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ABSTRACT The effectiveness of biosignal generation and data augmentation with biosignal generative
models based on generative adversarial networks (GANs), which are a type of deep learning technique,
was demonstrated in our previous paper. GAN-based generative models only learn the projection between a
random distribution as input data and the distribution of training data. Therefore, the relationship between
input and generated data is unclear, and the characteristics of the data generated from this model cannot
be controlled. This study proposes a method for generating time-series data based on GANs and explores
their ability to generate biosignals with certain classes and characteristics. Moreover, in the proposed method,
latent variables are analyzed using canonical correlation analysis (CCA) to represent the relationship between
input and generated data as canonical loadings. Using these loadings, we can control the characteristics of
the data generated by the proposed method. The influence of class labels on generated data is analyzed by
feeding the data interpolated between two class labels into the generator of the proposed GANSs. The CCA of
the latent variables is shown to be an effective method of controlling the generated data characteristics. We are
able to model the distribution of the time-series data without requiring domain-dependent knowledge using
the proposed method. Furthermore, it is possible to control the characteristics of these data by analyzing the
model trained using the proposed method. To the best of our knowledge, this work is the first to generate
biosignals using GANs while controlling the characteristics of the generated data.

INDEX TERMS Biosignal generative model, generative adversarial networks, latent variable analysis.

I. INTRODUCTION
Biosignals, such as electrocardiogram (ECG) and electroen-
cephalogram (EEG) signals, strongly reflect human internal
states. In particular, abnormality in the human body, includ-
ing diseases, can cause visible changes in the patterns of
biosignals. For example, myocardial infarction induces an
increase in the Q-wave and ST segment of ECGs. Therefore,
abnormality in the human body can be detected by classifying
the patterns of biosignals. In fact, physicians refer to the
patterns of biosignals to diagnose diseases and determine
treatment.

Biosignal analysis benefits various fields such as medicine
and healthcare. In the medical field, biosignal analysis is
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utilized to detect diseases such as myocardial infarction [1],
epileptic seizures [2], and psychiatric disorders [3]. In health-
care applications, biosignal analysis is utilized for brain—
computer interfaces (BClIs) and the control of prosthetic limbs
based on electromyograms [4]. For BCIs, Rahul textitet al.
have reported that electric wheelchairs are controlled using
EEG [5]. In BCI applications in other fields, attempts to
control drones using EEG have also been reported [6].

Numerous studies have reported that biosignals can
be identified using a discriminative model of deep
learning [7], [8]. Owing to the development of deep learn-
ing, a few studies have achieved considerable increases in
classification accuracy.

The study of generative models based on deep learning
was motivated by the contribution of generative adversarial
networks (GANs) [9]. GANSs are a framework for learning a
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generative model. In a GAN, two neural networks, one for
generating synthetic data and the other for discriminating the
synthetic data from actual data, are simultaneously trained
while competing with each other. A GAN-based method
allows for the generation of data similar to given observations
without the domain-dependent knowledge of a target. A large
number of studies have been conducted using GANs for
various purposes. In particular, numerous studies on GANs
have been reported in the image domain for tasks such as
image super resolution [10], training stabilization [11], and
domain transformation [12]. However, these studies mainly
focus on the generation of images, and only a few studies have
reported the generation of time-series data [13]-[16].

Recently, we reported that biosignals can be generated
using a GAN framework and that the generated signals
are effective for data augmentation for biosignal classifica-
tion [17]. In [17], the internal structure of each neural network
in a GAN was developed based on a recurrent neural net-
work (RNN) using long short-term memory (LSTM) [18] for
its hidden layers, thereby allowing for the adaptation of the
GAN framework to time-series data generation. Several gen-
erative models of biosignals require the domain-dependent
knowledge of target biosignals. In contrast, this method does
not require domain-dependent knowledge. The validity of the
biosignal generation method proposed in [17] was qualita-
tively evaluated using the overall similarity between training
and generated data. The effectiveness for data augmentation
was shown via biosignal classification experiments.

However, there were the following limitations in [17]:

e The GANs should be prepared and independently
trained for each class, resulting in an increase in the
number of model parameters in proportion to the number
of classes.

o The generated data have not been evaluated quantita-
tively.

o The behavior of the generator is unclear.

In this study, we propose a conditional generation method
capable of generating multiple classes of time-series data
from one model. The technical highlight of our study is to
control the characteristics of the data generated from the
proposed method by clarifying the relationship between the
input and generated data. In the proposed method, class
labels are simultaneously input to a generator and a dis-
criminator and adapted to conditional generation. The aim
of the proposed method is to reduce training cost and clar-
ify the difference between the classes of training data by
training the time-series data of multiple classes with a single
model, in contrast to our previous method. In the exper-
iment, the quality of the generated data is quantitatively
evaluated using the similarity between the data generated
by the proposed method and the training data. It is difficult
to control the characteristics of the generated data because
the input—output relationship in ordinary GANSs is unclear.
Therefore, we analyze the input—output relationship of GANs
and control the generated data by referring to the analysis
result.
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The primary contributions of this work are as follows:
« A conditional method for generating multiple classes of

biosignals from a single model is developed.

o The performance of the proposed method is quantita-
tively verified.

o The behavior of the GAN-based generative model is
analyzed to control the characteristics of the data gen-
erated by the proposed method.

Il. RELATED WORK

A. BIOSIGNAL GENERATION MODELS

Various biosignal generation models have been investigated
for a long time [19]-[23]. The purpose of such stud-
ies is two-fold. One is the understanding of the mecha-
nism of biological systems [20], [24], [25]. For example,
Da Silva et al. [25] presented their view of the basic mech-
anisms of the routes to epileptic seizures. The other is the
generation of data for evaluating biosignal processing algo-
rithms [21]-[23]. McSharry et al. proposed an ECG genera-
tion model based on three ordinary differential equations.

Biosignal generation models are categorized into two
approaches, i.e., the mathematical model-based approach
and machine learning-based approach. For the mathematical
model-based approach, McSharry et al. proposed an ECG
generation model based on differential equations [23]. This
model consists of three ordinary differential equations and
can control various characteristics of generated signals, such
as the interval between waves and the value of P-waves
and Q-waves. Wendling et al. proposed a multiple coupled
populations model, where each single population model con-
sists of ordinary differential equations [22]. As an example
of machine learning-based approaches, Koski [19] proposed
an ECG generation model based on hidden Markov mod-
els (HMM). In [19], artificial ECG signals were generated
using an HMM and two-class classification between normal
and pathological ECG was performed using an HMM. Even
though both abovementioned approaches have the possibility
of generating high-quality data with characteristics similar
to original data, they have their advantages and disadvan-
tages. On one hand, the mathematical model-based approach
can change the characteristics of generated data by adjust-
ing parameters; however, domain-dependent knowledge is
required. On the other hand, the machine learning-based
approach does not require domain-dependent knowledge and
can therefore be applied to general applications, whereas the
model-based approach performs well only if the assumed
model structure sufficiently approximates the true data
distribution.

The proposed method is a machine learning-based
approach. Our method does not require distribution
assumptions because it is based on a GAN, which
is a neural-network-based generative model; however,
this method generates models with low interpretabil-
ity. Therefore, in this study, an analysis was performed
from various viewpoints to clarify the behavior of our
method.
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FIGURE 1. Overview of the GAN framework.

B. GANS

GANs are a method for estimating generative models pro-
posed by Goodfellow et al. in 2014 [9]. Fig. 1 shows an
overview of the GAN framework. Using this framework, it is
possible to generate data similar to given observations with-
out the domain-dependent knowledge of a target. GANs have
received considerable attention in recent years, particularly
in the computer vision community, and various derivatives
have been proposed by changing their learning methods and
structures.

A GAN consist of two different networks. One is a gener-
ative model referred to as a generator. A vector of random
numbers is fed into the generator. The generator produces
data with the same dimensions as those of training data.
The other network is a discriminative model referred to as
a discriminator. Training data and the data generated by the
generator are input to the discriminator. Then, the network
discriminates whether the input came from the training data
or generated data.

The generator and discriminator are repeatedly trained
in the GAN framework. Their relationship is frequently
compared to that of banknote counterfeiters and police. The
generator learns to generate data that the discriminator clas-
sifies as training data. In contrast, the discriminator learns to
discriminate training data and generated data correctly. As
a result, the generator gradually gains the ability to generate
data that are similar to but not completely the same as training
data. In other words, the generator learns the mapping from
a distribution of random numbers onto the distribution of
training data.

In recent years, numerous studies have been performed
using GANSs. Researchers have proposed new GANs for var-
ious purposes such as the improvement of learning stabil-
ity, the generation of high-resolution images, and translation
to different class images. For example, using Wasserstein
GANS, Arjovsky et al. improved learning stability, prevented
mode collapse, and provided meaningful learning curves
useful for hyperparameter searches. Moreover, methods of
conditional generation using GANs have been reported [16],
[26], [27]. These methods achieve conditional generation by
considering auxiliary information.

These studies mainly focus on the generation of images,
and only a few studies have reported the generation of

144294

time-series data [13]-[16]. For example, Yu et al. proposed
SeqGAN for natural language generation [14]. In SeqGAN,
the generator and discriminator are constructed based on
LSTMs and reinforcement learning is applied to the training
of the generator. Dong et al. proposed a music generation
method based on convolutional GANs [15]. This method con-
sists of multiple generators and discriminators that generate
and identify the sound of each track.

Our previous study [17] has demonstrated the effectiveness
of data enhancement using biosignals generated from GANSs.
In [17], biosignal generation and biosignal data augmentation
were performed by a time-series data generation method
based on GANSs constructed with LSTM. However, certain
limitations exist in our previous study. First, the proposed
GAN-based method must be trained independently for each
class. Second, the quality of generated data was not quanti-
tatively evaluated. Finally, the latent variable space was not
analyzed.

This study proposes a generation method based on GANs
that can select the class of generated data based on the class
label. In this method, it is not required to learn models
independently in each class. Furthermore, the behavior of
the proposed GAN is grasped through input—output analysis,
and the generated data characteristics not considered during
learning are controlled using the analysis results. Control by
a class label follows the principle of existing conditionally
generated GANs. Control by a class label is the same as
existing conditionally generated GANs. The contribution of
this work is to control the characteristics of the generated
data not considered during training by analyzing the trained
model.

IIl. TIME-SERIES DATA GENERATION METHOD

Fig. 2 shows the structure of the proposed method, which con-
sists of generator G and discriminator D. A unique property
of the proposed method is that both G and D are LSTMs to
generate time-series (i.e., sequences), whereas G and D are
convolutional neural networks in most GANs. For generating
sequences of length T, G and D are trained with a training
set X', which comprises M training sequences. Specifically,

X = {(x,cy)}, where each x is a sequence x =
X1y oo Xsy.ooxy and ¢ € {1,2,...,C} is the class
label of x.

Generator G consists of a deep LSTM layer and a fully
connected layer. The fully connected layer uses a sigmoid
function as the activation function. The generator receives a
noise sequence, Z = 21, ..., 2, ..., zr and its class label c,
as its input data. The value z; € R is sampled from a uniform
random distribution, U(—1, 1). Given the target class label
¢z, G tries to generate a time-series, G(z, ¢;) € R belonging
to class c;.

Discriminator D consists of a deep LSTM layer, a fully
connected layer, and an average pooling layer. Its fully
connected layer uses a sigmoid function as the activation
function. The average pooling layer outputs a scalar by
averaging the input over its dimensions. Discriminator D
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FIGURE 2. Overview of the proposed method. The generator learns to generate data similar to the original biosignal. The discriminator
learns to discriminate the data generated by the generator and the original biosignal. By learning these neural networks alternately,

the generator can generate data close to the original biosignal.

receives a sequence and its class label. The sequence is a
training sequence x or a generated sequence G(z, c;). The
class label is ¢, for the former case and c; for the latter.

In the training, D and G play the minimax game with the
evaluation function defined as

mgn max V(G,D) = Eyx [logD (x, cy)]
+ By, [1 —logD (G, cr) )] (1)

The detailed training procedure is shown in Algorithm 1.
The gradients with respect to the weights of the networks are
calculated using the backpropagation-through-time method.
Each minibatch for the training of D contains the same num-
ber of x and z, and no specification exists for the class label
ratio of the minibatch used to train D and G.

The weights are updated based on the unrolled GAN,
which is an updating rule proposed by Metz et al. [28]. In this
training procedure, the weights of D are updated K times with
the weights after the initial update 0;1) stored for later use.
Then, the weights of G are updated once. Finally, the weights
of D are replaced by 0;1). This updating rule allows us to
balance the training progress of G and D, thereby preventing
G from generating biased data. In the paper, K is set to 5.

IV. BIOSIGNAL GENERATION EXPERIMENT

Biosignal generation experiments were conducted using three
real-world biosignal datasets to quantitatively evaluate the
biosignal generation of multiple classes using the proposed
method. In this experiment, the data generated by the pro-
posed method were evaluated qualitatively and quantitatively.
First, the generated biosignals were qualitatively evaluated by
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comparing them with the actual biosignals. Then, the sim-
ilarity between the generated data and training data was
computed to evaluate the quality of the data.

The proposed method can also be used for data aug-
mentation. Data augmentation by the proposed method is
particularly useful for medical data that contain only small
amounts of labeled data. Specifically, data generated from
random input z is added to the training data. Appendix A
describes experiments that confirm the effectiveness of data
augmentation using the proposed method for three biosignal
datasets.

A. DATASETS

Three real-world biosignal datasets from The UEA & UCR
Time Series Classification Repository [29] were used in
this study. All datasets were normalized in a range O to 1.
The details of these datasets are as follows: The first dataset
is an ECG dataset referred to as “ECG 200;” this dataset
was created by Olszewski [30]. It consists of 200 sam-
ples of an ECG series. Each series traces the electric activ-
ity during one heartbeat, and the length of each series is
96. Out of 200 samples, 133 are labeled as normal and
the remaining 67 are myocardial infarctions (or abnor-
mal). In this paper, the normal and abnormal classes of
the ECG200 dataset are referred to as class 1 and class 2,
respectively. We randomly extracted 160 samples for train-
ing data from the ECG200 dataset. The second dataset
is an ECG dataset referred to as “TwolLeadECG,” which
was collected and added to the repository by Keogh [31].
This dataset consists of 1,162 samples of an ECG series,
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Algorithm 1 Training Procedure of the Proposed Method
Input:

Labeled training set X = {(x, c)}.
Output:

0 ,: Weights of the discriminator D

0,: Weights of the generator G

for number of training iterations do
for k < 1to K do _
Generate m noise sequences {(z®, cg))|i €
[1, m]} randomly. _
Select m training sequences {(x@, ¢\ i e
[1, m])} from X randomly.
Update D by ascending its stochastic gradient:

v, Ly [log (x, )]
+ Ly Jrog (1= D (6@, ), <))
if K = 1 then
Store 0;1).
end if
end for ‘
Generate m noise sequences {(z(’), cy))li e[l, m]}

randomly.
Update G by descending its stochastic gradient:

1 & o
Vo, Y log (1 -D (G(z(’), ), cgw)) .
i=1

Replace the weights of D by 09).
end for

and the length of each series is 82 (each time-series reflects
one heartbeat). In the TwoLeadECG dataset, two different
leads of the ECG are considered, and each signal originates
from one of these two leads. Out of 1,162 samples, 581 are
labeled as class 1 and the remaining 581 are class 2. The
aim of the TwoLeadECG dataset is to distinguish between the
signals originating from each lead. In this study, the classes
of the TwoLeadECG dataset are referred to as class 1 and
class 2. We randomly extracted 498 samples of each class
as training data. The third dataset is an EEG dataset referred
to as “Epileptic Seizure Recognition Data Set” [32]. This
dataset contains 9,200 normal series and 2,300 abnormal
series recorded during epileptic seizures. We randomly sam-
pled 9,200 training data from the entire data in the EEG
dataset. The length of each series was 178.

B. EXPERIMENTAL SETUP

In the experiments of each dataset, the number of LSTM units
of the generator and discriminator were 400, and the number
of LSTM layers of the generator and the discriminator were
4. The Adam optimizer [33] with an initial learning rate
of 0.0001 was used for weight updating. The number of
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training epochs was set to be 10,000. The details of the model
parameter are described in Appendix B.

The similarity of the quantitative evaluation was computed
by utilizing dynamic time warping (DTW) [34], [35]. The
similarity obtained using DTW can be calculated as follows:
Given two time-series data x and x¥), the DTW distance
is computed by finding the best alignment between them.
First, to align the two time-series data, an 7 x T matrix is
constructed, whose (k, [) element is equal to (x; — x;), where
x,i') and xl(]) are the points of time-series data x and x¥),
respectively. An alignment between the two time-series data
is represented by a warping path, W = wy, ..., w,, ..., Wg,
where w, is the index of the matrix. Warping path W starts at
the bottom-left corner and ends at the top-right corner of the
matrix. The best alignment is given by a warping path through
the matrix that minimizes the total cost of aligning its points,
and the corresponding minimum total cost is termed as the
DTW distance. The DTW distance is calculated as

R

arg min Z (xlsi)

W=wi,...owp, ..., WR r:l,wr:(k,l)

DTW(x?, x0) = —xMy2.

@

In addition, the quantitative evaluation compares the
results obtained using the proposed method and the four
existing data generation methods. The first method adds a
noise sequence to the training data. We generated the noise
sequence at each time-point ¢ from a Gaussian distribution
with zero mean and standard deviation o calculated across
all training data. New samples can be generated as

y=x9+ye e ~ N, o), 3)

where x is the i-th sample of the training data, and y
is a constant value. In our experiments, y was set to be
0.5. The second method generates new data by interpolating
between the training data of the same class label. New sam-
ples can be synthesized as follows:

y=00-x?+ 1, )

where x) denotes the training data most similar to x®
and A is a coefficient related to interpolation in a range of
[0, 1]. The similarity between the training data is calculated
by Euclidean distance. In our experiments, we used A =
[0.1, 0.9]. The third method extrapolates between the train-
ing data of the same class label to generate new data. New
samples are synthesized as

y=0+0x? -, (5)

where xU) denotes the training data most similar to x®,
and A is coefficient related to interpolation in a range of
[0, 00). The similarity between the training data is calculated
by Euclidean distance. In our experiments, we used A =
[0.1, 0.9]. The final method uses an HMM to generate data.
Each state of the HMM was constructed with a Gaussian mix-
ture distribution. The parameters of the HMM were estimated
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FIGURE 3. Example of the original and generated signals. Three medoids obtained by k-medoids clustering (k = 3) from the original dataset are
shown as the original signal examples. The signal most similar to each original signal example was selected from the data generated using the

proposed method.

using the Baum—Welch algorithm, and the number of states
of the HMM was determined based on Akaike’s information
criterion.

C. GENERATION RESULTS

Fig. 3 shows an example of the original data and the data gen-
erated using the proposed method. Figs. 3(a), (b), and (c) are
examples for the ECG200, TwoLeadECG, EEG datasets,
respectively. The left side of each figure is an example of
class 1, and the other side is an example of class 2. In each fig-
ure, three medoids obtained by k-medoids clustering (k = 3)
are shown as the original signal examples. For the generated
signal examples, a sequence most similar to each original
signal example is selected based on the DTW distance.

D. QUALITY EVALUATION

The average similarity between the original and generated
data was computed to evaluate the quality of the data gen-
erated using the proposed method. Here, the original data
were sourced from the dataset used for training the proposed
method, and the average similarity among the original data
was used as a baseline for evaluation. In the evaluation pro-
cedure, first, the same amount of data was selected from
each data group, and then, the similarities of all combinations
of data for evaluation were calculated by brute force. The
average DTW distance and standard deviation were used as
the evaluation result. A small average DTW distance is a good
result because this value indicates the dissimilarity between
the target data and original data. However, if this value is
extremely small, it implies that the target data are the same
as the original data, which is a worse result.

Fig. 4 shows the quality of the data generated by each
data augmentation method. Figs. 4(a) and (d) show the eval-
uated result of class 1 and class 2 of the ECG200 dataset,
respectively. Figs. 4(b) and (e) show the evaluation result of
class 1 and class 2 of the TwoLeadECG dataset, respectively.
Figs. 4(c) and (f) show the evaluation result of class 1 and
class 2 of the EEG dataset, respectively. Each bar indicates the
average DTW distance among the original data and between
the original data and target data generated using each data
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augmentation method. The horizontal axis labels indicate
the evaluated data, the vertical axis represents the average
similarity obtained using the DTW distance, and the error bar
indicates the standard deviation of these similarities.

V. ANALYSIS OF THE INPUT-OUTPUT RELATIONSHIP
Two experiments were performed to analyze the input—output
relationship of the generator of the proposed method and con-
firm controllability. One was to analyze class labels and the
other to analyze the latent variable space. Class-label analysis
was performed to evaluate the discrimination between the
classes of the generated data. Latent variable space analysis
was performed to clarify the relationship between the input
data as a latent variable and the characteristics of the gener-
ated data. Furthermore, the characteristics of the generated
data were controlled using the results of this analysis.

A. ANALYSIS OF EFFECT OF CLASS LABELS

Class labels were interpolated to verify whether it is pos-
sible to generate data that reflect the features of each class
according to a given class label. An input class label, c;, was
obtained by linear interpolation between the original class
labels. If c; is close to a certain class label, the generated
data strongly reflect the characteristics of the training data of
the class. In addition, the difference between the data of each
class was confirmed using the transition of the data generated
by the proposed method.

The generator of the proposed method was given a fixed
noise sequence, z, and class labels {c§|i € [1,100]}. The
data were divided into 100 class 1 and class 2 samples. By
comparing the data generated with class label cé') and the
average value at each time point of the training data of each
class, it is demonstrated that the generated data reflect the
features of each class of training data.

Fig. 5 shows the result of the interpolation of class labels
by the proposed method. In these figures, the amplitude of
each generated data is shown as a heat map, and the ver-
tical axis shows the class label. Figs. 5(a), (b), and (c) are
the results obtained using the proposed method trained by
the ECG200, TwoLeadECG, and EEG datasets, respectively.
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FIGURE 4. Similarity of the data generated by each data augmentation method. Each bar in the graph shows the average value and standard
deviation. The red dashed line indicates the accuracy of the classifier when data augmentation is not applied.

In the heat map in the middle of each figure, the results of
G(z, cgl)), G(z, c?)), ..., G(z, c§1°°)) in order from the top are
shown.

B. ANALYSIS OF LATENT VARIABLE SPACE AND
CONTROL OF GENERATED DATA
The latent variable space was analyzed to control the char-
acteristics of the generated data,. In the GAN-based method,
to generate data with certain characteristics, it is necessary
to find input data with the desired characteristics manually
from a large number of pairs of generated and input data.
This is because there is no direct parameter for controlling
the characteristics of the generated data. However, this task
is highly time consuming and undesirable. Therefore, it is
better to automatically control the behavior of the GAN-
based method. The behavior of the proposed method can be
understood by analyzing the input—output relationship.
Canonical correlation analysis (CCA) was conducted to
analyze the latent variable space. CCA is a method of ana-
lyzing the interrelationship between two variable groups. It
linearly converts each variable group into a variable group
with the maximum correlation. CCA determines the transfor-
mation, wy, wy, and it is defined as

(wx, wy) = ar§ r:vlaxp (X, Y,w,, wy) ,
x-Wy
XTw, - YTw,
T T :
X wel[[IY " wyl

P (X, Y, w,, wy) = (6)
Even though there is a limit in linear CCA, it was performed
for obtaining a broad estimate of the behavior of the proposed
method.

In this experiment, CCA was performed on the pairs of
the input data and the variables extracted from the gener-
ated data. The various variables extracted from the generated
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data were the maximum value, the point of the maximum
value, the minimum value, the point of the minimum value,
maximum-to-minimum interval length, mean amplitude, and
the mean frequency on the ECG200 and TwoLeadECG
datasets. In case of the EEG dataset, mean amplitude, stan-
dard deviation, median, and mean frequency were extracted
from the generated data. Then, the canonical loadings were
obtained, which indicate the contribution rate of the original
variable groups to the converted variable groups.

The generated data were controlled by changing the input
data based on the canonical loadings obtained from CCA.
The canonical loadings of the highest canonical correlation
coefficient multiplied by a constant ranging from 0 to 2
were given to the proposed model as input data, and the
characteristics of the generated data were observed.

The panels of Fig. 6 show the canonical loadings of the
ECG200, and TwoLeadECG, and EEG datasets computed by
CCA. The graph shows the canonical loading corresponding
to the 1st canonical correlation coefficient. In each figure,
the left side is the canonical loading of the input data and the
right side is the canonical loading of the data converted from
the generated data.

Fig. 7 shows the results of the attempt to control the
generated data based on the first canonical loadings of the
input data. The panels of Fig. 7 show the control results
of the ECG200, TwoLeadECG, and EEG datasets. In each
figure, the left, middle, and right parts are the input data based
on the canonical loadings, the generated data, and the data
converted by the generated data, respectively.

VI. DISCUSSION

Fig. 3 confirms that the proposed method generates time-
series data that have characteristics similar to the original
data. For the ECG200 dataset, the peak close to the initial time

VOLUME 7, 2019



S. Harada et al.: Biosignal Generation and Latent Variable Analysis With Recurrent GANs

IEEE Access

1.0

0.0

Time

(a) ECG200 dataset

(b) TwoLeadECG dataset

1.0

0.0

Time

(c) EEG dataset

FIGURE 5. Results of the interpolation of class labels on the ECG200, TwoLeadECG, and EEG datasets. The top and bottom columns contain data
generated from fixed random sequence z and class labels c(!) and c(199), respectively. The vertical axis follows the change in class label ¢, and the

horizontal axis shows the data point of each time-series.
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FIGURE 6. Results of the input-output analysis of the proposed method obtained from the CCA between the generated data and corresponding

input data.

point and the rapid decrease and increase around the 30th time
point are retained in the generated data. For the other datasets,
the characteristics of the training data are mostly reproduced.
The comparison of classes 1 and 2 of the generated data
confirms that the feature is captured for each class.

Fig. 4 quantitatively shows that the quality of the generated
data is high because the average similarity between the data
generated by the proposed method and the original data is
close to that of the original data. The results of the proposed
method are not inferior compared to methods other than our
previous method and the HMM. As the generated data of
these methods are obtained by converting the training data
in a simple manner, the fact that the result obtained by the
proposed method is not inferior compared to the result of
these methods further indicates that the quality of the data
generated by the proposed method is high. Furthermore,
the results of the proposed method are not inferior compared

VOLUME 7, 2019

with our previous method, which trains each class indepen-
dently. This result demonstrates that one model can replace
the multiple models of our previous method, which should
reduce calculation costs. The number of parameters of the
proposed method is 1/C times the number of parameters of
the conventional method when the number of layers and the
number of LSTM units are equal in both methods, where C
is the number of classes.

Fig. 5 confirms that the feature of the generated data can
be controlled by the auxiliary information given at the time
of training by the proposed method. For the ECG200 dataset,
the change in amplitude around the initial time point gradu-
ally becomes more moderate and the fluctuation of the ampli-
tude around the intermediate time points gradually decreases
when the class label changes from class 1 to class 2. For the
EEG dataset, the frequency of the generated data increases
according to the change in the class label in Fig. 5(c).
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the proposed method.

The transitions of the generated data are reasonable based
on the details of each dataset. These results confirm that it is
possible to control the characteristics of generated biosignals
by training a model using prior information such as class
labels.

In Fig. 6, the relationship between the input and generated
data is confirmed to correspond to the canonical loadings, and
the behavior of the model generated by the proposed method
can be grasped from the result. Furthermore, Fig. 7 reveals the
effectiveness of the method of controlling the generated data
based on the CCA result. Figs. 6(a) and (b) shows a strong
canonical correlation between the first to fourth time points
of the input data and the maximum value and mean frequency
of the generated data. The results pertaining to control using
the canonical loadings shown in Figs. 7(a) and (b) confirm
that the maximum value and mean frequency of the generated
data increase according to the change in input data. In the
other datasets, it is confirmed that the characteristics of the
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generated data are controlled according to the relationship
between the input and generated data shown in Fig. 6. These
results verify that the characteristics of the generated data not
given as auxiliary information at the time of training, such as
the mean frequency and maximum value, can be controlled
using the input—output analysis based on CCA.

VIl. CONCLUSION
In this study, a conditional generation method for time-
series data based on GANs was proposed. In the proposed
method, each neural network in a GAN was developed using
LSTM units for its hidden layers, thereby allowing for the
conditional generation of time-series data according to class
labels. In this method, data similar to training data could be
generated without requiring domain-dependent knowledge.
In the experiments, the ability of the proposed method to
conditionally generate biosignals was confirmed using three
real-world datasets and the controllability of the data gener-
ated by the proposed method was verified. First, the quality
of the data generated using each method was quantitatively
evaluated using similarity based on the DTW distance. The
results showed the similarity between the original and gener-
ated data. Next, to verify the controllability of the generated
data, the input—output relationship of the model generated
using the proposed method was analyzed through CCA, and
input data changed based on the CCA results were applied
to the model. The input data changed using the CCA results
were shown to generate data with the intended changes in the
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TABLE 1. Hyperparameters of the generator.

Layer  # of units Activation
Input
LSTM 400 Tanh
LSTM 400 Tanh
LSTM 400 Tanh
Fully connected 1 Sigmoid
Optimizer ~ Adam (Ir = 0.0001)
TABLE 2. Hyperparameters of the discriminator.
Layer  # of units Activation
Input
LSTM 400 Tanh
LSTM 400 Tanh
LSTM 400 Tanh
Fully connected 1 Sigmoid

Global average pooling

Optimizer ~ Adam (Ir = 0.0001)

characteristics. To the best of our knowledge, this study is
the first attempt to control the characteristics of the generated
data using an analysis of the results of the data generated by
a GAN.

A few limitations exist in this study. First, the learning
termination condition of the proposed method cannot be
uniquely determined because the loss value output from a
GAN does not indicate its learning progress. Second, hyper-
parameters must be tuned because the quality of the generated
data may vary depending on the hyperparameters. Third,
the characteristics that do not change considerably in the
training dataset cannot be controlled using the generated data.
Fourth, it requires a substantially long time to train the model
of the proposed method. Finally, the proposed method may
not be able to reproduce high frequency components because
the LSTM behaves like a low-pass filter [36].

APPENDIX

A. DATA AUGMENTATION EXPERIMENT

We conducted biosignal classification experiments and con-
firmed the effectiveness of data augmentation by the proposed
method. The effectiveness was evaluated by adding the gener-
ated data for training an LSTM-based classifier. The classifier
consists of two hidden layers with 20 LSTM units for each
layer and a fully connected layer. Its fully connected layer
has a softmax function as the activation function.

Three datasets, ECG200, TwoLeadECG, and EEG, were
used for the evaluation. The ECG200 dataset was randomly
split into 160 and 40 samples, the TwoLeadECG dataset into
996 and 116 samples, and the EEG dataset into 9,200 and
2,300 samples for training and testing, respectively. Using the
training data, we trained our generator and then generated a
large amount of data. Classifier training was repeated 5 times
while randomly selecting generated data to be added, and the
average error rate was taken as the experimental result.

Fig. 8 shows the error rate when applying data augmenta-
tion by the proposed method. This figure shows that the error
rate improved after applying the proposed method. Thus, this
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result confrims the effectiveness of data augmentation by the
proposed method.

B. HYPERPARAMETERS

We summarize the hyperparameters used for the generator
and discriminator of the proposed GAN in Table 1 and 2,
respectively.
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