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ABSTRACT This paper focuses on the problem of multistatic sonar localization with a transmitter where
the known signal transmission speed, the transmitter and receiver positions are all contaminated by Gaussian
noise. The Cramér-Rao lower bound (CRLB) are derived for the object position and the localization
parameters. The analysis in CRLB shows that the localization parameters have a chance to be updated tomore
accurate ones. Two solutions are then proposed to estimate the object position using the time measurements
and angle measurements. One is a two-step closed-form solution based on weighting least squares and the
other is a generalized trust region subproblem (GTRS) solution using Newton’s method. A recursive MLE is
also proposed to update the localization parameters and a more accurate propagation speed can be obtained
from the proposed MLE especially when the propagation speed noise is large. Simulations show that the two
localization solutions and the propagation speed updated from the proposed MLE can reach their CRLBs.

INDEX TERMS Multistatic sonar, active localization, CRLB, closed-form solution, GTRS, signal
propagation speed.

I. INTRODUCTION
The problem of localization of an object, whether active
or passive, has been an interest basis research due to its
various applications in many areas, including wireless sensor
networks (WSN), Internet of Thing (IoT), radar and sonar,
etc [1]–[8]. As we know, most of the research focused on
passive localization which are usually based on time differ-
ence of arrival (TDOA), angle of arrival (AOA), or frequency
difference of arrival (FDOA), or their combinations [9]–[13].
However, when the signal emitted from the unknown object
is too weak to be estimated, the performance of passive
localization will deteriorate.

Active localization using multistatic sonar has robust per-
formance and flexible applications in an underwater envi-
ronment [14], [15]. When the transmitters and receivers are
deployed in different positions, all the transmitters radiate
acoustic signals in the same time and the passive receivers
try to detect and locate the potential object from the reflected
signals. The measurements used in multistatic sonar localiza-
tion are similar to passive localization, including time delay,
bearing angle and Doppler frequency shift, as well as their
combinations. The nonlinear relationships between the object
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position and the measurements form a challenging estimation
problem in localization.

A number of localization methods have been proposed
to estimate the object position from the nonlinear measure-
ments. The maximum likelihood estimator (MLE) [16], [17]
is an accurate method which is commonly used as a bench-
mark in literature. However, most MLEs are time consuming
by the numerical grid search technique or require good initial
guess by the gradient based iterative technique. [18]–[20]
proposed a type of closed-from solution which introduces
nuisance variables to construct a series of linear equations
and solve the equations using weighted least squares (WLS).
[21] transformed the localization problem to a generalized
trust region subproblem (GTRS) and solved it accurately
by bisection algorithm. In [22], a three-step method based
on WLS was developed to jointly estimate the position and
the unknown signal propagation speed. These methods are
simple and computationally efficient and they can reach the
Cramér-Rao lower bound (CRLB) in the small error region.
However, the parameters (sensor position or signal propaga-
tion speed) used for localization are supposed to be known
exactly.

In the underwater environment, the signal propagation
speed, the transmitter and receiver positions may not be
known accurately [23], [24]. The errors appearing in the
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parameters need to be taken into consideration. Hence,
the mentioned methods [10]–[12], [16]–[20], [25] will not
be suitable for multistatic sonar localization. The method
proposed in [26], [27] took the sensor position error into
account to improve the estimation accuracy and the CRLB
was derived in this case.

Apart from the uncertainties of the sensor positions,
the signal propagation speed or sound speed varies with
depth, temperature, and salinity [23], [28], [29] in the under-
water environment. This implies that the sound speed is time-
variant and space-variant. Hence, there are many assumptions
that have been proposed for the sound speed.
• The sound speed is a deterministic constant which is
known exactly [8], [10], [20], [25]. Many localization
works from the existing literature adopt this assumption.

• The sound speed is a deterministic constant which
is unknown [22], [30], [31]. Because sound speed is
time-variant and space-variant, it is assumed to be an
unknown together with object location that could be
estimated from the measurements.

• The sound speed is a random variable whose expected
value and variance are known exactly [27]. The authors
in [27] proposed efficient closed-form solutions for mul-
tistatic sonar localization where the sound speed is sup-
posed to be a Gaussian random variable. A four-stage
solution based on WLS was developed to estimate the
object position only.

• The sound speed profile (SSP) is another commonly
used model to capture the features of the propagation
speed in the underwater environment [32], [33]. How-
ever, this SSP model is still complicated although it is
merely a function of depth.

Considering the complexity of the underwater environment
where the propagation speed together with sensor positions
are all time-variant, in this paper, they are supposed to be
unknown constants with respect to time during a short mea-
surement period. During each period, the obtained localiza-
tion parameters, i.e., propagation speed, the transmitter and
the receiver positions are measurements of the true values
and all contaminated by noise. In addition to estimating the
object location, the localization parameters shall also have
an opportunity to be updated to more accurate values that
would work for the benefit of the applications related to these
parameters. To the best of our knowledge, this scenario is not
available in the existing literature.

In this paper, we focus on multistatic sonar localization
with a transmitter. The localization parameters are all mod-
eled as measurements with Gaussian noise where the true
values are unknown constants. The aim of this paper is to esti-
mate not only the object position, but also the the propagation
speed. The main contributions of this work are highlighted as
follows:
• The CRLBs are derived for both object position and the
localization parameters. The analysis in CRLB shows
that all the localization parameters have a chance to be
updated to more accurate ones.

• Two solutions are proposed to estimate the object posi-
tion using the time measurements and angle measure-
ments. One is the two-step closed-form solution based
on WLS and the other is the GTRS solution using
Newton’s method. Both solutions can reach the CRLB
analytically.

• A recursive MLE based on the first order Taylor expan-
sion of the cost function is proposed to update the
localization parameters and a more accurate propagation
speed can be obtained from the proposed MLE espe-
cially when the propagation speed noise is large.

The following paper will start with the measurement mod-
els in Section II. Section III derives the CRLB and gives an
analysis. Section IV develops two different solutions to esti-
mate the object position, and one solution to update the local-
ization parameters. Section V shows the simulation results
and Section VI gives the conclusion.
Notations: We use lowercase letters to represent scalars,

and lowercase bold letters for column vectors, and uppercase
bold letters for matrices. The symbols 0, I and O represent
the zero vector, identity and zero matrices respectively, with
subscript indicating their size when needed. x(i) is the i-th
element of x and x(i : j) is a subvector formed by the i-th to
the j-th element. ‖x‖ is the l2 norm of x. diag(A,B) represents
a block diagonal matrix whose diagonal blocks are A and B.
A � 0 means A is semi-positive definite.

FIGURE 1. Localization scenario.

II. MEASUREMENT MODELS
We are interested in a multistatic sonar system with N
receivers at soi = [soi,x , s

o
i,y]

T and a transmitter at to =
[tox , t

o
y ]
T , as shown in Fig. 1. The sonar system is used to

locate an object at uo = [xo, yo]T by the time and bearing
measurements obtained from all the receivers. The transmitter
radiates a probing signal and all the receivers observe the
signal through two paths: the direct propagation path from
transmitter and the indirect reflection path from the object.
Each receiver can obtain a differential delay time measure-
ment of the two paths from autocorrelation technique [34]
and a bearing angle measurement of the object from the array
signal processing technique [35] if the conditions of these
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pre-processing steps (e.g. sufficient observation period and
signal bandwidth) are satisfied.

The true differential delay time τ oi of receiver i is

τ oi =
1
co
(
‖uo − to‖ + ‖uo − soi ‖ − ‖t

o
− soi ‖

)
. (1)

where co is the signal propagation speed and ‖ · ‖ represents
the Euclidean norm. The time measurement of receiver i is

τi = τ
o
i +1τi . (2)

with i = 1, 2, · · · ,N , where 1τi is zero-mean Gaussian
random noise. For notation simplicity, collecting the time
measurement τi gives the measurement vector as

τ = τ o +1τ . (3)

where τ = [τ o1 , τ
o
2 , · · · , τ

o
N ]

T and the noise vector 1τ =
[1τ1,1τ2, · · · ,1τN ]T with covariance matrix Qτ .
The true bearing angle θoi of receiver i depends on the

object position uo and the receiver position soi by

θoi = arctan
yo − soi,y
xo − soi,x

. (4)

The angle measurement θi obtained by receiver i is also
contaminated by zero-mean Gaussian noise,

θi = θ
o
i +1θi . (5)

The measurement vector formed by angle measurement θi is

θ = θo +1θ . (6)

where θo = [θo1 , θ
o
2 , · · · , θ

o
N ]

T and the noise vector 1θ =
[1θ1,1θ2, · · · ,1θN ]T with covariance matrix Qθ . In this
paper, the angle measurement noise and time measurement
noise are supposed to be independent.

Combining the time and angle measurement together,
the total measurement vector is

m = [τT , θT ]T = mo
+1m (7)

where1m = [1τT ,1θT ]T is the measurement noise vector
with covariance matrix Qm = diag(Qτ ,Qθ ).

In the underwater environment for sonar localization,
the parameters including transmitter position to, receiver
position soi and signal propagation speed c

o are not accurately
known to an estimator. In fact, only the nominal parameter
values t, si and c are available for the estimator, rather than
their true values. In this paper, the nominal parameters are
measurements of the true values and they are supposed to be

c = co +1c (8a)

t = to +1t (8b)

si = soi +1si (8c)

where 1c, 1t and 1si are also zero-mean Gaussian
noise. The noises of all parameters and the noises of all
measurements are supposed to be independent with each
other. The variance of 1c is σ 2

c . For notation simplic-
ity, we collect the transmitter and receiver positions as

p = [tT , sT1 , s
T
2 , · · · , s

T
N ]

T , and the corresponding sensor
position noise is 1p with covariance matrix Qp. In the fol-
lowing, the general term sensor will be used to represent
transmitter and receiver.

We would like to estimate the object position uo from the
time and angle measurementsm together with the inaccurate
transmission speed c and sensor position p. In addition, trans-
mission speed c or sensor position p will also be updated
because the analysis shows that the nominal values of all
parameters have a chance to be updated to more accurate
ones.

III. CRLB AND ANALYSIS
A. CRLB
We are interested in evaluating the CRLB of the multistatic
sonar localization when considering the effect of signal prop-
agation speed error and the sensor position errors. Define
the unknown vector as αo = [uoT , co,poT ]T , the measure-
ment vector m, the transmission speed c and sensor posi-
tion p are Gaussian distributed, and these measurements are
independent with each other. Therefore, the joint probability
distribution function for m, c and p is

f (m, c,p) = f1(m|c,p)f2(c)f3(p) , (9)

where f1(m|c,p) is the conditional probability distribution
function ofm given c and p. f2(c) and f3(p) are the distribution
functions of c and p respectively. Taking logarithm of (9) and
rearranging yield

ln f (m, c,p)= ln f1(m|c,p)+ln f2(c)+ln f3(p)

= k −
1
2
(m−mo)TQ−1m (m−mo)

−
(c− co)2

2σ 2
c
−
1
2
(p−po)TQ−1p (p−po) (10)

where k is a constant which is independent of αo.
The CRLB of αo is given by

CRLB(αo) = FIM(αo)−1 (11)

where FIM(αo) is the Fisher information matrix. It can be
expressed as [36]

FIM(αo) = E
[
∂ ln f (m, c,p)

∂αo
∂ ln f (m, c,p)

∂αoT

]
(12)

where
∂ ln f (m, c,p)

∂αoT
=
∂ ln f1(m|c,p)

∂αoT
+
∂ ln f2(c)
∂αoT

+
∂ ln f3(p)
∂αoT

(13)

and
∂ ln f1(m|c,p)

∂αoT
= (m−mo)TQ−1m

∂mo

∂αoT
(14a)

∂ ln f2(c)
∂αoT

= [0T2 , (c− c
o)σ−2c ,0T2N+2] (14b)

∂ ln f3(p)
∂αoT

= [0T2 , 0, (p− po)TQ−1p ]. (14c)
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The notationE[·] represents the expectation and ∂mo/∂αoT is
in Appendix A. After putting (13) and (14) in (12), the expec-
tation can be expressed as [26]

FIM(αo) =
[
X Y
YT Z+3

]
(15)

where

X =
∂moT

∂uo
Q−1m

∂mo

∂uoT

Y =
∂moT

∂uo
Q−1m

∂mo

∂%oT

Z =
∂moT

∂%o
Q−1m

∂mo

∂%oT

3 = diag(σ−2c ,Q−1p ) (16)

and %o = [co,poT ]T is the true value vector of the localization
parameters. The upper left block 2×2 of (11) gives the CRLB
of object location. Substituting (15) in (11) and using the
partitioned matrix inversion formula yield

CRLB(uo) =
(
X− Y(Z+3)−1YT

)−1
. (17)

The CRLB for co and po can also be obtained as

CRLB(%o) =
(
Z+3− YTX−1Y

)−1
. (18)

B. ANALYSIS
1) THE NOMINAL PARAMETER NOISE IS INSIGNIFICANT
When the noises of nominal parameters, i.e., 1c and 1p are
relatively small compared with the measurement noise 1m,
we can approximate

(
Z+3− YTX−1Y

)−1
as 3−1. Hence,

the CRLB of %o can be approximated as

CRLB(%o) ≈ 3−1 = diag(σ 2
c ,Qp) (19)

where3−1 is the covariance matrix of the nominal parameter
vector %.

2) THE NOMINAL PARAMETER NOISE IS SIGNIFICANT
When the nominal parameter noise is significant, (19) will
not be accurate. Invoking the Woodbury identity in (19) that

CRLB(%o) = 3−1 −
(
3(Z− YTX−1Y)−13+3

)−1
.

(20)

Note that (Z−YTX−1Y)−1 represents the CRLB of %o when
the nominal values of co and po are not available. We also
know that3−1 is the covariancematrix of the nominal param-
eter vector % before estimation, and CRLB(%o) is the lower
bound of the covariance matrix after estimation. Obviously
the second term in (20) is a definite matrix by applying the
properties of definite matrix. Therefore

3−1 � CRLB(%o) (21)

FIGURE 2. Comparison of the CRLB and the nominal parameter RMSE for
the signal propagation speed co.

FIGURE 3. Comparisons of the CRLBs and the nominal parameter RMSE
for the sensor (transmitter to and receiver so

i ) position.

which means the nominal values of c and p shall be
updated to more accurate ones through the time and angle
measurements.

Fig. 2 and Fig. 3 show an example of the CRLB for the
nominal parameter. The setting is the same as in Section V,
where Qτ = (σ/co)2I, Qθ = σ 2

θ I and Qp = σ 2
p I. In the

figures, σ = 1 m and σθ = 1 deg. We set σp = 1 m
in Fig. 2 and σc = 5 m/s in Fig. 3 respectively. Fig. 2
shows that the CRLB of signal propagation speed co is lower
than the nominal parameter RMSE all the time and the the
gap between them will become significant when the noise
variance of co increases. When σc is small, the CRLB is
closed to the nominal parameter RMSE. Fig. 3 gives the
CRLBs for all sensor positions and the nominal parameter
RMSEs for them. Because their nominal parameter RMSEs
are the same, the figure only shows one nominal parameter
RMSE.As expected from the analysis, all the positionCRLBs
are lower than the RMSEs. However, the gaps among the
CRLBs and the nominal parameter RMSE are not significant
for all sensors even though the position noise σp is large.
In addition, the extensive Monte Carlo simulation tests in
Section V also show that it is not possible to update all the
sensor positions using the proposed method so that they can
reach their CRLBs.
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IV. LOCALIZATION SOLUTION AND PARAMETER UPDATE
In this section, two different solutions will be proposed to
estimate the location of object. One is the algebraic closed-
form solution that advances the previous research [27] and
reduces the computational complexity by decreasing the solu-
tion steps from 4 to 2. The other is the GTRS solution
using Newton’s method that has faster convergence speed
compared with the GTRS solution based on the bisection
algorithm [21]. In addition to the object location, the solution
based on maximum likelihood estimation (MLE) will also
be proposed to update the localization parameters to more
accurate values, which is very different from the existing
work, and this is also another major contribution of our work.

A. 2-STEP CLOSED-FORM SOLUTION
1) FIRST STEP
We will transform the measurement equations (1) and (4)
to linear equations using the available nominal values of
parameters. The items in (1) can be Taylor expanded as

‖uo − to‖ ≈ ‖uo − t‖ + ρTuo−t1t (22a)

‖uo − soi ‖ ≈ ‖u
o
− si‖ + ρTuo−si 1si (22b)

‖to − soi ‖ ≈ ‖t− si‖ + ρTt−si (1si −1t) (22c)

where ρa = a/‖a‖ defines the unit length vector of a. Substi-
tuting (2), (8a) and (22) in (1) and neglecting the second-order
noise terms yield

cτi ≈ ‖uo − t‖ + ‖uo − si‖ − ‖t− si‖ + nτ,i (23)

where

nτ,i = τi1c+ c1τi + ρTuo−t1t+ ρTuo−si 1si
− ρTt−si (1si −1t) . (24)

Moving the item ‖uo−t‖−‖t−si‖ from right to left, squaring
both sides and rearranging form

2‖uo − si‖nτ,i= c2τ 2i + 2cτi‖t− si‖+2tT (t−si)

− 2(t−si)Tuo−2(cτi+‖t− si‖)‖uo − t‖

(25)

where the second-order noise term is ignored. Let ϕo =
[uoT , ‖uo − t‖]T , and (25) can be transformed to a linear
equation in matrix form

Bτnτ = hτ −Gτϕo (26)

where nτ = τ1c+ c1τ + D11p. The related matrices are

Bτ =

2‖u
o
− s1‖ · · · 0
...

. . .
...

0 · · · 2‖uo − sN‖

 (27a)

hτ =

 c
2τ 21 + 2cτ1‖t− s1‖ + 2tT (t− s1)

...

c2τ 2N + 2cτi‖t− sN‖ + 2tT (t− sN )

 (27b)

Gτ =


2(t− s1)T 2(cτ1 + ‖t− s1‖)

...
...

2(t− sN )T 2(cτN + ‖t− sN‖)

 (27c)

D1 =


...

. . .

ρTuo−t + ρ
T
t−si ρTuo−si − ρ

T
t−si

...
. . .

 . (27d)

Next we will construct a linear equation related to angle
from (4). Define νoi = [− sin θoi , cos θ

o
i ]
T , (4) can be

expressed as

νoTi (uo − soi ) = 0. (28)

The Taylor expansion of νoi is

νoi = νi + ν̇i1θi (29)

where νi = [− sin θi, cos θi]T and ν̇i = [cos θi, sin θi]T .
Substituting (8c) and (29), ignoring the second-order noise
term, (28) becomes

νTi 1si + ν̇Ti (u
o
− si)1θi = νTi si − ν

T
i u

o. (30)

This is a linear equation of uo and the matrix form is

nθ = hθ −Gθuo (31)

where nθ = Bθ1θ + D21p and the related matrices are

Bθ =


ν̇T1 (u

o
− s1) · · · 0
...

. . .
...

0 · · · ν̇TN (u
o
− sN )

 , (32)

D2 =


0 νT1 · · · 0
...
...

. . .
...

0 0 · · · νTN

 , (33)

hθ =


νT1 s1
...

νTN sN

 Gθ =


νT1
...

νTN

 . (34)

Stacking (26) and (31) together yields the solution equation
using both time and bearing measurements in the first step as

n = h1 −G1ϕ
o (35)

where

n =
[
Bτnτ
nθ

]
, h1 =

[
hτ
hθ

]
, G1 =

[
Gτ

Gθ 0N

]
. (36)

Finally the closed-form solution using weighted least
squares (WLS) method in the first step is

ϕ = (GT
1W1G1)−1GT

1W1h1 (37)
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where the weighting matrix W1 = (E[nnT ])−1 ≡ Q−1n is
given in

Qn =

[
BτQn,τBTτ BτD1QpDT

2
D2QpDT

1B
T
τ BθQθBTθ + D2QpDT

2

]
(38)

and

Qn,τ ≡ (E[nτnTτ ])=σ
2
c ττ

T
+ c2Qτ + D1QpDT

1 . (39)

Note that W1 needs the true value of objection position uo.
We can first set the nonzero element related to uo in W1 as
1 to obtain an initial location estimate, and then W1 in the
first step shall be estimated using the initial location. When
the noise is not large, it can be shown that

E[ϕ] ≈ (GT
1W1G1)−1GT

1W1(G1ϕ
o) = ϕo, (40a)

cov(ϕ) = E[ϕϕT ]− E[ϕ]E[ϕT ] ≈ (GT
1W1G1)−1. (40b)

However, the solution in first step cannot reach the CRLB
because the relation between uo and ‖uo − t‖ is not con-
sidered. Next step the solution ϕ will be updated to a more
accurate solution.

2) SECOND STEP
This step exploits the relationship to improve accuracy. Sup-
pose ϕ = ϕo + 1ϕ, the relationship between ϕ(1 : 2) and
ϕ(3) is

(ϕ(3)−1ϕ(3))2=ϕo(3)2= (‖uo − t‖)2

=‖ϕ(1 : 2)−1ϕ(1 : 2)‖2+‖t‖2−2tTuo.

(41)

We also have an additional equation

1ϕ(1 : 2) = ϕ(1 : 2)− uo. (42)

Ignoring the second order noise terms in (41) and combining
with (42), we have

B21ϕ ≈ h2 −G2uo (43)

where

B2 =

[
I2 02

2ϕT (1 : 2) −2ϕ(3)

]
, G2 =

[
I2
2tT

]
, (44a)

h2 =
[

ϕ1(1 : 2)
‖ϕ1(1 : 2)‖

2
− ϕ(3)2 + ‖t‖2

]
. (44b)

The WLS solution to (43) is

u = (GT
2W2G2)−1GT

2W2h2 (45)

where the weighting matrix W2 = (B2cov(ϕ)BT2 )
−1. When

the noise is small, it can be shown that

cov(u) ≈ (GT
2W2G2)−1. (46)

After substituting the expressions of W2, cov(ϕ) and W1 in
(46) one after another, cov(u) becomes

cov(u)−1 = GT
2B
−T
2 GT

1Q
−1
n G1B−12 G2 (47)

where Qn is in (38). Putting (39) in (38) and rearranging
produce

Qn = B1

(
Qm + D33

−1DT
3

)
BT1 (48)

where Qm is defined under (7) and 3 is in (16), and

B1 =

[
cBτ O
O Bθ

]
, D3 =

[
τ/c D1/c
0 B−1θ D2

]
. (49)

Substituting (48) in (47) and invokingWoodbury matrix iden-
tity shall give the final expression of cov(u)−1 as

cov(u)−1 = D4Q−1m DT
4

−D4Q−1m D3

(
D3Q−1m DT

3 +3
)−1

DT
3Q
−1
m DT

4

(50)

where D4 = GT
2B
−T
2 GT

1B
−T
1 . On the other hand, the inverse

of the CRLB in (17) is

CRLB(uo)−1 = X− Y(Z+3)−1YT (51)

where X, Y and Z is shown in (16). Comparing (50) and (51)
implies that cov(u) and CRLB(uo) have the same form of
expression. If the noise is small enough so that the effect in
the related matrices is insignificant, it can be verified through
some algebraic manipulations that

D3 ≈ −
∂mo

∂%oT
, D4 ≈

∂moT

∂uo
. (52)

Therefore under small noise assumption, we conclude from
(50)–(52) and (16) that

cov(u) ≈ CRLB(uo). (53)

Remark 1: The 2-step closed-form solution proposed in
this section can be simplified to the other closed-form solu-
tion when we ignore the nominal parameter error. The pro-
cessing step follows the same procedure except for the
weighting matrix in (37) replaced by the modified weighting
matrix W̃1 = Q̃−1n and

Q̃n =

[
c2BτQτBTτ O

O BθQθBTθ

]
. (54)

When the measurement noise is larger than the parameter
noise, the weighting matrix will be dominated by Qm and
Qn ≈ Q̃n. Hence, these two solutions will have the similar
performance.

B. GTRS SOLUTION
The localization problem (35) can be transformed to a con-
strained weighted least squares (CWLS) problem

min
ϕo∈R3

(h1 −G1ϕ
o)TW1(h1 −G1ϕ

o) (55a)

s.t. (ϕo − a)T6(ϕo − a) = 0 (55b)

where 6 = diag([1, 1,−1]), and a = [tT , 0]T . Note that
(55) is a minimization of a quadratic function subject to a
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single quadratic constraint. Problems of this type are called
generalized trust region subproblems (GTRS) [21], [37].

Defining a Lagrange multiplier λ, the augmented cost
function is

J (ϕo, λ) = (h1 −G1ϕ
o)TW1(h1 −G1ϕ

o)

+λ(ϕo − a)T6(ϕo − a). (56)

Taking the partial derivative of J (ϕo, λ) with respect to ϕo

and setting the term to zeros produce

ϕ(λ) = (GT
1W1G1 + λ6)−1(GT

1W1h1 + λ6a). (57)

Substituting (57) into the constraint (55b), a nonlinear equa-
tion related to λ is obtained as

f (λ) , (ϕ(λ)− a)T6(ϕ(λ)− a). (58)

We can gain some insight from (56)-(58). When the mea-
surementm and these nominal parameters (c, t and si) in (56)
are all replaced by the true values (mo, co, to and soi ), the aug-
mented cost function shall have a minimum value equal to 0
and the optimal λ is equal to 0 which is also a root of f (λ).
This means when the noise appearing in the estimator is not
large, the optimal λ is the root of f (λ) which is close to 0. That
is to say, f (λ) has a root which is close to 0 and this root is the
optimal λ. Therefore a simple Newton’s method can be used
to search for the root of f (λ). The solution for GTRS using
Newton’s method is summarized in the following algorithm.

Algorithm 1 GTRS Solution Using Newton’s Method
Input: The constructed parameters h1,G1,W1,6, a and the
initial guess λ0 = 1λ and λ1 = 0
Output: An estimate ϕ and λ
1: while k is less than a given number of iterations do
2: Compute f (λk ) using (58)
3: if f (λk )− f (λk−1) is less than a given threshold level

then
4: Compute ϕ(λk ) using (57)
5: return ϕ(λk ) and λk

6: else
7: Update λ using λk+1 = λk−1f (λk )−λk f (λk−1)

f (λk )−f (λk−1)
8: k = k + 1
9: return result

This algorithm also needs an initial estimate for W1 and
it is described below (39). The initial value 1λ is a small
value which is used to approximate the derivative of f (λ) with
respect to λ when λ = 0.

The performance analysis of GTRS is to recast the CWLS
problem in (55) to a unconstrained minimization problem,
and then formulate the relationship between them. First, con-
sider the following unconstrained minimization problem by
removing the constrain in (55)

ϕ = argmin
ϕo∈R3

(h1 −G1ϕ
o)TW1(h1 −G1ϕ

o). (59)

This is a unconstrained WLS problem of ϕo, and the solution
and its covariance matrix are shown in (37) and (40b) respec-
tively. The imposing constrain (55b) formulates a projection
between ϕo and uo that can be expressed as

ϕo(uo) = [uoT , ‖uo − t‖]T (60)

where ϕo(uo) is parametric form of ϕo in terms of uo.
By defining the covariancematrices of (55) and (59) as covcon
and covun, the relationship between them is

covun = F covcon FT (61)

where

F =
∂ϕo(uo)
∂uoT

=

[
I2

ρTuo−t

]
. (62)

Hence covcon is obtained as

covcon =
(
FTF

)−1
FT covun F

(
FTF

)−1
. (63)

Combining the property of Moore-Penrose inverse of matrix
with above yields

covcon =
(
FT cov−1un F

)−1
. (64)

Substituting (40b) gives

cov−1con = FTGT
1Q
−1
n G1 F. (65)

Under small noise assumption, it can be verified through
some algebraic manipulations that

FTGT
1B
−T
1 ≈

∂moT

∂uo
. (66)

Finally, substituting (48) in (65) and following the same
procedures in Section IV-A, it can be shown that the GTRS
in (55) can reach the CRLB

covcon ≈ CRLB(uo). (67)

C. MAXIMUM LIKELIHOOD ESTIMATION
The proposed two solutions (i.e., 2-step closed-form solu-
tion and GTRS solution) are designed to estimate the object
location only. They cannot update the original parameters
(nominal signal propagation speed c and sensor positions p)
to more accurate ones, which can be achieved theoretically in
the analysis of CRLB. In this section, we will use the MLE
to update c and p.

A cost function is obtained from the logarithm likelihood
function (10) by ignoring the constant items,

J (αo) = (γ − γ o(αo))TQ−1γ (γ − γ o(αo)) (68)

where γ = [mT , c,pT ]T and γ o(αo) = [moT , co,poT ]T .
γ o(αo) is a function of αo. Q−1γ is

Q−1γ =

Q−1m σ−2c
Q−1p

 . (69)
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By using Taylor expansion, the nonlinear function γ o(αo) can
be linearized as

γ o(αo) ≈ γ o(α1)+ φ1(α
o
− α1), (70)

where α1 is an initial guess of αo and

φ1 =
∂γ o

∂αT

∣∣∣∣
α=α1

. (71)

∂γ o/∂αT is in Appendix B. Substituting (70) in (68) and
solving the equation ∂J (αo)/∂αo = 02N+5 give

αo=α1 +
(
φT1Q

−1
γ φ1

)−1
φT1Q

−1
γ

(
γ − γ o(α1)

)
. (72)

This suggests an iterative algorithm, which iterates between
αo and α1. By replacing αo and α1 with αk+1 and αk , we can
obtain the following iterative equation

αk+1 = αk +
(
φTk Q

−1
γ φk

)−1
φTk Q

−1
γ

(
γ − γ o(αk )

)
.

(73)

The reasonable initial guess for αk can be chosen as the
nominal parameters (c, t and si) combining with the object
location obtained from the closed-form solution or GTRS
solution.

When the proposed MLE method converges to the true
location value (i.e., αk+1 ≈ αo), the theoretical covariance
of this method shall be

cov(αk+1) ≈
(
φoTQ−1γ φo

)−1
(74)

where φo is the value by substituting αo in (71). Note that
(74) has the same form as the the CRLB in (11). Substituting
(71) and (82) in (74), after some straightforward algebraic
derivation, we have(

φoTQ−1γ φo
)−1
= CRLB(αo). (75)

Therefore, the proposed MLE solution can reach the
CRLB.

However, extensive simulations show that the performance
of the proposed MLE is sensitive to the sensor position
noise. The iterative MLE will not converge due to some
numerical problems when the sensor position noise becomes
large. It is the intent of the simplified MLE that ignores
the sensor position noise, and updates the propagation speed
while reducing the complexity of the MLE. The simplified
MLE inRemark 2will maintain the estimation accuracywhen
the sensor position noise is small.
Remark 2:There are total 2N+5 unknowns in the proposed

MLE solution (73) and 2N + 2 unknowns come from the
sensor positions. In reality, when the sensor position errors are
not large, the CRLBs of them are near the nominal parameter
RMSE. In addition, the analysis in Section III-B also shows
that the performance increases in sensor position CRLBs
are also limited. Therefore, the term ln f3(p) in (10) can be

ignored and a simplified recursive MLE solution to update c
only is obtained as

α̃k+1 = α̃k +
(
φ̃
T
k Q̃
−1
γ φ̃k

)−1
φ̃
T
k Q̃
−1
γ

(
γ̃ − γ̃ o(α̃k )

)
,

(76)

where

γ̃ = [mT , c]T (77a)

α̃k = [uTk , ck ]
T (77b)

γ̃ o(α̃k ) = [moT (α̃k ), ck ]T (77c)

φ̃k = ∂ γ̃
o(α̃k )/∂α̃k

T (77d)

Q̃γ = diag(Qm, σ
2
c ). (77e)

The complexity of MLE solution comes from the inverse of
matrix. The size of the inverse matrix in (76) is 3, while it is
2N + 5 in (73). Hence, the complexity of (76) is much lower
than that of (73).

V. SIMULATION
This section will examine the performance of the proposed
solutions, i.e., the 2-step closed-form solution, the GTRS
solution and the MLE solution. The former two solutions are
used to obtain the position estimate and the MLE solution
is used to update the nominal parameters which are also
contaminated by Gaussian noise.

TABLE 1. Localization geometry: object positions uo, transmitter position
to and receiver position si .

The localization geometry is based on [27] and it is shown
in Table 1. The true acoustic transmission speed is co =
1500 m/s. The noise covariance matrix of time delay mea-
surement is Qτ = (σ/co)2I and that of angle measurement
is Qθ = σ 2

θ I. The covariance matrix for nominal sensor
position is also set as a diagonal matrix Qp = σ 2

p I. The
performance of the method will be evaluated in terms of root
mean square error (RMSE) that is defined as

RMSE(xo) =

√√√√ 1
K

(
K∑
k=1

‖xk − xo‖2
)
, (78)

where K is the total number of trails and xk is a estimate of
the true value xo for a given method in the ith trail. In the
simulation, K is set to K = 5000. This section will present
two sets of simulations. The first set presents the localization
performance of the proposed methods and the second set
investigates the parameter update using the proposed MLE
method.
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A. OBJECT POSITION ESTIMATION
We first investigate the performance of the proposed methods
(denoted by ‘‘2 step’’ and ‘‘GTRS’’) when the measurement
noise increases. The simplified 2-step closed-form solution
(denoted by ‘‘Simplified 2 step’’) in Remark 1 and the the
simulation based on the MLE in [36] assuming no parameter
error are also included for comparison. The standard devia-
tion of signal propagation speed is σc = 5 m/s and the sensor
position noise is σp = 1 m.

FIGURE 4. Localization performance when time measurement noise σ
increases.

FIGURE 5. Localization performance when angle measurement noise σθ
increases.

Fig. 4 shows the RMSE as the time measurement noise
power increases when σθ = 1 deg. The proposed meth-
ods work well and both of them can reach the CRLB. The
simplified 2-step closed-form solution and the MLE solution
when assuming no parameter error have the same perfor-
mance. They both can also reach the CRLB when the time
measurement noise is large, but the RMSEs will be gradually
away from the CRLBwhen themeasurement noise decreases.
Fig. 5 illustrates the results in different level of the bearing
angle measurement noise when σ = 1 m. The angle noise
σθ has less effect on the localization performance because the
value of CRLB in the figure is from 4.65 to 4.72. Although the

RMSE of the proposed methods in this figure seems not to
reach the CRLB, the steady gap is only about 0.02 and it is
really a tiny value. The performance of the simplified 2-step
solution will degrade at small angle noise. It has a wider
gap (0.07 to 0.13) from the CRLB compared with the other
2 solutions.

In general, the proposed two methods have a good per-
formance in different measurement noise level. Besides,
the observations of the simplified 2-step method in Fig. 4 and
Fig. 5 are consistent with the description in Remark 1 that
the 2-step solution can be approximated by the simplified
2-step solution when the measurement noise (σ and/or σθ )
is relatively large.

We next examine the RMSE when we fix the measurement
noise. The time measurement noise is σ = 1 m and the angle
measurement noise is σθ = 1 deg.

FIGURE 6. Localization performance when the noise of signal
propagation speed increases.

Fig. 6 gives the results for the object position RMSE when
the sensor position noise is fixed at σp = 1 m and the signal
propagation speed noise σc varies from 2 m/s to 20 m/s. The
proposed 2-step closed-form solution and the GTRS solution
have the same performance and both of them can attain
the CRLB. However, the simplified 2-step method is only
accurate when σc is small. Its performance will deteriorate
when large error appears in the signal propagation speed c.
In Fig. 7, we fix σc = 5 m/s and vary σp from 0.5 m
to 5 m. The observation is similar to Fig. 5 that the proposed
two solutions have a small steady gap (about 0.02) from the
CRLB. The simplified 2-step solution also has a gap, and the
gap becomes wider when the sensor position error increases.
Therefore, the proposed two solutions are more accurate than
the simplified 2-step method.

B. NOMINAL PARAMETER UPDATE
This subsection will examine the proposed MLE solution
(denoted by ’MLE’) in (73) for updating the nominal param-
eters, i.e., signal propagation speed and sensor positions.
The simplifiedMLE solution (denoted by ’SimplifiedMLE’)
in Remark 2 is also included for comparison, but it is
used to update the signal propagation speed only. The time
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FIGURE 7. Localization performance when the noise of sensor position
increases.

FIGURE 8. Update the signal propagation speed when the noise of signal
propagation speed increases.

measurement noise is σ = 1 m and angle measurement noise
is σθ = 1 deg.
The RMSE of the signal propagation speed updated by

MLE or simplified MLE is shown in Fig. 8. Both the two
methods are able to reach the CRLB accuracy. The precision
increase after updating the nominal signal propagation speed
will be significant when σc is large. In other words, the nomi-
nal signal propagation speed can be updated to more accurate
one when large error occurs in the signal propagation speed.

Fig. 9 shows the performance of the sensor positions
updated by MLE. We have showed in Fig. 3 that the CRLBs
for all sensor positions are lower than their nominal parameter
RMSEs. However, the extensiveMonte Carlo simulation tests
show that not all sensor positions are able to converge to
the same accuracy as defined by the CRLB using the pro-
posed MLE. In this simulation, although the RMSE of the
sensor position s2 can reach the CRLB, the accuracy increase
in position is negligible. The average CRLB (or average
MLE) in Fig. 9 represents the average value of all sensor
position CRLBs (or sensor position RMSEs of MLE). For
most sensors, the proposed MLE can not reach the CRLB
when updating the sensor positions. One reason is that the
high order terms in (70) related to unknowns are ignored
and this approximation is not enough for updating the sensor

FIGURE 9. Update the sensor positions when the noise of sensor position
increases.

positions accurately. The other reason is that the chance of
having numerical problemwill be highwith 2N+5 unknowns
especially when the sensor position noise increases.

VI. CONCLUSION
This paper investigated the problem of multistatic sonar
localization with a transmitter where the signal transmission
speed, the transmitter and receiver positions are all contam-
inated by Gaussian noise. Two solutions were proposed to
estimate the object position using the time measurements
and angle measurements as well as the distribution of the
nominal parameters. One is a 2-step closed-form solution
using weighted least squares and the other is the GTRS
solution using Newton’s method. Both methods are simple
and can reach the CRLB. In addition, analysis of the CRLB
demonstrated that the nominal parameters which are used
for localization can also be updated to more accurate ones.
Therefore, a MLE solution was derived to update the nominal
parameters. Simulations show that the precision increase in
signal propagation speed is significant when the propagation
speed noise is large.
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APPENDIX A

∂mo

∂αoT
=

[
∂τ o/∂uoT ∂τ o/∂co ∂τ o/∂poT

∂θo/∂uoT O ∂θo/∂poT

]
(79)

The elements in (79) are expressed as

∂τ o/∂uoT =
[
∂τ o1 /∂u

o, · · · , ∂τ oN /∂u
o]T , (80a)

∂τ o/∂c =
[
∂τ o1 /∂c, · · · , ∂τ

o
N /∂c

]T
, (80b)

∂τ o/∂poT =
[
∂τ o1 /∂p

o, · · · , ∂τ oN /∂p
o]T , (80c)

∂θo/∂uoT =
[
∂θo1 /∂u

o, · · · , ∂θoN /∂u
o]T , (80d)

∂θo/∂poT =
[
∂θo1 /∂p

o, · · · , ∂θoN /∂p
o]T , (80e)
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where

∂τ oi /∂u
o
= (ρuo−t + ρuo−si )/c, (81a)

∂τ oi /∂c = −τ
o
i /c, (81b)

∂τ oi /∂p
o
=

[
∂τ oi /∂t

oT , ∂τ oi /∂s
oT
1 , · · · , ∂τ

o
i /∂s

oT
N

]T
,

(81c)

∂τ oi /∂t
oT
= −(ρTuo−t + ρ

T
t−si )/c, (81d)

∂τ oi /∂s
oT
i = (−ρTuo−si + ρ

T
t−si )/c, (81e)

∂θoi /∂u
o
= [soi,y − y

o, xo − soi,x]
T /‖uo − soi ‖

2, (81f)

∂θoi /∂p
o
=

[
0, 0, ∂θoi /∂s

oT
1 , · · · , ∂θ

o
i /∂s

oT
N

]T
, (81g)

∂θoi /∂s
oT
i = [yo − soi,y, s

o
i,x − x

o]/‖uo − soi ‖
2, (81h)

Note that ∂τ oi /∂s
oT
j and ∂θoi /∂s

oT
j (i 6= j) are zero vectors.

APPENDIX B

∂γ o

∂αT
=


∂γ o/∂uT ∂γ o/∂c ∂γ o/∂pT

0T2 1 0T2N+2

O O I

 (82)

where ∂γ o/∂uT , ∂γ o/∂c and ∂γ o/∂pT have the same expres-
sions in Appendix A by replacing the true value αo with α.
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