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ABSTRACT Comprehensive measures for the estimation performance evaluation (EPE) has become
increasingly prominent. This paper proposed a new radar chart evaluation method to measure the estimation
performance. Firstly, the new radar chart index, which is composed of several popular incomprehensive
measures, are presented, and the method of the weight of the each index is calculated based on vector ranking
method. Secondly, the new comprehensive measures for the EPE is designed according to the fan area and
the fan arc length. Finally, two cases study are provided to verify the effectiveness of this method.

INDEX TERMS Estimation algorithms, estimation performance evaluation, radar chart, decision support
systems.

I. INTRODUCTION
Recently, an increasing number of estimation/filter algo-
rithms were proposed in science and engineering, and many
researchers claimed that their algorithms performed better
than others. However, only a few of the convincing algo-
rithmswere applied to engineering practices. Therefore, it has
extremely vital significance to explore and design more com-
prehensive measures for these evaluation algorithms. Clearly,
performance evaluation of algorithms is as important as infor-
mation fusion.

Estimation performance evaluation (EPE) has begun to
gain more attention of researchers only in recent years though
it was formally put forward by Li in 2006 ( [1], [2]). Li found
that the most commonly used root mean square error (RMSE)
had two serious flaws, i.e., focusing on the greater errors
excessively and no clear physical interpretation [3]. To solve
the above problems, the average Euclidean error (AEE), har-
monic average error (HAE), geometric average error (GAE),
error mode (EM) and median error (ME) were provided by
Li et al. [3]. Furthermore, Yin, et al, designed a newmeasure,
i.e., the iterative mid-range error (IMRE), to solve the mea-
sure’s robust problem [4]. As discussed above, we find that
most existing measures on performance evaluation are some
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average of errors, which usually give ‘big’ or ‘small’ results
to show the ‘bad’ or ‘good’ performance. Moreover, only one
narrow aspect is considered by the above-listed measures in
EPE, so, more comprehensive measures are desired.

Error spectrum (ES) is then proposed in [5], which is
aggregating several commonly incomprehensive measures,
such as the RMSE, AEE, GAE and so on. However, ES has
several drawbacks, which attracts lots of researches to focus
on the improvement of the ES. To solve the computation
problem, Liu et al. presented theMellin transform to compute
the ES analytically [6], then, we proposed two algorithms
to calculate the ES based on the power means error and
the Gaussian mixture model, respectively [7], [12], [13]. Fur-
thermore, to solve the dynamic evaluation problem,Mao et al.
introduced a dynamic error spectrum (DES) to transform
the ES into a single point at a time instant [8]. Obviously,
the DES is an many-to-one mapping, which leads to the
information loss problem. To tackle this problem, the range
error spectrum induced area (RESA) and the DES induced
area (DESA) were proposed in [9], [10]. Unfortunately, it’s
still hard to distinguish which estimator performs better by
using the DES, RESA, and DESA. Consequently, Ma et al.
proposed a volume error spectrum (VES) to further solve the
dynamic systems evaluation problem [16]. However, the VES
is still an many-to-one mapping.
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In many practical applications, radar chart, by which
the status of to-be-evaluated object can be displayed
intuitively [17], [18], is one of the most popular methods
for comprehensive performance evaluation since its intu-
itive visualization. Radar Chart resembles a Plan Position
Indicator-the typical two-dimensional layout of radar return
from a radial trace, when used as a method of displaying
data, it is much simpler than of doing statistical analyzes
which can sometimes be complex because of the multi-
dimensionality [19]. Furthermore, compared with traditional
bar chart, radar chart has a stronger visual impact and can
more intuitively display the characteristics of one object that
are particularly prominent in an attribute [20]. Therefore,
radar chart has been received a great amount of attention
due to its increasing use in risk evaluation [20], multiple
energy systems [21], e-waste management systems [22], pro-
cess control [23], and medical field [24], etc. However, in tra-
ditional radar chart, the evaluation results are different due
to the different order of indexes [25]. So, [26] proposed an
improved radar chart to evaluate the performance of an object
and the balanced degree of each index based on the fan area
and the fan arc length, respectively; moreover, the included
angles between adjacent index axes are equal, so it can
not reflect the influence degree of indexes to evaluation
objects.

In this paper, new radar chart evaluation method is pro-
posed to EPE, which considers both incomprehensive mea-
sures and comprehensive measures for EPE. Firstly, the new
radar chart index is composed of incomprehensive measures
and comprehensive measures. Secondly, the vector ranking
method is used to calculate the weight of the each index.
Finally, the new comprehensive measures for the EPE is
designed according to the fan area and the fan arc length of
the radar chart.

This paper is organized as follows. The problem of the
EPE is analyzed in III. Furthermore, the radar chart is pro-
posed to estimation performance evaluation in Section III-D.
In Section IV, numerical examples are used to show the valid-
ity and effectiveness of the new comprehensive measures.
Finally, Section V concludes this paper.

II. PROBLEM FORMULATION
In EPE, the root mean square error (RMSE) is widely used to
estimator comparison and estimation performance. However,
the RMSE is seriously flawed. On one hand, the RMSE lacks
clear physical interpretation. On the other hand, the RMSE
is easily dominated by large error terms, for example, if all
100 terms of estimation error are around 1 except for one term
of 500, then RMSE ≈ 55. Obviously, the evaluation result is
determined by the biggest one term while ignored the other
99 terms. To see this, the most commonly measures for EPE
is analyzed in the following part.

Let x̃q be the estimation error, i.e., x̃q = xq − x̂q and∥∥x̃q∥∥2 = (x̃ ′qx̃q), where x̂q is the estimator, xq is the quantity
to be estimated;M is the Monte Carlo runs. In EPE, the most

popular measure is the RMSE, i.e.,

RMSE(x̂) =

 1
M

M∑
q=1

∥∥x̃q∥∥2
 1

2

(1)

Since the RMSE is dominated by large error, it’s usually
used to show the performance of a system at its worst.

On the contrary, the HAE is proposed to show the perfor-
mance of a system at its best because it focus on the small
errors.

HAE(x̂) =

 1
M

M∑
q=1

1∥∥x̃q∥∥
−1 (2)

Furthermore, the AEE is given by

AEE(x̂) =
1
M

M∑
q=1

∥∥x̃q∥∥ (3)

Obviously, we can utilize the AEE to evaluate the average
performance of the system.

In addition, the GAE is balanced since it is neither domi-
nated by large error nor affected by small error, i.e.,

GAE(x̂) =

 M∏
q=1

∥∥x̃q∥∥
 1

M

(4)

Furthermore, the IMRE is proposed tomeasure the stability
of system performance under normal conditions, i.e.,

IMRE(x̂) =
min{

∥∥x̃q∥∥}Mq=1 + max{∥∥x̃q∥∥}Mq=1
2

(5)

For some cases, the EM is proposed to find the perfor-
mance of a system under normal conditions, which is the
location of the highest peak of the histogram for the given
error.

Since the existed measures, such as the RMSE, AEE,
GAE and HAE can reflect only one aspect in EPE, the error
spectrum was presented in [5]. In EPE, ES can reveal more
information because it aggregates several commonly incom-
prehensive measures, such as the RMSE, AEE, GAE and
HAE. In the following, the ES is given as

S(r) = (E[er ])1/r = {
∫
erdF(e)}1/r

=

{
{
∫
er f (e)de}1/r if e is continuous

(
∑
pieri )

1/r if e is discrete
(6)

where e = ‖x̃‖ or e = ‖x̃‖/‖x̂‖ are the absolute or relative
estimation error norm, respectively; F(e), f (e), and pi are
the cumulative distribution function (CDF), probability den-
sity function (PDF), and probability mass function (PMF),
respectively.

As pointed out in [7]–[10], the ES is in fact the power mean
of e. Therefore, the error spectrum for EPE implies that the
RMSE, the AEE, the GAE and the HAE have equal weight.
In other words, the evaluation results are clearly subjective.
To solve this problem, the radar chart is applied to the EPE.
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III. RADAR CHART FOR ESTIMATION
PERFORMANCE EVALUATION
According to the principle of radar map, first the index of
the radar cloud should be designed; and then, the weight of
each index in radar cloud are calculated based on the ranking
vector method; furthermore, the radar chart suitable for EPE
is draw according to the above index and the weight of each
index; finally, the new comprehensive measures for EPE is
presented by the sector area and sector arc length of the radar
chart.

A. INDEX CONSTRUCTION OF THE RADAR CHART
Firstly, we summarize the commonly used measures
in Table. 1. Furthermore, the abovemeasures aremap onto the
radar chart in order to evaluate the estimation performance.

TABLE 1. Incomprehensive measures.

After obtaining the index of radar cloud chart, the next step
is to determine the weights of each index.

B. WEIGHT COMPUTATION OF EACH INDEX
In [2], Yin proposed a ranking vector method for multiple-
attribute estimation ranking. Furthermore, we proposed
a improved ranking vector method by using the ES in
multiple-attribute estimation ranking [11]. Inspired by the
above ranking vector methods, the weights of each index in
radar chart are calculated as follows.

1) PITMAN’S CLOSENESS MEASURE
Firstly, we introduce the Pitman’s closeness measure (PCM).
In [14], Pitman proposed a criterion to obtain the ‘‘joint’’
information by comparing the relative closeness of estimator
x̂ with the estimate x. Let m(1, 2; ai) be the measure of the
difference between two compared objects s1 and s2 with
respect to the i-th attribute ai, that is,

m(s1, s2; ai) =


1 if s1 � s2
0.5 if s1 = s2
0 if s2 ≺ s1

(7)

where s1 � s2 represents that s1 is better than s2, and ai is the
attribute of the objects s1 or s2.
So, the multiple-attribute competition measure (MCM) is

given by

MMCM (s1, s2; a) =
1
n

n∑
i=1

m(1, 2; ai) (8)

where a is the vector of the attributes. ForMMCM (s1, s2; a) >
0.5, we argue that s1 is MCM-better than s2 for a.

2) MULTIPLE-ATTRIBUTE COMPETITION MEASURE MATRIX
According to Eq. (8), we obtain the multiple-attribute com-
petition measure matrix, i.e.,

XMCM =

 M (s1, s1; a) · · · M (s1, sm; a)
...

. . .
...

M (sm, s1; a) · · · M (sm, sm; a)

 (9)

where m is the number of the object.
Particularly, if M (s1, s2; a) = 0, let M (s1, s2; a) equal

0.0001. So, there exists an eigenvector λ > 0 for the MCM
matrix according to the Perron-Forbenius theorem [15].

Furthermore, we have

XMCM · ω = λ · ω (10)

where ω is the only eigenvalue in the spectral circle of XMCM

3) WEIGHT ATTRIBUTE MATRIX
Assume that n is the number of index, so, the weight attribute
matrix is defined as

R =

a1 a2 · · · an
s1
s2
...

sm


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...

rm1 rm2 · · · rmn

 (11)

where rij is the values which can be obtained by means of
expert scoring or questionnaire survey.

According to section A, Eq.(11) is rewritten as

R =

RMSE HAE AEE
s1
...

sm

 r11
...

rm1

r12
...

rm2

r13
...

rm3
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GAE IMRE EM
r14
...

rm4

r15
...

rm5

r16
...

rm6

 (12)

According to Eq. (9) and Eq. (10), we can calculate the
eigenvalue ω of the weight attribute matrix. Furthermore,
the ground elements in the eigenvectors are normalized

w∗i =
wi
n∑
i=1

wi

(13)

In this paper, w∗i is the weight of each measurements.

C. RADAR CHART DRAWING OF THE ESTIMATOR
According to the index in Table. 1, the radar chart for the
estimation performance evaluation is designed as follows.
Step 1: Index normalization. For convenient, we apply

the following equation to normalize the index in Table. 1.
Let rji ∈ {rRMSE , rHAE , rAEE , rGAE , rIMRE , rEM } for the
j-th evaluation object (j = 1, 2, · · · ,m), the normalized index
is given as

r∗ji = rji/
n=6∑
i=1

rji

where n is the number of the index.
Step 2: Draw concentric circles. Let the number of con-

centric circles equal to n, and the radius {Rcck }
n
k=1 of the

concentric circle is the sorted value of the index, i.e.,

Rcc1 = min{sort[{r∗ji}
n
i=1]} ≤ · · · ≤ R

cc
n = max{sort[{r∗ji}

n
i=1]}

where sort[ · ] represents the ascending sort function.
Step 3: Design index axis. According to the number of

index, the above concentric circles are separated by a number
axis, and the included angle between the number axes is

αi = 2πw∗i

where w∗i is calculated by Eq. (13).
Furthermore, the RMSE, AEE, GAE, HAE, IMRE and EM

are marked in the circle of the radar chart.
Step 4: Draw sector. Let the sector center angle and sector

radius equal αi and r∗ji , respectively. Furthermore, we can
obtain the sector of each index, as shown in Fig. 1. Further-
more, we can see that the smaller the area of the radar chart is
the better performance of the system will be since the index
of the radar chart are the error metrics.

D. NEW COMPREHENSIVE MEASURES FOR EPE
1) FEATURE DETECTION OF THE RADAR CHART
From Fig. 1, we have{

Ssji = πw
∗
i v

2
ij

Lsji = 2πw∗i vij
(14)

where Ssji and L
s
ji, i = 1, 2, · · · , n and j = 1, 2, · · · ,m are

the sector area and sector arc length of the i-th index for the
j-th evaluation object, respectively.

FIGURE 1. The radar chart of the estimated.

then, we obtain
Ssj =

Sj
max{Sj}

=

∑n

i=1
πw∗i v

2
ij

max{
∑n

i=1
πw∗i v

2
ij}
m
i=1

Lsj =
Lj

2π
√
Sj/π

=

∑n

i=1
2πw∗i vij

2π
√∑n

i=1
w∗i v

2
ij

(15)

where Ssj is used for measuring the system efficiency of the
evaluation object, and Lsj is applied to evaluate the equilib-
rium degree of each individual index for the evaluation object.

2) DEFINITION OF THE NEW COMPREHENSIVE MEASURES
As pointed out in [10], the more flatness of an estimator
means that the PDF of the estimation error is more con-
centrative than the desired one, which further illustrates the
estimator is better. Since the sector area and sector arc length
of the radar chart are essentially calculated by the estimation
errors, we certainly hope both of them to be as small as
possible. Therefore, the EPE problem using both Ssj and L

s
j

can be naturally changed into a bi-objective optimization
problem [10]. Obviously, the most critical things in EPE is
how to transform the two objective functions (i.e., Ssj and L

s
j )

into a single objective function. Here, the bi-objective opti-
mization problem is defined as

NCM = min f (Ssj ,L
s
j ) (16)

where f (·, ·) represents the utility function. Next, we consider
two popular forms of the utility function.

If prior preference about the weights is available, the new
comprehensive measure (NCM) is defined as

NCM = f (Mj1,Mj2) =
2∑
l=1

βlMjl (17)

where Mj1 and Mj2 are defined as follows.
Mj1 =

Sj
min{Sj}mj=1

Mj2 =
Lj

min{Lj}mj=1

(18)
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andβ1 andβ2 are theweights associatedwith theMj1 andMj2,

respectively, which holds for
2∑
l=1
βl = 1.

In practical applications, the weights are determined by the
users. It can be easily seen from Eq. (17) that if we focus
the flatness of the estimator in EPE, we can let the weights
β1 > β2. And if the weights satisfy β1 < β2, it means that
the f (Mj1,Mj2) focuses more on the estimation accuracy of
the estimator.

Certainly, if there is no information about the weights
(β1 and β2), Eq. (17) is redefined as

NCM =
Mj1 +Mj2

2
(19)

In fact, Eq. (19) is the arithmetic mean which is dominated
by large terms. To solve this problem, we use the geometric
mean since it is neither dominated by large terms nor by small
ones.

Thus, the NCM is rewritten as

NCM =
(
Mj1 ×Mj2

)1/2 (20)

Clearly, Eq. (25) indicates thatMj1 andMj2 are equally impor-
tant in EPE.

From Eq. (17), Eq. (19) and Eq. (20), we obtain

NCM =


2∑

k=1

βkMik βk available{
(Mj1 +Mj2)/2
(Mj1 ×Mj2)1/2

βk unavailable

(21)

Obviously, the estimator with a smaller NCM is better.
Theorem 1 (Properties of the NCM):
(a) f (Mj1,Mj2) satisfies the Regularity, i.e.,

f (0, 0) = 0 (22)

(b) f (Mj1,Mj2) is monotonic, i.e., ∀v, u, v, u = 1, 2, · · · ,
we have

f (Mv1,Mv2) ≤ f (Mu1,Mu2) (23)

when {
Mv1 ≤ Mu1

Mv2 ≤ Mu2
(24)

(c) f (Mj1,Mj2) is a continuous function, that is,

lim
Mi1→Mu1
Mv2→Mu2

f (Mv1,Mu2) = f (Mu1,Mu2) (25)

IV. COMPUTATIONAL PSEUDOCODE OF THE
RADAR CHART METHOD
With the above preparations, we begin to present the radar
chart method.

V. NUMERICAL EXAMPLES
Hereafter, the parament estimation case and state evaluation
are proposed to illustrate the superiority of the radar chart
method in EPE.

TABLE 2. Computational pseudocode of the radar chart method.

A. PARAMETER ESTIMATION PERFORMANCE EVALUATION
1) PARAMETER ESTIMATION MODEL
Utilizing the following single noisy measurement [1], [5]:

z = x + u (26)

where u follows a Gaussian distribution with zero mean and
one variance, i.e., u ∼ N (0, 1). x is generated from the
following exponential prior:

f (x) =

{
λ exp(−λx) x > 0
0 x ≤ 0

(27)

Hereafter, we apply the maximum a posteriori (MAP)
estimator and the minimum mean square error (MMSE) esti-
mator to estimate the true x, respectively, where the former
estimator is given by [5]

x̂MAP(λ) = max(z− λ, 0) (28)

and the latter is calculated as

x̂MMSE (λ) =
exp(−(z−λ)

2

2 + z− λ)
√
2π (1−8(λ− z))

(29)

where 8(·) is the cumulative distribution function (CDF) of
the standard normal distribution.

Furthermore, the estimation error is defined to calculate the
existing measures and the proposed measures, i.e.,

x̃ = x − x̂ (30)

So, the estimation error of the MAP estimator is

x̂MAP(λ) = x − x̂MAP = x − max(x + u− λ, 0) (31)

and one of the MMSE estimator is [29]

x̂MMSE (λ) = x − x̂MMSE (λ) ≈ λ− u−1 (32)

where 1 = (0.661|λ− z| + 0.3999
√
(λ− z)2 + 5.51).
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2) SIMULATION RESULT ANALYSIS
Assume that the true value x is generated from Eq. (38)
with the parameter λ = 1. Then, the parameter λ of the
MAP and MMSE estimators are equal to 1.8, respectively,
i.e., x̃MAP(λMAP = 1.8) and x̃MMSE (λMMSE = 1.8). Over
100,000 Monte Carlo runs, the metrics discussed in Table. 1
are listed in Table. 3.

TABLE 3. Performance evaluation measures value.

Furthermore, in practical applications, the values in the
weight attribute matrix (R) can be obtained by means of
expert scoring or questionnaire survey. Here, to verify the
correctness of the proposed radar chart method, the values
in the weight attribute matrix are generated randomly by the
MATLAB software, i.e.,

R =
RMSE HAE AEE

MAP
MMSE

[
0.45
0.11

0.40
0.42

0.18
0.49

GAE IMRE EM
MAP
MMSE

0.39
0.37

0.84
0.98

0.32
0.49

] (33)

Therefore, the eigenvalues of the above weight attribute
matrix is

w∗=
RMSE HAE AEE GAE IMRE EM
[0.14 0.16 0.12 0.10 0.34 0.14]

(34)

According to Table. 3, the radar chart and the ES of the
MAP and MMSE estimators are as shown in Figs. 2 and 3,
respectively.

FIGURE 2. The ES curves of the MAP and MMSE estimators.

From Fig. 2, the ES curve of the MMSE estimation esti-
mator is lower than that of the MAP estimator. Therefore,
the MMSE estimator is better than the MAP estimator, i.e.,

MMSE � MAP (35)

where A � B means that A outperforms B.

FIGURE 3. The radar chart of the MAP and MMSE estimators.

Furthermore, we can see from Fig. 3 that the radar chart of
theMAP estimator is larger than theMMSE estimator. Hence,
the MMSE estimator is superior to the MAP estimator in the
case of λMAP = λMMSE = 1.8. Obviously, the radar chart can
better reflect the performance of the estimator.

To verify this, we calculate the NCM according to
Eq. (21), i.e.,

NCMMAP=1.9930 > NCMMMSE=1.2092 (36)

Clearly, Eq. (36) shows that the MMSE estimator out-
performs the MAP estimator, which is consistent with the
Eq.(35). Furthermore, this result is still consistent with the
results of literature [5], which further illustrates the correct-
ness of the proposed method.

Next, the radar method is presented to evaluate the state
estimation performance.

B. STATE ESTIMATION PERFORMANCE EVALUATION
1) THE STATE ESTIMATION MODELS
Suppose a nonlinear non-Gaussion model is given by{

xk+1 = f (xk )+ wk
yk+1 = h(xk+1)+ vk+1

(37)

where f (·) and h(·) are nonlinear functions as follows

f (xk+1) = 0.5xk + sin(0.04× π × t)+ 1

h(xk+1) =

{
xk+12/5+ sin(xk+1) k < 30
xk+1/2− 2 Otherwise

(38)

and the state noise wk and the measurement noise vk are{
wk ∼ Gamma(0, 0.01)
vk+1 ∼ N (0, 0.01)

(39)

whereGamma(α,β) is the Gamma distribution with the shape
α = 0 and date parameters β = 0.01, and N (µ,6) is the
Gaussian distribution with the mean µ = 0 and variance
6 = 0.01.
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Furthermore, we used four types of nonlinear estimation
algorithm (NEA), i.e., extended Kalman filter (EKF) [30],
unscented Kalman filter (UKF) [31], Particle Filter (PF) [32],
and Gaussian Sum Filter (GSF) [33] to estimate the above
nonlinear Gaussian models.

2) PARAMETER INITIALIZATION
The initialization parameters of the EKF, UKF, PF and
GPF were summarized in Table 4. Furthermore, over the
Monte-Carlo runs, the tracking results and the correspond-
ing estimation error of the above four NEAs are as shown
in Figs. 4 and 5, respectively.

TABLE 4. Initialization parameters.

For the radar chart, the weight attribute is similarly given
by the MATLAB software, i.e.,

R =

RMSE HAE AEE

EKF

UKF

PF

GSF


0.66 0.47 0.18

0.11 0.42 0.49

0.36 0.37 0.18

0.46 0.27 0.68
GAE IMRE EM

EKF

UKF

PF

GSF

0.39 0.54 0.32

0.37 0.38 0.49

0.89 0.44 0.72

0.27 0.62 0.39



(40)

So, we have

w∗=
RMSE HAE AEE GAE IMRE EM
[0.15 0.14 0.16 0.15 0.21 0.19]

(41)

Finally, the radar chart of the above four NEAs are as
shown in Fig. 6.

3) ANALYSIS OF THE SIMULATION RESULTS
Clearly, we can see from Fig. 6 that the RMSE in the radar
chart holds the following inequality

RMSEEKF> RMSEGSF> RMSEUKF > RMSEPF (42)

FIGURE 4. The tracking results of the above four NEAs.

FIGURE 5. The estimation error of the above four NEAs.

Furthermore, compared with the area of the radar chart,
the PF has the smallest radar chart; the second is the UKF;
then the GSF and the EKF. To see this, the NCM is computed
by the Eq.(21) 

NCMEKF= 4.1605
NCMUKF= 0.8157
NCMPF= 0.6667
NCMGSF= 1.8140

(43)

That is,

NCMEKF> NCMGSF> NCMUKF > NCMPF (44)

Clearly, all the Eq. (42), Eq. (45) and Eq. (44) shown
that if considering only the estimation accuracy, the PF is
the best NEA; the next best is the UKF; then the GSF; the
estimation accuracy of the EKF is the poorest among the four
algorithms.i.e.,

PF � UKF � GSF � EKF (45)
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FIGURE 6. The radar chart of the above four NEAs.

Therefore, we can conclude that the proposed method can
be used in EPE, and can reflect the performance of estimator
objectively and comprehensively.

VI. CONCLUSION
Themain contribution of this paper is threefold. First, the new
radar chart has been proposed to estimation performance
evaluation. Second, the fan area and the fan arc length, have
been presented, where the former measures the estimation
accuracy of an estimator and the latter quantifies the flatness
of an estimator. Third, new comprehensive measures have
been proposed to EPE, which includes the above two new
measures. Finally, simulations show that the radar chart can
be used to a variety of EPE directly, due to the consider-
ation of more information, and the proposed measures can
give more impartial evaluation results. Moreover, the other
combinating form of the new comprehensive measures will
be studied in the future work.
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