vergence accuracy is improved. For the six test functions
f1, f3, f4, f5, f6, and f7, the variance of WDFPA ranks in
the first two places, and is much less than that of the other
algorithms, which demonstrates the stability of WDFPA.

FIGURE 49. D = 2, evolution curves of fitness value for f28.

FIGURE 50. D = 2, evolution curves of fitness value for f29.

FIGURE 51. D = 2, ANOVA test of global minimum for f17.

Generally speaking, WDFPA performs better and is more
stable with high-dimensional unimodal functions, which fully
demonstrates its effectiveness and feasibility in solving high-
dimensional problems. The results in Table 5 show that
the p-values of almost all test functions are less than 0.05,
which further demonstrates that WDFPA achieves superior
performance.
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FIGURE 52. D = 4, ANOVA test of global minimum for f18.

FIGURE 53. D = 2, ANOVA test of global minimum for f19.

FIGURE 54. D = 2, ANOVA test of global minimum for f20.

Figs. 6–13 illustrate the convergence of the fitness values
of FPA, EOFPA, MFPA, QFPA, BPFPA, and WDFPA. These
convergence graphs are based on the results of 50 independent
runs of the six algorithms. From these figures, it can be clearly
seen that WDFPA obtains the global optimal value faster
than the other five algorithms. Figs. 6–8 and 10–12 show
that, although WDPFA and EOFPA converge to the theoret-
ical minimum, the convergence speed of WDFPA is faster.
In Fig. 9, although the final convergence accuracy ofWDFPA

FIGURE 55. D = 2, ANOVA test of global minimum for f21.

FIGURE 56. D = 3, ANOVA test of global minimum for f22.

FIGURE 57. D = 6, ANOVA test of global minimum for f23.

is not as good as that of EOFPA, it performs better than the
other algorithms. Figs. 14–21 present variance diagrams for
the high-dimensional unimodal functions. Table 5 and these
diagrams show that WDFPA produces much less variance
than the other algorithms. These experimental results prove
that WDFPA can effectively find the optima of single-peak
functions in high-dimensional space, which reflects its strong
global search ability.
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FIGURE 58. D = 4, ANOVA test of global minimum for f24.

FIGURE 59. D = 4, ANOVA test of global minimum for f25.

FIGURE 60. D = 4, ANOVA test of global minimum for f26.

2) TEST RESULTS USING HIGH-DIMENSIONAL MULTIMODAL
FUNCTIONS
Table 6 presents the test results from the high-dimensional
multimodal functions. As can be seen, the optimal value
and average value of WDFPA rank in the top two for all
eight functions. For benchmark function f16, WDFPA ranked
slightly worse in terms of mean square error, but ranked in
the top two for the other seven test functions. The p-value test

FIGURE 61. D = 2, ANOVA test of global minimum for f27.

FIGURE 62. D = 2, ANOVA test of global minimum for f28.

FIGURE 63. D = 2, ANOVA test of global minimum for f29.

results in Table 7 show indicate that there is little difference
between EOFPA, andWDFPA, but these are obviously better
than the other algorithms. The experimental results show that
WDFPA is effective in optimizing high-dimensional multi-
modal functions, demonstrating that the proposed approach
has strong global search ability.

Figs. 23, 24, 25, and 27 show that, although the con-
vergence rate of WDFPA is slightly slower than that of
EOFPA in the initial stage, the final accuracy is typically as
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FIGURE 64. D = 50, evolution curves of fitness value for f1.

FIGURE 65. D = 50, evolution curves of fitness value for f2.

FIGURE 66. D = 50, evolution curves of fitness value for f3.

good or better. According to Fig. 29, WDFPA achieves the
optimal convergence speed and accuracy. Generally speak-
ing, compared with other algorithms, WDFPA converges
faster and is more accurate. Figs. 26–33 present the vari-
ance diagrams for f9–f16. Comparing these experimental
results, it can be seen that WDFPA has excellent ability
in terms of optimizing multidimensional and multimodal
functions.

FIGURE 67. D = 50, evolution curves of fitness value for f4.

FIGURE 68. D = 50, evolution curves of fitness value for f5.

FIGURE 69. D = 50, evolution curves of fitness value for f6.

3) FIXED MULTIMODAL FUNCTION TEST RESULTS
Fixedmultimodal functions have one or more local extremum
problems, similar to high-dimensional multimode functions.
The only difference between them is that fixed multimodal
functions have a lower dimension. Therefore, the number
of local extrema is less than that of the high-dimensional
multimodal functions. Table 8 presents the optimization
results using the fixed multidimensional peak functions.
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FIGURE 70. D = 50, evolution curves of fitness value for f7.

FIGURE 71. D = 50, evolution curves of fitness value for f8.

FIGURE 72. D = 50, evolution curves of fitness value for f9.

Clearly, WDFPA achieves better optimal values than the
other algorithms with functions f17, f19, f21, f22, f25, f26, f27,
f28, and f29. Although WDFPA did not rank first with the
remaining four functions, it was consistently in the top three
algorithms. The p-value test results in Table 9 indicate that
WDFPA has obvious differences in data compared with the
other algorithms. In conclusion, WDFPA is not very effective

FIGURE 73. D = 50, evolution curves of fitness value for f10.

FIGURE 74. D = 50, ANOVA test of global minimum for f1.

FIGURE 75. D = 50, ANOVA test of global minimum for f2.

in solving low-dimensional functions, but has superior ability
to solve high-dimensional problems.

Figs. 38–50 illustrate the convergence of the optimiza-
tion process using the fixed multimodal functions, and
Figs. 51–63 show the variance diagrams. In Figs. 38 and 40,
WDFPA has the best convergence speed and accuracy.
According to Figs. 39, 41, 43, 44, 48, 49, and 50, although
WDFPA converges similarly to the other algorithms, it is
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FIGURE 76. D = 50, ANOVA test of global minimum for f3.

FIGURE 77. D = 50, ANOVA test of global minimum for f4.

FIGURE 78. D = 50, ANOVA test of global minimum for f5.

slower than EOFPA. In Figs. 42 and 45–47, the convergence
speed and accuracy of WDFPA is slightly worse than that
of the other algorithms. In summary, all the experimental
data and convergence results show thatWDFPA has universal
ability in solving low-dimensional problems, but is more
suitable for solving complex high-dimensional problems.

To further verify the effectiveness of WDFPA, we com-
pared it with five popular algorithms developed in recent
years (BA, WOA, MFO, FPA, ALO) using functions f1–f10

FIGURE 79. D = 50, ANOVA test of global minimum for f6.

FIGURE 80. D = 50, ANOVA test of global minimum for f7.

FIGURE 81. D = 50, ANOVA test of global minimum for f8.

(see Tables 2, 3). To enhance the accuracy of the experiment,
the population size was set to 20, the maximum number
of iterations was 100, and the termination criterion of the
experiment was the maximum number of iterations. The
experimental results are presented in Table 10; the Rank in
the table indicates the best value. The convergence curves are
shown in Figs. 64–73, and the variance diagrams are given
in Figs. 74–83.
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TABLE 10. Comparison of experimental results.

According to the data in Table 10, WDFPA was the best
value algorithm for eight of the ten test functions, gave
the best average value for seven, and the smallest variance
for six. These results indicate that WDPFA offers superior
performance, stability, and robustness compared with the
other algorithms used in this experiment. Figs. 64–73 ver-
ify the superior convergence performance of WDFPA, and
Figs. 74–83 demonstrate the better stability of the proposed
algorithm. Thus, these experiments show that the proposed
WDFPA has obvious advantages over conventional optimiza-
tion techniques.

B. COMPLEXITY ANALYSIS
In the improved FPAs, N is defined as the population size
and T is the maximum number of iterations. For WDFPA,
the initial step consists of a double cycle (N,T) with time
complexity O(N∗T). For the global search phase, there is
another double cycle (N,T) with time complexity O(N∗T),
and the local search phase consists of two cycles (N,T), so the
time complexity is O(N∗T). The time complexity of checking
the termination criterion of the algorithm is O(1), so the total
time complexity of the proposed WDFPA is O(N∗T). For
the other algorithms, the time complexity of FPA, EOFPA,
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FIGURE 82. D = 50, ANOVA test of global minimum for f9.

FIGURE 83. D = 50, ANOVA test of global minimum for f10.

FIGURE 84. Design of welded beam problem.

BPFPA and QFPA was is O(N∗T), and the time complexity
of MFPA is O(N∗T∗K), where K is the neighborhood radius.
In comparison with the classical algorithms, for the conve-
nience of comparison, let D be the dimension of the problem
to be optimized, so the time complexity of BA is O(N∗T),
and the time complexity of WOA, MFO, GWO, and ALO is
O(N∗T∗D).

C. STRUCTURAL DESIGN EXAMPLES
The experiments described in the previous subsections are
unconstrained function optimization problems. In real life,
however, many optimization problems are accompanied by
complex constraints, which impose significant challenges on

FIGURE 85. Design of compression spring problem.

industrial manufacturing. To verify the effectiveness of the
proposed algorithm in solving complex optimization prob-
lems, two typical engineering problems of welding beam
design and spring pressure design were considered.

1) DESIGN OF WELDED BEAMS
The design structure of the welded beam is taken from
Rao [41]. The aim is to minimize the manufacturing costs.
The constraints involve the shear stress (τ ), beam bending
stress (θ), bar buckling load (pc), beam end deflection (δ),
normal stress (σ ), and seven boundary-related constraints.
The design is shown in Fig. 84. Let x1 denote the thickness of
the welded beam, x2 denote the length of the welded joint,
x3 be the width of the welded beam, and x4 be the beam
thickness. The problem can then be expressed as:

Minimize f (x) = 1.10471x21x2 + 0.04811x3x4(14+ x2)

s.t. g1 (X ) = τ (X )− τmax

g2(X ) = σ (X )− σmax

g3(X ) = x1 − x4 ≤ 0

g4(X ) = 0.125− x1 ≤ 0

g5(X ) = δ(X )− 0.25 ≤ 0

g6(X ) = p− pc(X ) ≤ 0

g7(X ) = 0.10471x21 + 0.04811x3x4(14+ x2)

− 5 ≤ 0

0.1 ≤ x1 ≤ 2; 0.1 ≤ x2 ≤ 10;

0.1 ≤ x3 ≤ 10; 0.1 ≤ x4 ≤ 2

where τmax is the maximum acceptable shear stress, σmax rep-
resents the maximum acceptable normal stress, and P is the
load. The relevant quantities are calculated as follows:

τ (X ) =

√
τ 21 + 2τ1τ2

( x2
2R

)
+ τ 22 (13)

τ1 =
P

√
2x1x2

(14)

τ2 =
MR
J

(15)

M = P(L +
x2
2
) (16)

J (X ) = 2

{
√
2X1X2

[
X2
2

4
+

(
X1 + X2

2

)2
]}

(17)
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TABLE 11. Comparison results for welded beam design problem.

TABLE 12. Comparison of the optimal solution for compression spring design problem.

where M and J (X ) represent the moment of inertia and the
polarity, respectively. The remaining parameters are given by:

R =

√
x22
4
+

(
x1 + x3

2

)2

(18)

σ (X ) =
6PL

x4x23
(19)

δ(X ) =
6PL2

Ex33x4
(20)

PC (X ) =
4.013E

√
x23x

6
4

36

L2

(
1−

x3
2L

√
E
4G

)
(21)

G = 12× 106psi, E = 30× 106psi,
P = 6000lb, L = 14in (22)

Table 11 presents the experimental results for the opti-
mal design of welded beams. The optimal function values
obtained by WDFPA are lower than those obtained in previ-
ous studies. After 30 independent runs, the best fitness value
found by WDFPA is f (X ) = 1.7249, and the corresponding
optimal solution is X = [0.2057, 3.470500, 9.0366, 0.2057].
Thus, WDFPA has better optimization accuracy than
many previous techniques in solving welded beam design
problems.

2) DESIGN OF SPRING PRESSURE
The spring pressure design problems proposed by
Belengundu et al. [53] and Arora [54] aim to reduce the min-
imum weight of the volume f (X ) under tension/compression.
The constraints involve the minimum deflection (g1(X )),
shear stress (g2(X )), impact frequency (g3(X )), and an exter-
nal diameter limitation (g4(X )). The design drawings are
shown in Fig. 85. Let X1 refer to the spring diameter, X2 refer
to the coil diameter, and X3 denote the number of coils. The
problem can then be expressed as:

Minimize f (X ) = (x3 + 2)x2x21

s.t. g1(X ) = 1−
x32x3

71785x41
≤ 0

g2(X ) =
4x22 − x1x2

12566(x2x31 − x
4
1 )
+

1

5180x21
− 1 ≤ 0

g3(X ) = 1−
140.45x1
x22x3

≤ 0

g4(X ) =
x1 + x2
1.5

− 1 ≤ 0

0.05 ≤ x1 ≤ 2; 0.25 ≤ x2 ≤ 1.3; 2 ≤ x3 ≤ 15;

The results given by the proposed algorithm and var-
ious previous research results are presented in Table 12.

VOLUME 7, 2019 111463



M. Lei et al.: Enhanced Metaheuristic Optimization: WDFPA

The optimal function value given by WDFPA is lower than
those reported by previous studies. After 30 independent runs,
the best fitness value for WDFPA is f (X ) = 0.012665,
and the corresponding optimal solution is X1 = 0.0517,
X2 = 0.3567, X3 = 11.2888. Thus, WDFPA achieves better
optimization accuracy than previous techniques in solving
spring pressure design problems.

V. CONCLUSION AND FUTURE WORK
To overcome the shortcomings of the original flower pol-
lination algorithm, a novel wind-driven approach has been
introduced. This wind-driven algorithm improves the search
speed and exploration capability of FPA. From the results
of 29 benchmark functions and two engineering examples,
the performance of WDFPA is better or at least comparable
to the comparison algorithms used in the experiments.

There are still many issues with WDFPA that will be
studied in the future. Firstly, different applications [60]–[62],
such as medicine and chemistry, could be considered.
Secondly, there are many NP problems in the literature, such
as knapsack problems [63]–[67] and image coloring prob-
lems, which may benefit from the application of WDFPA.
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