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ABSTRACT Vigilance or sustained attention is an important aspect for people who engaged in long time
attention demanding tasks such as monotonous monitoring and driving. Vigilance detection has been an
important topic in the field of brain-computer interface (BCI) research. However, the study is limited due
to the low SNR (Signal-Noise Ratio) nature of EEG. Common spatial pattern (CSP) is a one of the most
effective algorithms for feature extraction method in the BCI study area. The CSP seeks for an optimal
projection direction (spatial filter) by maximizing the variance of one class and simultaneously minimizing
the variance of the other class. There is one drawbacks exists in the traditional CSP, that is, the CSP is
proposed relies on the assumption that data in each class follow the Gaussian distribution. However, this
assumption is not always true for EEG data in practice, especially in the research of vigilance detection
based EEG (e.g. during sleep). Thus, traditional CSP suffers performance degradation in case of non-
Gaussian distributions. In this paper, we extend the traditional CSP to the general version and proposed
nonparametric CSP (NCSP) algorithms which do not explicitly rely on the assumption of the underlying
class Gaussian distribution and we then develop a new efficient algorithm based on matrix deflation to solve
the proposed NCSP algorithm and its extensions-nonparametric multi-class CSP (NMCSP). Experimental
results on EEG-based vigilance estimation andmotor imagery recognition task demonstrate the effectiveness
and efficiency of our proposed algorithms.

INDEX TERMS Common spatial pattern, nonparametric multiclass CSP, nonparametric CSP, EEG,
vigilance detection.

I. INTRODUCTION
Electroencephalography(EEG) is the physiological method
of choice to record the electrical activity generated by the
brain via electrodes placed on the scalp surface. Studies
based on EEG measure the brain’s spontaneous electri-
cal activity changes in response to stimulation of sight,
sound, or touch. These researches explored some potential
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applications based on EEG signal to help human to solve
some significant troubles, such as disease detection and treat-
ment, stroke patients’ rehabilitation as well as paralyzed
patients’ walking and communications [5], [6], [39]. In recent
years, many progress has obtained in noninvasive brain com-
puter interface (BCI) technology [3], [4] and EEG signal
analysis [1], [2].

Many occupations require the human keep the mental sta-
tus with high vigilance, e.g., monitoring power plan, con-
trolling air traffics, driving trucks and high-speed trains [8].
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Scientist have worked on the research of human vigilance
for several decades and much significant progress has made.
Many biological and behavioral characteristics such as eye-
closure, face expression, head position, heart beating and
reaction time [10]–[15], etc. have been used for vigilance
detection. EEG signals are also strongly associated with the
human vigilance, it can reflect the changes in the state of
human’s brain, which makes it possible to predict human
alertness based on EEG. Neurophysiological studies have
shown that human vigilance is a process of dynamic chang-
ing, during rest, human mental state toggles among different
vigilance levels and the vigilance declines from alertness state
(high degree vigilance) to sleepy state (the lowest degree
vigilance) and the rhythm of the brain waves varies with
the change of the mental states. The β rhythm (14-30Hz)
decreases when human’s vigilance level decreased, at the
same time, the α rhythm (8-13Hz) increases [16], [17].

Vigilance detection based on EEG has always been a hot
topic in BCI field. However, the nature of low signal-to-
noise ratio (SNR) is one of the most important method-
ological challenges for EEG data collection and analysis.
Researchers have worked hard for several years to explore
artifacts removal, dimensionality reduction and feature learn-
ing methods to extract discriminant features for EEG analy-
sis, such as principal component analysis (PCA, maximum
power feature) [18], [19], independent component analysis
(ICA, statistical independence feature) [20] and common
spatial pattern (CSP, maximum power ratio feature) [1], [21]
[22]–[24], of which CSP is the most widely used one [25].

Given two different classes EEG signals, classical CSP
seeks for an optimal projection direction (spatial filter) by
maximizing the variance of one class and simultaneously
minimizing the variance of the other class. Raw EEG signals
are then mapped to this direction, after that, classification
become more easier.

CSP projection is actually a spatial filtering process,
which was originally designed for two classification prob-
lems. It has been extended to multi-class scenarios in sev-
eral ways [26]–[28]. Dornhege et al. proposed a multi-class
CSP by jointly approximate diagonalization (JAD) of covari-
ance matrices [26]. Unlike the two-class CSP where two
matrices are jointly diagonalized exactly, simultaneous diag-
onalization of more than two matrices cannot be exactly
achieved, only joint approximate diagonalization can be
attained. Moritz et al. proposed an information theory based
multi-class CSP [27], where they show that the two-class
CSP maximizes an approximation of mutual information of
extracted EEG components and class labels. Based on this
relationship, they provided a component selection method
in JAD multi-class CSP paradigms by maximizing mutual
information of components and class labels, overcoming the
drawback of heuristics in multi-class CSP in [26].

In addition to multi-classification CSP algorithms,
there are many other versions of CSP algorithms.
Falzon et al. [29] [30] introduce the complex extension
of CSP, which combine the raw EEG signal and its phase

information together to implement the classification and
recognition task. Park et al. [31] improve Falzon’s work
and proposed an augmented complex common spatial pat-
terns algorithm (ACCSP) and implement the ACCSP algo-
rithm to the motor imagery task get a considerable result.
Kawanabe et al. [32] applied the maxmin approach to
CSP and introduce a robust Common Spatial filter algo-
rithm and improve the performance of the traditional CSP.
Zheng and Lin [28] presented an optimal multi-class CSP
based on the bayesian error estimation for EEG feature
extraction, our proposed general common spatial pattern
algorithm is motivated by this method but we have different
criteria function.

In this paper, we propose a new CSP algorithm to extract
the EEG feature for vigilance estimation. Inspired by the
nonparametric linear discriminant analysis (LDA) [33] which
was designed to handle the non-Gaussian problem in LDA,
in this paper, we first propose a two-class nonparametric
common spatial pattern (NCSP) algorithm. In the NCSP,
we construct a within class scatter matrix to measure the
clustering property of each class, and then simply use the
within class scatter matrix to replace the sample variance
matrix in the traditional CSP. We also propose a novel multi-
class CSP (MCSP) that has an explantation of minimizing
Bayesian classification error, but with a different optimiza-
tion criteria from that in [28], and then extend this multi-class
CSP to nonparametric multi-class CSP (NMCSP).
We apply our proposed algorithms to the vigilance estimation
as well as the motor imagery task to measure their perfor-
mance on feature extraction task, comparisons are made with
the multi-class CSP in [28], ACCSP in [31], RCSP in [23]
as well as the CSP-L1 [34]. Preliminary experiments show
better results than the state-of-the-art methods.

The paper is organized as follows: Firstly, we review the
traditional CSP and multi-class CSP algorithms in Section II.
In Section III, we propose the two-class non-parameter CSP
algorithm. In Section IV, A new multi-class CSP algorithm
based on a different criterion is proposed, then extend it to our
multi-class nonparameteric CSP, the new algorithm is given
at last. We validate the performance of our proposed newCSP
algorithms on the designed vigilance estimation as well as the
motor imagery experiments. The performance comparison
result with the baseline as well as the state-of-art algorithms
are presented in Section V. Finally, In Section VI concludes
our work.

II. CSP AND MULTI-CLASS CSP
In this section, we briefly introduce the classical common
spatial pattern (CSP) algorithm and its extensions to multi-
class problems. To be more precise, let Xc

= [xc1, x
c
2,

. . . , xctc ], c = 1, 2, ...C , are EEG datamatrices, whereC is the
number of classes, xci ∈ R

D×S is aD×S matrix that represents
the raw EEG data of the ith trial for class c, i = 1, 2, . . . , tc,
and tc is the total trial number for class c, D is the number
of channels and S is the number of samples in the ith trial of
class c. For the classical CSP, C = 2. The normalized spatial
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covariance matrices for each class are given as

Rc =
XcXcT

tr(XcXcT )
, c = 1, 2, . . . ,C (1)

where tr(·) means the trace of a matrix, and XcT denotes the
transpose of Xc.

A. CSP
CSP is a popular algorithm for calculating spatial filters, and
is widely used for extracting features in BCI systems based
on event-related (de)synchronization (ERD/ERS) [25], [35].
Given samples corresponding to two classes (e.g., right and
left motor imagery) in a high-dimensional space, CSP finds
projection directions (i.e.,spatial filters) that maximize the
variance for one class and at the same time minimize the
variance for the other class.

Finding a projection vector wcsp involves solving the
following optimization problem,

wcsp = argmax
w

wTR2 w
wTR1w

(2)

or

wcsp = argmax
w

wTR1 w
wTR2w

(3)

The solution to (2) can be obtained by the generalized eigen-
vector of R−11 R2 (R−12 R1 for (3)) corresponding to the maxi-
mal eigenvalue. A limitation of this approach is the sensitivity
of the covariance matrices to outliers. For example, it has
been found that the largest (or the smallest) eigenvector often
captures the myographic activity [1]. Therefore, it has been
suggested to consider more than one eigenvectors associated
with the largest and lowest eigenvalue ratios [1], [25]. This
amounts to calculate a matrix Wcsp such that

Wcsp = argmax
W

tr(W TR2W )
tr(W TR1W )

(4)

or

Wcsp = argmax
W

tr(W TR1 W )
tr(W TR2W )

(5)

Using this projection matrixWcsp, the EEG recordingsXc are
linearly projected to Yc by

Yc
= W T

cspX
c (6)

There is an alternative way to solve (4) and (5), where Wcsp
can be obtained by simultaneously diagonalizing the covari-
ance matrices Rc [25], i.e.,

W TRcW = 3c, c = 1, 2 (7)

where 3c are diagonal matrices.

B. MULTI-CLASS CSP
How many brain states should be used in a BCI system
is an open question, it has been reported that the use of
more classes yields better BCI performance than the use of
two classes [36]. It has also been pointed out that using
more classes has the potential to increase information transfer
rate, although the classification performance decreases [26].
On the other hand, in many scenarios, multi-class is essen-
tial, for example, in vigilance estimation, different vigilance
states involve multiple classes and even continuous states.
So, extending the traditional (two-class) CSP to multi-class
is of significance. Several extensions of CSP to multi-class
paradigms have been proposed till now [26]–[28]. Here
we only briefly introduce the multi-class CSP proposed by
Zheng and Lin [28] which is closely related to our multi-
class CSP developed below. This multi-class CSP is based
on the Bayesian error estimation for EEG classification, and
the underlying class distribution is assumed to be Gaussian.
By assuming all classes have the same prior probability,
an upper bound of the Bayesian classification error ε has been
derived as follows [28]

ε ≤

C−1∑
c=1

C∑
j=c+1

1
C
−

1
8

(C−2/3∑C
c=1 |w

T (Rc − R)w|
2wTRw

)2 (8)

where R = 1
C

∑C
c=1 Rc is the total covariance matrix. Their

multi-class CSP (MCSP) is obtained byminimizing the upper
bound (8) which is equivalent to maximize the following
criterion

wmcsp = argmax
w

∑C
c=1 |w

T (Rc − R)w|
wTRw

. (9)

r optimal CSP projection directions can be defined by the
following optimization

w1 = argmax
w

∑C
c=1 |w

T (Rc − R)w|
wTRw

. . .

wj = arg max
wTRwj = 0,

j = 1, . . . , r − 1

∑C
c=1 |w

T (Rc − R)w|
wTRw

(10)

An approximate iteration algorithm has been developed
in [28] to sequentially calculate the optimal spatial filters
w1, . . . ,wr . Although this MCSP is derived from the closed-
form Bayesian error estimation and thus has solid theoretical
foundation, it also has two shortcomings. The first is that
the upper bound of the Bayesian error estimation (8) is too
loose, because the estimation is amplified for several times
by applying inequalities. This can also be observed from (9),
maximizing the sum of the differences between allRc and the
total covariance matrix R does not necessarily maximize the
differences among pairs of Rc. The second is the assumption
of Gaussian distribution for each class as mentioned above.
Moreover, the equal class prior probability assumption is also
too strong. For motor imagery task, it seems reasonable, but
for other activities such as vigilance estimation, the prior
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probabilities for alert, drowsy and sleep are apparently dif-
ferent. To handle the first shortcoming, we propose a new
multi-class CSP with different optimization criteria. To over-
come the second shortcoming, we extend the proposed new
multi-class CSP to nonparametric version.

III. TWO-CLASS NONPARAMETRIC CSP
The traditional CSP and its multi-class extensions are based
on the assumption of class Gaussian distribution. Therefore,
these methods suffer from one limitation which is the sample
covariance matrices used in CSP and MCSP are sensitive
to outliers. EEG signals consist of many artifacts and noise,
and outliers are also common in EEG. Moreover, EEG may
exhibit non-Gaussian distributions [37], particularly, in the
sleep stage. This justifies the establishment of nonparametric
CSP algorithms. In this section, we describe a two-class
nonparametric CSP (NCSP) algorithm.

Here, we adopt the same notations as used in the above
section. Given two classes with EEG data sample matrices
X1
= [x11, x

1
2, . . . , x

1
t1 ] and X2

= [x21, x
2
2, . . . , x

2
t2 ], for a

single trial EEG data xci = [xci,1, x
c
i,2, . . . , x

c
i,S ] ∈ RD×S ,

where xci,j ∈ R
D is a D-dimensional vector which stands for

the EEG sample values on all channels at one time instant.
We can construct a nonparametric within-class scatter matrix
for this trial as

Sci =
S∑
j=1

k∑
p=1

(xci,j − Np(x
c
i,j))(x

c
i,j − Np(x

c
i,j))

T (11)

Sci =
Sci

tr(Sci )
, c = 1, 2 (12)

where Np(x) denotes the pth nearest neighbor among the
column vectors of this trial xci , k is a tunable parameter which
indicates that we consider k nearest neighbors in defining
the nonparametric scatter matrices. The total within-class
nonparametric scatter matrix Sc is obtained by averaging over
all trials of each class

Sc =
1
tc

tc∑
i=1

Sci , c = 1, 2 (13)

In our NCSP framework, we just replace the covariance
matricesR1 andR2 by S1 and S2, respectively. So the optimal
spatial filter (projection vector) wncsp of NCSP is solved by
the following optimization problem:

wncsp = argmax
w

wTS2 w
wTS1w

(14)

or

wncsp = argmax
w

wTS1 w
wTS2w

(15)

thus,wncsp is the largest generalized eigenvector of the matrix
S−11 S2 (or S−12 S1). If more than one projection vectors are
needed, one can simultaneously diagonalize S1 and S2 as

W TScW = 3c, c = 1, 2 (16)

and multiple project vectors (rows of Wncsp) can be obtained
by picking up appropriate number of the rows ofW associated
with the largest and smallest diagonal entries of 3c. One
should notice that when k = S, Sc in (13) is reduced to the
sample covariancematrixRc, so our NCSP is a generalization
of the traditional CSP.

IV. MULTI-CLASS NONPARAMETRIC CSP
We can extend the above two-class NCSP to multi-class
NCSP in the same way, that is, we can construct nonparamet-
ric within scatter matrices Sc through (11) to (13) for each
class of multiple classes, and then use them to replace the
original covariance matrices as done in the above section.
In doing so, several multi-class NCSPs can be established,
the multi-class CSP algorithms in [26]–[28] all have their
nonparametric versions. For example, we can make joint
approximate diagonalization to the nonparametric within
class scatter matrices Sc, c = 1, 2, . . . ,C , to obtain the
nonparametric CSP extension of [26]. One can also replace
Rc in (9) with Sc to get the nonparametric CSP version
of [28].

However, in this section, we will first propose a new multi-
class CSP for Gaussian distribution paradigms, which has a
theoretical explanation of minimizing the Bayes classifica-
tion error, and then we extend it to multi-class NCSP. Our
new multi-class CSP is related to that in [28], but has a dif-
ferent objective function, and overcomes some shortcomings
of [28].

A. A NEW CRITERION FOR MULTI-CLASS CSP
For better theoretical explanation, in this subsection,
we assume that we are given C classes, each follows a Gaus-
sian distribution with zero mean and covariance matrix Rc:
pc(x) = N (0,Rc), c = 1, 2, . . . ,C . It is well known that the
Bayes classification error with respect to class i and j can be
expressed by [28], [38]

εij =

∫
min(Pipi(x),Pjpj(x))dx (17)

where Pi is the a prior probability of class i. As in [28],
by using the inequality min(a, b) ≤

√
ab for two arbi-

trary nonnegative numbers a and b, and notice the Gaus-
sian distribution, this Bayes error can be estimated as
follows

εij ≤

∫ √
PiPjpi(x)pj(x)dx

=
√
PiPj exp

(
−

1
2
ln
|Rij|√
|Ri||Rj|

)
=
√
PiPj

(
|Rij|√
|Ri||Rj|

)− 1
2

(18)

where Rij =
1
2 (Ri + Rj), and |R| denotes the determinant of

matrix R. This inequality gives an upper bound for the Bayes
error εij. When the samples are projected to one dimension
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by a projection vector w, the upper bound becomes

εij ≤
√
PiPj

( wTRijw√
(wTRiw)(wTRjw)

)− 1
2

(19)

So the optimal projection vector for the two classes i and j can
be obtained by minimizing the error bound of the right-hand
side of (19), which is equivalent to maximize

max
w

wTRijw√
(wTRiw)(wTRjw)

(20)

This is further equivalent to

max
w

(wTRijw)2

(wTRiw)(wTRjw)
(21)

Let u = wTRiw, v = wTRjw, (21) is maximization of the
ratio between

( u+v
2

)2 and uv, which is further equivalent to
maximize their difference

( u+v
2

)2
− uv =

( u−v
2

)2. Thus, this
is finally equivalent to maximize |u− v| as

max
w
|wT (Ri − Rj)w| (22)

For C class problems, the upper bound of the Bayes error can
be estimated as ε ≤

∑C−1
i=1

∑C
j=i+1 εij [28], [40]. So our new

CSP (denote the project vector bywnewcsp) for multi-class can
be obtained simply by

wnewcsp = arg max
w,wTw=1

C−1∑
i=1

C∑
j=i+1

|wT (Ri − Rj)w| (23)

the constraint wTw = 1 is used to handle the scale ambiguity
problem in the optimization process. This new CSP is obvi-
ously different from the multi-class CSPs developed in the
literature. It is neither the joint approximate diagonalization
approach, nor the one versus the rest approach [26], it is also
not like the one in [28] where the objective function takes
the form of (9) and is obviously different from (23). Note
that when C = 2, (23) reduces to the traditional two class
CSP, but the CSP in [28] does not coincide the traditional
two class CSP. So our multi-class CSP is a true generalization
of the traditional two-class CSP, while the multi-class CSP
in [28] is not. Our method is somewhat like the approach
where the multi-class classification is divided into pairwise
two-class problems [41]. But they are actually different, for
the latter, the two-class CSP is used for each two-class pair
such that the variance of the projections is employed as
input for a LDA classifier. In our approach, a total objective
function is formed by summing up the objection functions
of all two-class pairs, and then a single projection vec-
tor for all classes is obtained by maximizing this objective
function.

It must be pointed out that although the object function
in (23) is the sum of the object function for each two class pair
that is optimal for that two classes in the Bayesian sense, it is
not necessarily optimal for all classes, since maximization of
the sum not necessarily maximizes each term. However, it is

more likely that a suboptimal solution can be achieved by
maximizing the sum, our experiment results below illustrate
the effectiveness of this method. The objective function in
(23) is also better than (9) because in (9), the goal is to
maximize the differences betweenRc and the total covariance
matrix R, large difference between Rc and R does not neces-
sarily imply large differences between pairs ofRc. In contrast,
our objective function directly maximizes the differences
between class covariance matrix pairs.

B. AN ALGORITHM FOR NEW MULTI-CLASS CSP
In this subsection, we develop an algorithm to solve our new
multi-class CSP. Let sij denote the sign of wT (Ri−Rj)w, then
(23) turns to

wnewcsp = arg max
w,wTw=1

wT
( C−1∑
i=1

C∑
j=i+1

sij(Ri − Rj)
)
w (24)

if follows that wnewcsp is exactly the principal component

of the matrix A(s)
4
=
∑C−1

i=1
∑C

j=i+1 sij(Ri − Rj) associated
with the largest eigenvalue, which can be solved by classical

methods, e.g., power method, where s
4
= (sij) denotes a

c(c− 1)/2 dimensional vector of 1 and −1 which represents
a sign combination of sij. Since A(s) depends on s, let S =
{s1, s2, . . . , s2c(c−1)/2} be the set of all possible combinations
of signs of sij, then (24) is actually

wnewcsp = argmax
s∈S

max
w,wTw=1

wTA(s)w. (25)

Like in [28], when the class numberC is small (usual the case
for most EEG classification problems), (25) can be solved
by a full search method over S, there are totally 2c(c−1)/2

different sign combinations, for example, when c = 3, there
are 8 sign combinations, same as in [28].
(25) only calculates one CSP direction (spatial filter),

if more CSP projection vectors w1, . . . ,wr need to be cal-
culated, we can find them by the following optimization
procedures

w1 = argmax
s∈S

max
w,wTw=1

wTA(s)w,

. . .

wr = argmax
s∈S

max
w,wTw=1,wTUr−1=0

wTA(s)w. (26)

where Ur−1 = [w1,w2, . . . ,wr−1].
In traditional PCA, wi can be sequentially solved by the

Hotelling’s deflationmethod. Hotelling’s deflation is a simple
and popular method to eliminate the influence of a given
eigenvector from a matrix. For example, when w1 has been
calculated, one can eliminate w1 from A(s) by

A(s)← A(s)− w1wT1A(s)w1wT1 . (27)

However, the Hotelling’s deflation relies on the exact eigen-
vectors. When applying to this situation, it might be prob-
lematic, because here A(s) is not a single fixed matrix, but
varies with s. w1 is the leading eigenvector of one A(s1) with
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certain s1, it might not be an eigenvector of other A(s) with
s 6= s1, so the deflation (27) may fail in this case [42].

To handle this problem, we adopt new deflation schemes
from [42]. Our situation here is similar to that of [42], where
in sparse PCA, the eigenvector is not the exact eigenvec-
tor, but a pseudoeigenvector, an approximate to the exact
eigenvector. Several novel deflation methods that overcome
the drawbacks of the Hotelling’s deflation have been pro-
posed in [42], such as projection deflation, Schur complement
deflation. For example, after calculating w1, the projection
deflation reads

A(s)← (I− w1wT1 )A(s)(I− w1wT1 ). (28)

where I is the D × D identity matrix. Here we adopt similar
deflation scheme to calculate more than one CSP projection
vectors. The procedure is described in Algorithm 1.

Algorithm 1 A New Multi-Class CSP
Input: EEG data matrices Xc

= [xc1, x
c
2, . . . , x

c
tc ], for all

classes c ∈ {1, 2, ...C}. Number of CSP vectors r .
1. Calculate covariance matrix Rc for each class

according to (1).
2. Enumerate all 2c(c−1)/2 sign combinations s of sij,

denoted by S = {s1, . . . , s2c(c−1)/2}
3. Calculate A(sj) by

A(sj) =
∑C−1

i=1
∑C

j=i+1 sij(Ri − Rj),
for each sj ∈ S.

4. Initialize B1 = I and A1(sj) = A(sj), for all sj ∈ S,
j = 1, 2, . . . , 2c(c−1)/2.

For i = 1, 2, . . . , r
For j = 1, 2, . . . , 2c(c−1)/2

5. Calculate the eigenvector
wj = argmaxw,wBiw=1 w

TAi(sj)w
associate with the leading eigenvalue λj.

End
6. Choose wi = maxλj{wj} to be the eigenvector of

the largest λj.
7. qi = Biwi
For j = 1, 2, . . . , 2c(c−1)/2

8. Ai+1(sj) = (I− qiqTi )Ai(sj)(I− qiqTi )
End
9. Bi+1 = Bi(I− qiqTi )
10. wi← wi/‖wi‖

End
Output: r CSP projection vectors {w1,w2, . . . ,wr }.

C. NONPARAMETRIC MULTI-CLASS CSP
The new multi-class CSP algorithm in the above section
is also based on the Gaussian distribution assumption, and
is also suffering performance degradation in non-Gaussian
distribution scenarios. The nonparametric multi-class CSP
(NMCSP, we use wnmcsp to denote the projection vector) is
derived just by replacing the covariance matrices Ri and Rj
by the nonparametric within class scatter matrices Si and Sj,

respectively, where these within class scatter matrices are
calculated using formula like (11)-(13).

wnmcsp = arg max
w,wTw=1

wT
( C−1∑
i=1

C∑
j=i+1

sij(Si − Sj)
)
w (29)

Similarly, more projection vectors can be obtained by using
Algorithm 1 but with replacement of Ri and Rj by Si and Sj.
Also note that as pointed out in Section III, when k = S,
Si = Ri, thus NMCSP is a generalization of MCSP.

V. EXPERIMENTAL RESULTS
In this section, we conduct a series of carefully designed
evaluations to demonstrate the effectiveness and efficiency
of our presented algorithms. The algorithms used in the com-
parison experiments including our proposed nonparametric
CSP and multi-class nonparametric CSP, the traditional two-
class CSP, the baseline multi-class CSP [28] as well as the
recently proposed CSP extensions such as ACCSP in [31],
RCSP in [23] et al.. In all the validation experiments, CSP
algorithms are used to extract the discriminant feature from
raw EEG first, then we resort the SVM algorithm (LibSVM
software) [9] to implement the classification task, the classifi-
cation accuracy are presented. One thing that should be noted
is that in all of experiments, we adopt the default parameter
settings, that is the value of svm_type is C-SVC, the value of
the kernel_type is linear and the gamma value is 0.5 etc..
In the vigilance estimation experiment, we firstly give

a detailed description of our designed EEG signal acqui-
sition environment and acquisition procedures. Secondly,
we explain our method used to extract the EEG features for
vigilance detection and motor imagery recognition as well
as some EEG signal preprocessing work. Finally, we eval-
uate the performance of our proposed algorithms and make
comparisons with the baseline as well as the state-of-the-art
algorithms.

A. EEG DATA COLLECTION AND PRE-PROCESSING
We build a driving simulation system to record the EEG
signals of a subject when he (she) is driving a car through the
driving simulation system. 4 subjects aged 18-28 participate
in our experiments. Those subjects were required to wear
a EEG recording cap with 64 electrodes connected to the
amplifier of the NeuroScan system and sit on chair when
driving a car in a simulation driving environments. They had
shown a tendency to fall asleep during the driving simula-
tion. The electrodes are arranged based on the international
10/20 standard, and the EEG signals were recorded in a com-
puter and the sample rate of brain potential is 100Hz per sec-
ond. EEG data were acquired through 64 channels including
62 EEG channels and 2 EOG channels. The room used in the
experiments was designed to be a dark, quiet, isolated room,
the temperature was set to 24 degrees and the humidity was
between 40% and 60%. The subjects manipulated the steering
wheel and the simulated driving scenes were displayed before
them with a LCD screen. A DV camera was also placed in
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TABLE 1. Binary classification accuracy comparisons between the classical two-class CSP and NCSP for all subjecsts (accuracy in %).

TABLE 2. Statistics of EEG data sets for motor imageries experiment.

front of the subjects to record the facial expression of the
subjects for state labeling later. The whole experiment lasted
about for one hour and data labeling was completed by hand
according to the monitoring video [44]–[47].

In the vigilance estimation experiments, EEG data were
divided into 5s epochs with 2.5s window overlap. Half of
these epochs are selected to form the training set and the
other half would be the test set. CSP algorithms are used
to extract the discriminant features from the raw EEG data,
and SVM algorithm (libsvm) with default parameter setting
to implement the vigilance estimation task. Three vigilance
states, e.g., alert, drowsy and sleeping will be predicted.

We make the performance comparisons between the tradi-
tional CSP and our proposed nonparametric CSP first, then
compare with Zheng’s algorithm [28], which inspired us to
propose the new multi-class CSP. Finally, we compare our
algorithms with the recently proposed new CSP extensions
such as ACCSP [31], RCSP [23], CSP-L1 [34] as well as
the classical MCSP method [27]. In this section, we named
Zheng’s CSP algorithm proposed in [28] as ZMCSP for
simplicity.

To further test the feature extraction ability of our proposed
algorithms to the EEG data, we design a motion imagination
recognition experiment, which test data come from the BCI
competitions. CSP algorithms are used to extract the feature
vector first, then SVM is applied to implement the classifica-
tion task and the average accuracy and result discussion are
presented.

B. BINARY CLASSIFICATION EXPERIMENTS WITH
BASELINE ALGORITHM OVER VIGILANCE
DETECTION DATA
Let w1,w2, . . . ,wr be the CSP (or NCSP) projection vectors,
each EEG epoch xci is projected onto these directions by

yj = wTj x
c
i , j = 1, . . . , r to get r feature vectors, and the linear

support vector machine (SVM) [9] is then used to classify the
three vigilance states on these feature vectors. After a series of
pre-processing operations including EOG and EMG removal,
noisy filtering, manual labeling, we extract 42 epochs from
subject-1 experimental data, 45 epochs from subject-2 exper-
imental data, 39 epochs from subject-3 experimental data
and 45 epochs from subject-4 experimental data for our
comparison work.

Validation tests are run 10 times and the average classifi-
cation accuracy rates with different number r CSP projection
vectors is given in the Table 1. From the comparisons results
we can see that twomethods have almost same results, but our
proposed NCSP performs slightly better. That’s because we
adopt the nonparametric strategy to construct the covariance
matrices, which make our CSP algorithm more robust to the
noisy that introduced by the raw data.

C. BINARY CLASSIFICATION EXPERIMENTS WITH
BASELINE ALGORITHM OVER MOTOR
IMAGERY DATA SETS
To validate the performance of our CSP on other applications
based on EEG signal, we conduct classification experiments
on three data sets of BCI competitions, in which 17 subjects
were involved. Each subject sat in a relaxing chair with arm
rests and was required to do the task of motor imageries (MI)
of left hand, right hand, foot or tongue movements according
to a cue, during which the EEG signals were recorded [34].
The statistics of dataset we used in this experiment are given
in the following Table 2.

Through the comparison results, we can learn that our
proposed nonparametric CSP algorithm still get the better
results than the traditional CSP, which demonstrate that in
some cases, such as when the data set is not completely
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TABLE 3. Binary classification accuracy on the motor imageries data from the BCI competetion (accuracy in %).

TABLE 4. Classification rates comparisons between our NMCSP and ZMCSP with different r (accuracy in %).

FIGURE 1. CSP patterns benefited from using ZMCSP [28] for subject 4 whose brain was in the alert states.

gaussian, the non-parametric CSP algorithm can extract more
discriminative EEG characteristics.

D. MULTI-CLASS CLASSIFICATION EXPERIMENTS
WITH BASELINE ALGORITHM OVER
VIGILANCE DETECTION DATA
Table 4 shows the classification rates of our new nonparamet-
ric multi-class CSP and ZMCSP in [28] for three vigilance
states (alert, drowsy, sleep) with different CSP projection
vector number r for all subjects. It shows that ZMCSP
have a better performance than our NMCSP with very few
CSP vectors, for example when r = 3, 5. However, when
the number of CSP vectors increase, our proposed NMCSP
showed more significant advantage than the ZMCSP in the
experiments of all four subjects. Especially in the experiment
of subject 3, our NMCSP achieves much better results than
ZMCSP in [28] in all of dimensionality trial, this demon-
strates the better discriminant ability of criteria (23) than that
of [28]. In addition, ZMCSP algorithm also shows a strange
phenomenon that the performance of ZCSP is not closely
related to dimensionality value, and even the performance

of algorithm would decline with the increase of dimension
r value, we guess that was because the increase of dimen-
sionality introduced more noise thus leads to the performance
decrease.

In Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and
Figure 6, we demonstrate the brain topographic maps of
subject 4 whose brain was in alertness, drowsy and asleep
states respectively, of which Figure 1, Figure 2 and Figure 3
are computed by the ZMCSP algorithm [28], while Figure 4,
Figure 5 and Figure 6 are computed based on our proposed
algorithm. It can be seen from the comparison results that the
CSP patterns extracted from the raw EEG data for vigilance
estimation by our proposed algorithm is more separable than
ZMCSP [28].

To further test the performance and robustness of our pro-
posed NMCSP, In Figure 7(a), we plot the classifcation accu-
racy result for three-class vigilance classification problem
with respect to different number of training data on all four
subject data, and in Figure 7(b) we demonstrate the classif-
cation accuracy result for three-class vigilance classification
problem with respect to different value of dimensionality
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FIGURE 2. CSP patterns benefited from using ZMCSP [28] for subject 4 whose brain was in the drowsy states.

FIGURE 3. CSP patterns benefited from using ZMCSP [28] for subject 4 whose brain was in the sleep states.

FIGURE 4. CSP patterns benefited from using Our proposed Nonparametric multi-class CSP for subject 4 whose brain was in the alert states.

FIGURE 5. CSP patterns benefited from using Our proposed Nonparametric multi-class CSP for subject 4 whose brain was in the drowsy
states.

(with fixed number (r = 7) ) over all four subjects data. All of
data of each subject were divided into two equal parts, one
parts for training and the rest for test. Experimental results
show good accuracy and relatively robust results for different
subjects.

E. COMPARIONS WITH THE STATE-OF-THE-ART
ALGORITHMS
To further test our new CSP algorithms, we compare its
performance with the recently proposed CSP algorithms such
as ACCSP in [31], RCSP in [23], CSP-L1 [34] as well as the
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FIGURE 6. CSP patterns benefited from using Our proposed Nonparametric multi-class CSP for subject 4 whose brain was in the sleep states.

FIGURE 7. Classification rates of NMCSP: (a) with different k ; (b) with different r .

TABLE 5. Classification rates of our NMCSP with different r
(Accuracy in %).

classical MCSP method [27]. In the Table 5 we demonstrate
the performance comparison results, the average classifica-
tion accuracy over the four subjects is given. As can be seen
from the comparison results in the Table 5, the NMCSP algo-
rithm we proposed still has obvious advantages comparing

with other newly proposedMCSP algorithms, thus proves the
correctness of our proposed theory.

F. MULTI-CLASS CSP ALGORITHM ON THE MOTOR
IMAGERIES EXPERIMENT
We then implement the proposed nonparametric multi-class
CSP algorithm on the benchmark dataset of BCI competition
IV namely data IIa. It is a continuous Multi-class Motor
Imagery EEG data of 9 subjects. It consisted of four differ-
ent motor imagery class, imagination of the left hand, right
hand, both feet and tongue. The statistics of the dataset used
in this experiment is given in the Table 2. In this verifi-
cation experiment, we use as same setup scheme and the
preprocessing method as adopted in [24]. The comparison
results are presented in the Table 6. It can be seen from
the experimental comparison results that all the algorithms
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TABLE 6. Classification performance comparisons on the motor imagery dataset (accuracy in %).

TABLE 7. The p-values of NMCSP and state-of-art algorithms in terms of
classification accuracy on the validation datasets.

TABLE 8. The p-values of NCSP and state-of-art algorithms in terms of
classification accuracy on the validation datasets.

based on BCI competition data set do not show good classifi-
cation performance, we guess that because too much noisy
introduced during the data collection procedure as well as
the subjects’ performance. The table shows that based on
the same classification strategy, different data sets exhibit
different classification accuracy performance. In addition to
the algorithm itself, the performance of the subjects in the
process of data collection is also an important factor affecting
the recognition performance. Our proposed NMCSP get the
first place by a narrow margin in this experiment.

G. STATISTICAL TEST
Tables 7 and 8 present the p-values of the classification accu-
racy result to assess the statistical significance of performance
difference between our algorithms and the compared meth-
ods. A p-value of smaller than 0.05 is generally considered as
indication of performance difference. Tables 7 and 8, we see
that most of the performance differences are statistically
significant.

VI. CONCLUSION
In this work, we first propose a nonparametric CSP for two-
class problem, where two within class scatter matrices are
calculated from the k nearest neighbors of each sample,
and are then used to replace the covariance matrices in the
original CSP. We also propose a novel multi-class CSP and
its nonparametric version. Our multi-class CSP has an expla-
nation of minimizing Bayes error, and is formulated as opti-
mization problem of an objective function in terms of sample

covariance matrices. We develop an algorithm base on matrix
deflation to calculate multiple multi-class CSP projection
vectors. This algorithm is a full search algorithm which is
valid only for small class number, we will investigate more
efficient algorithms that scale well for large class number in
the future.
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