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ABSTRACT In the area of research on massive multiple-input multiple-output (MIMO), two assumptions
on the wireless channel dominate channel modeling. Either, a rich scattering environment is assumed and the
channel is modeled as i.i.d. Rayleigh fading, or, a line of sight (LOS) channel is assumed, enabling geometric
channel modeling under a farfield assumption. However, either of these assumptions represents an extreme
case that is unlikely to be observed in practice.While there is a variety ofMIMO channel models in literature,
most of them, and even very popular geometry based stochastic channel models, are not spatially consistent.
This is especially problematic for technologies in which channel correlation of adjacent users is an important
factor, such as massive MIMO. In this work, we introduce a simple but spatially consistent MIMO channel
model based on multiple scattering theory. Our proposed channel model allows to adjust the Rician K factor
by controlling the number and strength of scattering elements. This allows to perform spatially consistent
simulations of wireless communications systems for a large range of scattering environments in between an
i.i.d. Rayleigh fading assumption and pure LOS channels. A statistical analysis in terms of the RicianK factor
for the introduced model is provided and verified by simulations. By comparison to other channel models,
we show that non spatially consistent channel models lead to an underestimation of inter-user correlation
and therefore to an overestimation of achievable sum rate.

INDEX TERMS Channel models, MIMO communications, massive MIMO.

I. INTRODUCTION
Massive MIMO promises to attain channel capacity in a
multi-user MIMO scenario with simple linear precoding
schemes. This optimal performance is attained under asymp-
totically favorable propagation conditions if the number of
antennas at the base station (BS) tends to infinity [1]. The
term favorable propagation conditions means that channel
vectors are mutually orthogonal, that is, that the inter-user
interference vanishes [2]. Massive MIMO supports dense
scattering environments, that is, i.i.d. Rayleigh fading chan-
nels, as well as pure LOS scenarios [3]. While in the former
case, channels become asymptotically orthogonal due to the

The associate editor coordinating the review of this article and approving
it for publication was Kostas P. Peppas.

law of large numbers, the latter case allows for the interpreta-
tion of forming increasingly sharp beams towards users [4].

For either of those extreme scenarios, simple channel mod-
els are at hand. Often, dense scattering environments are
modeled by i.i.d. Rayleigh distributed channel coefficients.
For pure LOS propagation, without any scattering objects
within the propagation environment, channel coefficients are
obtained by geometric models assuming planar wavefronts
in a far field approximation. While in the former case, users
are uncorrelated due to the independent generation of channel
coefficients, in the latter case, channel correlation is implic-
itly given via geometry. Since massive MIMO is considered
to be a multi-user MIMO system, the correlation of channels
is critical for the communications system’s performance [5].
There are several recent works considering the problem of
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separating closely located users [6]–[8]. In order to inves-
tigate the impact of spatial correlation of co-located users,
spatially consistent channel models are required. The prop-
erty of spatial consistency in this context means that users
in close proximity experience a higher correlation than well
separated users on average.

In [9], the authors control the correlation between
MIMO channels by varying the number and the angular
spread of multi path components (MPCs) but do not employ
a spatially consistent channel model. A user’s channel corre-
lation matrix is obtained by an exponential correlation model
while there is no correlation assumed among users in [10].
Similarly in [11], a correlated MIMO channel is obtained by
a matrix based correlation model. In [12], the LOS compo-
nent is determined by geometry while the inter-user channel
correlationmatrix is obtained by the Gaussian local scattering
model from [4].

Several channel models enable the analysis of MIMO
wireless communications systems through link and system
level simulations. The most popular models follow a geo-
metric stochastic approach and consider clusters of scattering
objects. MPCs within these clusters are then randomly gen-
erated according to specific large scale parameters (LSPs).
Usually, LSPs are randomly drawn from a given distribu-
tion and the MPCs are then generated accordingly. This
method is commonly applied within the Wireless World
Initiative for New Radio (WINNER) channel models [13],
[14], the 3rd Generation Partnership Project (3GPP) spatial
channel model [15], [16], the 3GPP 3D channel model [17],
[18] and the Quasi Deterministic Radio Channel Genera-
tor (QuaDRiGa) channel model [19]. Thereby, these models
generate spatially correlated MIMO channels in terms of
large scale fading. Even if the LSPs are generated spatially
correlated, for example by 2D filtering as proposed in the
QuaDRiGa channel model and the 3GPP 3D channel model,
the resulting small scale fading is not spatially consistent for
different users (users). In [20] and [21], authors put great
effort into a modification of the 3GPP 3D model, in order
to make it spatially consistent.

A different strategy is to generate a large number of MPCs
first, and then to synthesize the LSPs from them. This method
is adopted within the European Cooperation in Science and
Technology (COST) 2100 channel model by introducing the
concept of visibility regions for clusters [22]. The concept
of visibility regions enables spatially consistent modeling
of fading. However, this approach requires a proper choice
of link cluster commonness in order to obtain a consistent
model with multiple links [22]. In [23], for example, authors
propose to augment the concept of visibility regions in the
context of massiveMIMO. As the COST 2100 channel model
aims to reassemble specific scenarios that were observed
in measurements, the set of supported scenarios is limited
and the model does not allow to adjust the Rician K factor.
For example, the implementation available in [24] offers an
indoor hall scenario at 5GHz and a semi-urban scenario
at 300MHz.

We propose a channel model that overcomes spatial consis-
tency issues of stochastic geometric channel models, by con-
sidering geometric positions of scattering objects. This way,
the introduced channel model becomes inherently spatially
consistent. While this approach leads to a channel model that
is spatially consistent on a large scale and on a small scale,
we focus on small scale fading effects in our contribution.
To develop an analytic statistical description of the channel
model, based on positions of scattering objects distributed
in space, we consider multiple scattering theory. This theory
follows the simple idea that a radiated electromagnetic wave
is re-radiated by each scattering element. We do not aim to
restrict our model to certain specific scenarios but maintain
flexibility to choose the density of the scattering environment
to adjust the Rician K factor.
Multiple scattering theory was first employed in [25]

and [26] to describe radio wave propagation through a ran-
dom scattering environment. An extensive statistical analysis
of multiple scattering propagation is provided in [27]. Based
on this idea, a channel model based on stochastic propaga-
tion graphs is introduced in [28] and [29]. In these works,
the authors consider multiple scattering events and derive
closed form solutions for the case of an infinite number of
scattering events [30].

A. CONTRIBUTION
We adopt the idea of multiple scattering theory from [25].
We assume a discrete set of scattering elements with isotropic
re-radiation of electromagnetic waves. We furthermore con-
sider a single scattering event for non-line of sight (NLOS)
paths. By explicitly assigning spatial positions to scattering
elements, transmit antennas and receive antennas, we obtain
a spatially consistent MIMO channel model. The proposed
channel model allows for adjustment of the Rician K factor,
which enables investigation of wireless channels in between
an i.i.d. Rayleigh fading channel and a pure LOS channel.
We provide an analytic statistical analysis of our model in
terms of the Rician K factor and verify the analysis by simu-
lations.We show that non spatially consistent channel models
overestimate the achievable sum rate as they underestimate
the inter-user interference compared to the proposed spatially
consistent model. As the complexity of the model scales only
linearly with the number of antennas, the model is especially
suited for simulation of massive MIMO systems with a large
number of antennas.

B. NOTATION
We denote vectors by lowercase boldface symbols, such as x,
and matrices by uppercase boldface symbols, such as X. The
entry from the nth row and the k th column of matrix X is
denoted by [X]n,k . We denote the Euclidean norm of vectors
by ‖ · ‖ and the Frobenius norm by ‖·‖F. The absolute value
of a scalar as well as the cardinality of a set are denoted
by | · |. The transpose of a vector or matrix is denoted by (·)T

while the conjugate transpose of a vector or matrix is denoted
by (·)H. The expectation of a random variable X is denoted
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FIGURE 1. Nodes and propagation paths within the multiple scattering
channel model. For this illustration, we chose N = 6, M = 3 and U = 2.

by E {X} while the variance of X is denoted by var {X}. The
trace of a matrix is denoted by tr (·).

II. SPATIALLY CONSISTENT MIMO CHANNEL MODEL
In order to obtain a spatially consistent channel model,
we consider a discrete set of scattering elements in free space.
Assuming that a scattering event is described by an isotropic
re-radiation of a wave corresponds to the idea of multiple
scattering theory from [25] with an isotropic scattering ker-
nel. As a simplification, we further assume that a scattering
object cannot block propagation of electromagnetic waves.
In line with this simplification, there is no self-scattering.
This means that a scattering element re-radiates only a single
wave rather than multiple ones. Applying a narrow band
assumption, multiple rays that are scattered by a single scat-
tering element cannot be distinguished. We cluster multiple
scattered waves originating from one (or more than one)
scattering element(s) and model them by a single scattering
event. The cluster size is expressed via a clustering fac-
tor, describing the strength of the modeled scattering event.
Therefore, a scattering element within the channel model may
correspond to multiple scattering objects or scattered waves
in a real-world scenario. The most important step to obtain
a spatially consistent MIMO channel model is that each
(transmit or receive) antenna, as well as each scattering object
has an explicit location. While we employ a two dimensional
space for all positions in this contribution, the proposed
model is readily extended into three dimensions.

A complete statistical analysis of multiple scattering chan-
nel models is provided in [27]. There, the authors show that
an L Rayleigh distribution, being the distribution of a product
of L independent Rayleigh variables, is obtained for NLOS
propagation with L scattering events. Since this distribution
is only obtained in few special cases, as also shown in [27],
we assume MPCs with a single bounce to be dominant and
consider only a single scattering event in this work.

We assumeN transmit antennas at positions rn with n ∈ T ,
where T denotes the set of transmit antenna indices with
|T | = N . There are U users with single antennas at posi-
tions ru with u ∈ R, where R denotes the set of user indices

with |R| = U . One may also interpret U as the number of
receive antennas of a single user instead of a number of users
with single antennas or any combination thereof. Further,
we assume a discrete set of M scattering objects, located at
positions rp with p ∈ S, where S denotes the set of scattering
object indices with |S| = M . The sets of node indices are
unique in the sense that each index belongs to exactly one
set, that is, T ∩R = T ∩ S = R ∩ S = ∅.
The channel is described by a MIMO channel matrix

H ∈ CU×N from N transmit antennas to U receive anten-
nas or users, with transmit antenna n ∈ T at position rn and
receive antenna u ∈ R at position ru. The channel coefficient
from transmit antenna n to receive antenna u is given by

[H]u,n = αu,n +
∑
p∈S

βu,pαp,n , (1)

where αu,n describes propagation without any scattering, that
is, the LOS path, and the sum term describes all propagation
paths that include a scattering event.

We obtain the path coefficients α and β via simple wave
propagation mechanisms assuming free space in between
scattering objects. The path coefficients are given by

αk,j =
λ

4π‖rk − rj‖
ei

2π
λ
‖rk−rj‖ , (2a)

βk,j =
δj

√
4π‖rk − rj‖

ei
2π
λ
‖rk−rj‖ . (2b)

Here, the coefficient αk,j describes free space propagation
from node j to node k . Coefficient βk,j describes the prop-
agation from node j to node k , including a scattering event
at node j (a scattering element) with the scattering coeffi-
cient δj. A scattering event at scattering object j is described
by the complex valued scattering coefficient δj = γjeφj

with the random phase φj ∼ U[0, 2π ) and the clustering
factor γj = |δj|. The scattering phase is randomly drawn
once per channel realization, in order to obtain a spatially
consistent phase between transmitters and receivers. The
clustering factor represents the strength of the scattering event
and, therefore, reflects the physical size of the scattering
object. We assume a fixed deterministic clustering factor in
the sequel, that is γj = γ , ∀j ∈ S. A detailed derivation of the
path factors is provided in Appendix A.

Due to the presented choice of factors, the channel model,
consisting of (1) and (2), includes path loss as well as small
scale fading. However, we focus on spatial consistency of
small scale fading in our contribution and do not apply a large
scale fadingmodel on top of free space LOS propagation. The
number of transmit antennas, receive antennas and scattering
objects is arbitrary and only limited by computational com-
plexity. As the position of transmitters and receivers is free to
choose, the introduced model is capable of modeling multi-
user MIMO systems in a spatially consistent way with large
arrays as well as distributed antenna systems.

The computation time to obtain channel coefficients
according to the proposed channel model may be split into
two parts. First, the generation of random positions for users
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and scattering objects and second, the calculation of all chan-
nel coefficients according to (1) and (2). The asymptotic
complexity for the generation of random positions scales
linearly with the number of users and the number of scatter-
ing elements. Therefore, the asymptotic computational com-
plexity of the first task is O (U) + O (M). Computing all
channel coefficients, that is the complexity of the second
task, asymptotically scales with the number of scattering
elements M . Since the channel coefficients have to be cal-
culated for each combination of transmit antenna and receive
antenna (or user), the asymptotic complexity is O (NUM),
that is, linear in the number of transmit antennas, number of
users and number of scattering objects. Therefore, the overall
computational complexity of the proposed channel model
is dominated by the latter part of calculating all channel
coefficients.

III. STATISTICAL ANALYSIS
In this section, we investigate the distribution of channel
coefficients for the proposed model and finally provide an
expression for the K factor, depending on the number of scat-
tering objectsM and the clustering factor γ . Please note that
although we define the K factor analogously to the Rician K
factor, we do not make any assumption on the distribution of
channel coefficients for the analysis provided in this section.
We focus on the case of a fixed clustering factor γ in this
work.

Inserting the scattering coefficients (2) and δp = γ eiφp into
the model (1), we obtain

[H]u,n =
λ

4π‖ru − rn‖
ei

2π
λ
‖ru−rn‖ +

λγ

(4π)
3
2

∑
p∈S

u(rp), (3)

with the sum term

u(rp) =
(
‖ru − rp‖‖rp − rn‖

)−1
×e

i
(
φp+

2π
λ (‖ru−rp‖+‖rp−rn‖)

)
. (4)

From this relation, we observe that the BS, user and scattering
object placement, that is, the scenario geometry, determines
the channel statistics. The behavior of the sum in (3) is deter-
mined by the range of possible values of its sum terms (4).
The absolute value of the sum term (4), depends on the BS-to-
scattering object and the scattering object-to-user distances.
Given a certain number of scattering objects, this sum might
be dominated by a single value of large magnitude. This cor-
responds to the situation of a scattering object that is closely
located to a transmit antenna or receive antenna. To bound the
sum term’s absolute value, we consider a minimum distance
dS > 0 between any transmit and any receive antenna to any
scattering object, that is

‖rk − rm‖ ≥ dS ∀k ∈ T ∪R, ∀m ∈ S . (5)

This condition is straight forward to fulfill in any simula-
tion scenario, by introducing an empty region with radius
dS around all BS and user antennas in which no scattering
object is placed. The condition (5) guarantees the existance

FIGURE 2. Circular sector geometry considered for calculation of the
channel coefficient variance.

and boundedness of (3). Bounds on the magnitude of (4) are
discussed in more detail in Appendix B.

A. PHASE DISTRIBUTION OF SUM TERMS
To investigate the phase of the sum terms u(rp), we introduce
the following lemma.
Lemma 1 (Distribution of Modulo Sum): Let X be a ran-

dom variable, uniformly distributed in the interval [0, a) with
a > 0 and Y be a random variable independent of X .
Then, (X +Y ) mod a is again uniformly distributed in [0, a),
independent of the distribution of Y .
Defining the argument of a complex number z ∈ C as

Arg
(
|z|eiφ

)
= φ mod 2π , the phase of the sum terms is given

by

Arg
(
u(rp)

)
=φp+

2π
λ

(
‖ru−rp‖+‖rp−rn‖

)
mod 2π. (6)

As the scattering phase φp is uniformly distributed within
[0, 2π ) and independent of the scattering object and user
placement, invoking Lemma 1 we obtain

Arg
(
u(rp)

)
∼ U [0, 2π) . (7)

Therefore, the sum term has a uniformly distributed phase,
independent of the scattering object placement and scenario
geometry.

B. VARIANCE OF SUM TERMS
In order to find an expression for the Rician K factor for the
proposed channel model, the variance of the sum terms u(rp)
is required. As shown in the previous section, the phase of
u(rp) is uniformly distributed, if the scattering phase is uni-
formly distributed within [0, 2π ). Further, the magnitude dis-
tribution and the phase distribution of u(rp) are independent.
Therefore, u(rp) is complex circularly distributed around zero
and therefore has zero mean, that is, E

{
u(rp)

}
= 0.

To find an expression for the variance ω2
= var

{
u(rp)

}
,

we consider the geometry shown in Fig. 2. Here, we assume
that the user is located at the middle of the sector, that is, at an
angle of ϕ = 0.When considering a distribution of users with
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a random angle, this is an approximation assuming that the
maximum user angle is smaller than the sector angle.

Considering (4) in terms of the geometry shown in Fig. 2,
we identify the transmitter-to-scattering object distance
‖rp−rn‖ to be s and the scattering object-to-receiver distance
‖ru − rp‖ to be D.

We consider a random variable transformation to obtain an
expression for the variance ω2. A two dimensional uniform
distribution of scattering object positions within the circular
sector is equivalent to a uniform distribution of the angle ϕ
and a triangular distribution of the distance to the BS s. Their
probability density functions (PDFs) are given by

fϕ(ϕ) =


1
θ

for −
θ

2
≤ ϕ ≤

θ

2
0 otherwise

, (8)

and

fs(s) =


2

s2max − s
2
min

s for smin ≤ s ≤ smax

0 otherwise
, (9)

where the minimum value of s is given by smin = dS and
the maximum value of s is given by smax = R − dS. Since ϕ
and s are independent, their joint PDF is given by fs,ϕ(s, ϕ) =
fs(s)fϕ(ϕ). Considering a scattering object location with dis-
tance s from the transmitter at angle ϕ and distance D to the
receiver and applying the law of cosines, a random variable
transform of the form

|u|2 = Y = g(s, ϕ) =
(
s2
(
R2 + s2 − 2Rs cos(ϕ)

))−1
(10)

is performed. Applying the random variable transform to
calculate the variance of u, we obtain

ω2
= var {u} = E

{
|u|2

}
= E {Y }

=

∫
YfY (Y )dY

=

∫ θ
2

−
θ
2

∫ smax

smin

g(s, ϕ)fs,ϕ(s, ϕ) ds dϕ

=
8

θ
(
s2max − s

2
min

)
×

∫ smax

smin

1
s(R− s)

arctan
(
R+ s
R− s

tan
(
θ

4

))
ds, (11)

where E {u(r)} = 0 was employed.

C. K FACTOR ANALYSIS
Assuming random and independent user positions as well as
random and independent scattering object positions, the sum
terms (4) from (3) have zero mean and are independent.
Invoking the central limit theorem, the sum is approxi-
mately Gaussian distributed as long asM is sufficiently large.
We denote the resulting complex symmetric Gaussian ran-
dom variable by X and can therefore approximate the channel
coefficient as

[H]u,n ≈
[
H̃
]
u,n = αu,n +

λγ

(4π)
3
2

X , (12)

where X ∼ CN
(
0,Mω2

)
. Assuming a fixed but arbi-

trary position ru, corresponding to the BS antenna posi-
tion, without loss of generality, αu,n is deterministic for a
given user to BS distance R = ‖ru − rn‖, even if the
user’s antenna position rn is random. Therefore, the approx-
imated channel coefficients are distributed as

[
H̃
]
u,n ∼

CN
(
αu,n,M (ωγ )2 λ2

(4π)3

)
. While the number of scattering

elements M required for a good approximation (12) depends
on the minimum distance dS, a few tens of scattering objects
already lead to a good approximation for a few meters of dS.
Let us consider the K factor of the absolute value of the

channel coefficients
∣∣[H̃]u,n∣∣ as the ratio of power in the

specular (LOS) component to the power of the MPCs

K =
|ν|2

σ 2 , (13)

analogous to the notion of a Rician K factor. Here, ν =
E
{[
H̃
]
u,n

}
is the mean, contributed through the LOS com-

ponent, and σ 2
= var

{[
H̃
]
u,n

}
is the variance .

Considering (12) we find

|ν|2 = |αu,n|
2
=

(
λ

4πR

)2

, (14)

σ 2
= M (γω)2

λ2

(4π)3
, (15)

which leads to a K factor of

K =
4π

M (γωR)2
. (16)

While it is not surprising that the K factor depends on the
user to BS distance via Friis’ formula, (16) further reveals
the dependence upon the number of scattering objects M
and the clustering factor γ . It is intuitive that the K factor
decreases with an increasing number of scattering objects as
well as with an increasing clustering factor, as this renders
scattered paths dominant compared to the LOS path. While
the clustering factor γ is a constant factor within the sum
terms u(rp), and therefore appears squared in their variance,
the factorω2 is dependent on the scenario geometry. As previ-
ously mentioned, the variance is increased for small antenna
to scattering object and inter-scattering object distances dS.

IV. SIMULATION RESULTS
In this section we present and discuss simulation results
obtained with the proposed channel model. Firstly,
we demonstrate that the statistical model analysis
from Section III is correct and the introduced approximation
is valid. Secondly, to verify the introduced model, we com-
pare simulation results in terms of spatial correlation to
a simple Rice channel model and the 3GPP 3D channel
model from [17]. The simulation scenario employed for the
proposed channel model is as shown in Fig. 3. The scattering
objects are uniformly distributed within a circular sector
of 120◦ with an inner radius of 10m and an outer radius
of 50m. The users have a single antenna each and are placed
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FIGURE 3. Simulation scenario geometry. The circular sector is outlined in
blue. Possible user positions are indicated in black. User positions and
scattering object positions in this figure are taken form a single
realization. For the purpose of illustration we chose M = 100 scattering
objects, N = 64 transmit antennas and U = 20 users.

at a constant distance of 60m from the BS with a uniformly
distributed polar angle of [−50, 50] degrees. With this setup,
a minimum distance between users and scattering objects as
well as between BSs and scattering objects is automatically
ensured. The BS is equipped with a uniform linear array
(ULA) of N = 64 antennas along the y-axis with the array
center at the origin. The elements of the ULA are spaced
by λ/2 at a carrier frequency of 2.5GHz. All antenna ele-
ments, user antennas and BS antennas, are omnidirectional.

A. AMPLITUDE DISTRIBUTION
In order to verify the statistical description of the proposed
channel model in terms of a K factor, we perform simu-
lations of channel amplitude distributions in this section.
Simulations with 1 000 random realizations of user positions
and scattering object positions are performed. We employ
M = 800 scattering objects within the previously described
simulation scenario. Results in terms of cumulative distri-
bution functions of the channel coefficient magnitude are
shown in Fig. 4 for different clustering factors γ . For this
simulation result, the mean channel power was normalized
to one. The maximum likelihood (ML) distribution fits for a
Rice as well as for a Nakagami-m distribution are provided.
For the Rice distribution, the Rician K factor K̂ML is obtained
by ML estimation and for the Nakagami-m distribution the
shape factor m̂ML is ML estimated. The corresponding values
for both parameters are provided in Fig. 4 as well. Both
distributions, the Rician and the Nakagami-m, show a good
match with the simulation data.

A Rician fading amplitude distribution of channel coef-
ficients is obtained by assuming the presence of one

FIGURE 4. ML fit of Rice distribution to simulated channel coefficient’s
magnitude with M = 800 scattering objects.

specular component andmany diffuse multipath components.
A Nakagami-m distribution [31] of amplitudes is obtained
through maximum ratio combining of m Rayleigh fading
channel coefficients. While a Nakagami-m distribution with
m = 1 is equivalent to a Rayleigh distribution, a Rician
distribution is approximated by the Nakagami-m distribution
when choosing the shape parameter according to [31]

m =
(K + 1)2

2K + 1
. (17)

Please note that the Rician K factor and the Nakagami-m
shape parameter m provided in Fig. 4, which are obtained
independently by ML estimation, approximately fulfill
relation (17).

From the results shown in Fig. 4 we observe that both,
the Rician and the Nakagami-m distribution, provide a good
fit with the data obtained by simulation. Therefore, the stati-
cal analysis provided in Section III can also be performed in
terms of the Nakagami-m shape parameter

m =

(
E
{∣∣[H̃]u,n∣∣2})2

var
{∣∣[H̃]u,n∣∣2} . (18)

However, due to the geometric interpretability of Rician fad-
ing, which suites our channel model very well, we performed
the statistical description in terms of a K factor in Section III.
Since the amplitude distribution obtained through simulation
fits a Rician one, we indeed identify the introduced K factor
to be the Rician K factor.
Employing the same simulation setup, the derived relation

for the Rician K factor (16) is verified. Given the geometry,
the variance ω2 is calculated through (11). Simulation results
for K over the number of scattering objects M are shown
in Fig. 5. Again, 1 000 random realizations were performed.
In both cases, the calculated RicianK factor is compared to its
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FIGURE 5. Comparison of the analytically predicted Rician K factor K and
the ML estimated Rician K factor K̂ML.

ML estimate, which is denoted by K̂ML. Please recall that (11)
is obtained as an approximation, where we assume to user
to be located at the middle of the sector, that is, at ϕ = 0.
Although simulations performed here employ a uniform user
distribution within [−50◦, 50◦], the predicted K factor and
the ML estimated K factor show a good fit. This shows the
validity of the approximation within the derivation of (16).

B. SPATIAL CONSISTENCY
To demonstrate the key feature of our proposed channel
model, which is spatial consistency, we perform simulations
with the same sector geometry as shown in Fig. 3. To inves-
tigate the spatial correlation, we again consider a random
placement of scattering objects but a deterministic placement
of U = 2 users. While both users are at distance R = 60m
from the BS, the first user is placed at an angle of ϕ/2 and
the second user is placed at an angle of −ϕ/2, relative to the
array broadside direction. In this setup, the MIMO channel
matrix consists of the users’ channel vectors hu ∈ CN×1

containing channel coefficients from N antennas to user u,
i.e., H = (h1,h2)T.
As a comparison, we consider aRiceMIMOchannelmodel

of the form

HRice =

√
K

1+ K
HLOS +

√
1

1+ K
Hiid ∈ CU×N . (19)

The i.i.d. Rayleigh fading channel matrixHiid contains Gaus-
sian distributed channel coefficients, that is,

[
Hiid

]
u,n ∼

CN (0, 1). The columns of HLOS are given by the LOS far
field channel vectors to all users. Assuming a ULA with
antenna spacing d , the LOS channel vector for user u is given
by

hLOS,u=
(
e−i

N
2

2π
λ
d sin(ϕu), . . . , ei

N
2

2π
λ
d sin(ϕu)

)T
, (20)

where ϕu is the angular position of user u.

As ametric for spatial correlation of users’ channel vectors,
we consider the normalized inner product

ρ(ϕ) = E

{ ∣∣hH1 h2∣∣
‖h1‖‖h2‖

}
, (21)

similar as done in [32]. Considering maximum ratio trans-
mission precoding in the case of two users, ρ2 is the inter-
user interference power. For two identical channel vectors
ρ = 1, while two orthogonal channel vectors yield ρ = 0.
We identify two criterions in terms of the spatial correlation
metric ρ(ϕ) for a spatially consistent channel model:

1) Users at the same position must experience the same
channel and therefore a correlation of one:

ρ(0) = 1 . (22a)

2) For a bounded variation in position ϕ, the change in
correlation must be bounded as well, that is, the corre-
lation function must be Lipschitz continuous:

ρ(ϕ1)− ρ(ϕ2) ≤ L (ϕ1 − ϕ2) , (22b)

for a Lipschitz constant L ≥ 0 and two arbitrary user
positions ϕ1, ϕ2 ∈ [0, 2π).

Simulation results in terms of ρ(ϕ) over the angle between
the two users ϕ are shown in Fig. 6. While results shown
in Fig. 6a and Fig. 6b are obtained with the same parame-
ters, the latter is considered as a detail view of the former
with respect to small angles between users. Results for the
normalized inner product ρ are provided for four different
Rician K factors of K = −6 dB, 0 dB, 6 dB, 17 dB for the
proposed channel model and the Rice channel model. For our
proposed channel model, these K factor values are obtained
with M = 800 scattering objects and clustering factors of
γ ≈ 4.24, 2.14, 1.08, 0.28. The two extreme cases, a pure
LOS channel, that is, K → ∞, and an i.i.d. Rayleigh fading
channel, that is K → 0, are provided as a reference.

From Fig. 6a we observe that the pure LOS channel and
the proposed channel model are spatially consistent, as they
fulfill criterion (22a). The proposed channel model achieves
a very good fit with the Rice channel model (19) of the same
RicianK factor, except for the region around ϕ = 0. To inves-
tigate this region of small inter-user angles further, Fig. 6b is
provided. Here, we observe that the spatial correlation of the
proposed channel model is indeed spatially consistent, as its
smooth behavior also fulfills criterion (22b).

All other compared channel models are not spatially con-
sistent as they violate criterion (22a). Since we generate
the i.i.d. Rayleigh fading channel by drawing channel coef-
ficients from a complex Gaussian distribution without any
dependence on the user position, two users at the same
position experience different channels. However, even if the
generation of channel coefficients was changed, such that
two users at the same position are assigned identical channel
coefficients, still does not render the channel model spatially
consistent. While this leads to ρ(0) = 1 and therefore fulfills
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FIGURE 6. Normalized inner product over inter-user distance for (a) a wide angular range and (b) a narrow angular range. The proposed channel model
as well as the pure LOS channel are spatially consistent. The 95% confidence regions obtained by bootstrapping are highlighted in gray.

the first criterion, this alternate generation of channel coeffi-
cients leads to a violation of criterion (22b) as the correlation
suddenly drops for user distances larger than zero.

As a comparison, the spatial correlation obtained with the
3GPP 3D channel model with the same scenario geometry
as previously described is also provided in Fig. 6. For this
channel model, we assume an urban micro cell scenario
with 12 clusters and 20 rays per cluster. To obtain a fair
comparison, we exclude shadow fading effects of the 3GPP
3D channel model for our simulation. Since the small scale
fading within this channel model is generated uncorrelated
for different users, the obtained spatial correlation shows no
spatial consistency.

Another important observation from these simulation
results is the residual interference at comparably high inter-
user angles, as indicated in Fig. 6a. The spatial correlation
remains higher than the one obtained with an i.i.d. Rayleigh
fading assumption, even for high values of ϕ. This residual
correlation originates from the location of scattering objects
on only one side of the user. The i.i.d. Rayleigh fading case
is attained with a spatial channel model only, if there is a
ring of scattering elements placed around the user. Although
we assume a pure NLOS channel for the 3GPP 3D channel
model, the spatial correlation is also higher than the i.i.d.
Rayleigh fading channel. This again stresses that the i.i.d.
Rayleigh fading assumption is only achieved by artificial
scenario geometries with spatial channel models.

C. ACHIEVABLE SPECTRAL EFFICIENCY
In this section we consider the effects of spatial consistency
on the achievable rate of a massive MIMO communications
system. We consider a multi-user MIMO downlink system.

The vector of received signals for U users is given by

y = HHFx+ w ∈ CU×1 , (23)

where x ∈ CU×1 is the vector of random transmit symbols,
F is the precoding matrix and w is additive white Gaussian
noise, that is, w ∼ CN

(
0, σ 2

wIU
)
. We employ independent

transmit symbols of unit power, that is, E
{
xxH

}
= IU . The

channel matrix H is given by H = (h1, . . . ,hU ), where
column vectors are the channel vectors for each user. A user’s
channel vector is given by hk =

√
ηk h̃k for k ∈ {1, . . . ,U}

where ηk > 0 denotes the large scale fading coefficient of
user k and h̃k describes the small scale fading with

∥∥h̃k∥∥ =
1 ∀k . Since the transmit symbols are of unit power, a sum
power constraint of the form E

{
‖Fx‖22

}
≤ PT leads to the

requirement ‖F‖2F ≤ PT . We consider a zero forcing (ZF)
precoder given by

FZF =

√
PT√

tr
((
HHH

)−1) H
(
HHH

)−1
, (24)

fulfilling the power constraint. Therefore, the signal to noise
ratio (SNR) of user k is

SNRk =
PT

σ 2
w tr

((
HHH

)−1) . (25)

The achievable downlink sum spectral efficiency (SE) is
obtained as

Rsum =
U∑
k=1

log2 (1+ SNRk) . (26)

Again, we perform simulations with a scenario geometry
as shown in Fig. 3 and previously described in Section IV.
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FIGURE 7. Achievable sum SE with ZF precoding with 95% confidence
intervals obtained by bootstrapping.

We assume a downlink transmission to U = 20 users, which
are placed at a distance of R = 60m with uniformly dis-
tributed angles ϕu within [−50◦, 50◦]. For a typical massive
MIMO downlink scenario, we choose σ 2

w = 1 and PT = 1/η
to obtain an SNR of 0 dB in the interference free case. Please
note that we assume ηk = η ∀k , which is automatically
achieved in our simulation scenario due to the user placement.
Simulation results for the achievable downlink sum SE over
the Rician K factor are shown in Fig. 7.
Together with the results for the Rice channel model

according to (19) and the proposed channel model, we pro-
vide bounds for K →∞ (LOS) and K → 0 (i.i.d. Rayleigh
fading). Due to the ZF precoding, the achievable rate is signif-
icantly higher for an i.i.d. Rayleigh fading channel compared
to the LOS channel assumption. This shows that there is a
significant amount of inter-user correlation in the LOS case,
since the randomly distributed users cannot be separated with
the N = 64 antenna ULA. Therefore, a significant loss in
signal power is experienced with ZF precoding in the high K
factor regime.

Necessarily, through the definition of the Rice channel
model, its achievable rate converges to the same rate as the
i.i.d. Rayleigh fading channel model for low K factors and to
the same rate as the LOS channel for highK factors.While the
proposed channel model has a similar trend over the Rician
K factor, it shows a gap to the Rice channel model for low
K factors. This behavior shows the importance of spatial
consistency for multi-user MIMO applications. As explained
in Section IV-B, the proposed model yields high correlation
for very closely spaced users, c.f., Fig. 6, as well as corre-
lation that is higher compared to the i.i.d. Rayleigh fading
assumption also at larger inter-user distances. Although the
difference in spatial correlation between the proposed and the
Rice channel model seems to be limited, c.f. Fig. 6, the impact
on the achievable SE is significant. To investigate the impact

of user channel correlation on the SE, we derive an upper
bound on the SNR in Appendix C, which is given by

SNR ≤
ηPT
σ 2
w

1−max
i,j
i 6=j

∣∣∣h̃Hi h̃j∣∣∣
 . (27)

Since the users are placed with equal distance to the BS,
we assumed the same large scale fading coefficient η, that
is path loss, for all users for the derivation of this bound.
Please note that since the vectors h̃k are normalized 0 ≤∣∣h̃Hi h̃j∣∣ ≤ 1 for i 6= j and i, j ∈ {1, . . . ,U}. From (27)
we observe that the SNR depends on the inner product of
channel vectors, such as the previously introduced correlation
measure (21). The upper bound on the SNR is decreasing
with increasing correlation, showing the negative impact of
user correlation on the achievable SE with ZF precoding.
Moreover, the bound is given by the maximum magnitude of
channel vectors between any two users. This shows that the
sum SE is decreased if any two users are highly correlated.
In the limit, we obtain SNR→ 0 if there are any two users i
and j with

∣∣h̃Hi h̃j∣∣→ 1.
Since for increasing Rician K factors, the proposed model

and the Rice channel model both converge to the spatially
consistent LOS channel, the gap in achievable rate is decreas-
ing with increasing K factor. The gap in achievable rate
occurs, since the not spatially consistent i.i.d. Rayleigh fad-
ing model underestimates the amount of spatial correlation
between users. Please note that the LOS is always present in
our proposed channel model and does not vanish for very low
values of K .

V. CONCLUSION
In this work, we introduce a channel model based on multiple
scattering theory. By employing simple propagation mecha-
nisms, we obtain a low complexity MIMO channel model.
We consider only single scattering events for NLOS paths.
Adjusting the number and strength of scattering events allows
to adjust the Rician K factor of the model. This allows to
simulate propagation environments in between rich scattering
and pure LOS channels. We provide a statistical description
for the Rician K factor of the proposed model and verify
it by simulation. Investigating the model’s spatial correla-
tion properties, we show that the proposed channel model is
indeed spatially consistent while the simplified assumption
of i.i.d. Rayleigh fading and the 3GPP 3D channel model
are not. Non spatially consistent channel models lead to
an underestimation of spatial correlation among users and
therefore to an overestimation of achievable sum rate. This
underlines the importance of spatially consistent channel
models for investigation of multi-userMIMO systems such as
massive MIMO.

APPENDIX A
DERIVATION OF SCATTERING COEFFICIENTS
In the channel model (1), αk,j describes propagation on a
direct path from transmit antenna position rj to positions rk ,
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where either a receive antenna or a scattering object is located
at rk . Further, βk,j describes the propagation from position
rj to positions rk including a scattering event at position rj
where either a receive antenna or an other scattering object is
located at rk . In order to find physically meaningful expres-
sions for the factors α and β, we consider a bi-static radar.
In this setup, a transmitter emits a wave that is scattered at a
target and received by a receiver, which is not co-located with
the transmitter. The bi-static radar equation [33] is given by

Pr
Pt
=

Gt
4πd21

γ 2 Ar,eff
4πd22

, (28)

with the distance d1 between the transmitter and the target
and the distance d2 between the target and the receiver. Equa-
tion (28) describes the ratio between the received power Pr
by an antenna with effective area Aeff and the transmitted
powerPt from a transmit antennawith gainGt . Here, γ 2 is the
radar cross section of the target. Next, we insert the relation
between the effective antenna aperture and antenna gain

Ar,eff =
λ2

4π
Gr , (29)

and assume Gr = Gt = 1. Since the power is proportional
to the square of the electrical field strength E , we obtain a
ratio between the received and the transmitted field strength,
including one scattering event as

Er
Et
=

1
√
4πd1

e
2π
λ
d1︸ ︷︷ ︸

transmitter to scatt.

γ eiφp︸ ︷︷ ︸
scattering
event

λ

4πd2
e
2π
λ
d2︸ ︷︷ ︸

scatt. to receiver

. (30)

The phase of (30) is determined by free space propagation
from the transmitter to the scattering object, free space prop-
agation from the target to the receiver and a random scattering
phase φp.
Taking this idea further, to the case of multiple scatter-

ing events and considering the structure of the model (1),
we obtain the path coefficients

αk,j =
λ

4π‖rk − rj‖
ei

2π
λ
‖rk−rj‖ , (31a)

βk,j =
δj

√
4π‖rk − rj‖

ei
2π
λ
‖rk−rj‖ . (31b)

The magnitude of parameter αk,j corresponds to Friis’ for-
mula for free space propagation between positions rj and rk .
The factor βk,j includes a scattering event at scattering object j
via the scattering coefficient δj = γjeφj with clustering
factor γj and the random phase φj.

APPENDIX B
BOUNDS ON THE MAGNITUDE OF SUM TERMS
In this section we consider bounds on the magnitude of the
sum term (4) and provide bounds for a circular sector geom-
etry. For readability, we consider a single transmit antenna
and a single receive antenna and denote rn as the BS position
rBS, ru as the user position rUE and rp as the scattering object
position rS in the sequel. In order to bound |u(rS)| from above

and therefore guarantee boundedness of channel coefficients,
the distances ‖rBS − rS‖ and ‖rS − rUE‖ must not become
arbitrarily small. We consider a minimum distance between
a scattering object and any antenna, belonging to either a
user or the BS, as dS. To bound the sum terms, the mini-
mum and maximum product of user-to-scattering object and
scattering object-to-BS distance is decisive. We obtain the
following problem to determine the minimum product of
distances as

ξmin = min
rS
‖rBS − rS‖ ‖rUE − rS‖

subject to ‖rBS − rS‖ ≥ dS
‖rUE − rS‖ ≥ dS (32)

where the constraints correspond to the minimum distance
between BS and scattering object and between user and
scattering object. Similarly, changing (32) to a maximization
problem with the same cost function and constraints leads to
the solution ξmax. These extrema allow us to state lower and
upper bounds on the absolute value of the sum terms u(rS) as

1
ξmax
≤ |u (rS)| ≤

1
ξmin

. (33)

From the upper bound, we conclude that it is necessary and
sufficient for boundedness of (3) that there exists a minimum
distance dS > 0 between any transmit and any receive
antenna to any scattering object, that is

‖rk − rm‖ ≥ dS ∀k ∈ T ∪R, ∀m ∈ S , (34)

with a bounded clustering factor, that is, γ < ∞, and a
finite number of scattering objects, that is, M = |S| < ∞.
This condition is straight forward to fulfill in any simulation
scenario, by introducing an empty region with radius dS
around all BS and user antennas in which no scattering object
is placed.

While the optimization problem (32) does not assume a
specific geometry, we now specialize upper and lower bounds
on |u(rS)| for the case of a circular sector with opening
angle θ , as shown in Fig. 8. The user is placed at a distance R
from the BS at an angle of ζ/2 from the sector center where
we assume ζ < θ .

The two distances, from the BS to the scattering object
and from the scattering object to the user, have to add up
to at least R according to the triangle inequality. Therefore,
the minimum product of these two distances is obtained,
when either of these numbers attains its minimum value dS.
As the distances have to add up to R, the other distance is
R − dS. This corresponds to the case when the scattering
object is located directly at the border of the empty region
with radius dS, see positions r

(1)
min and r

(2)
min in Fig. 8. Therefore

the solution to the minimization is given by

ξmin = dS (R− dS) . (35)

Changing (32) to a maximization problem, the product of
the distances, from the BS to the scattering object and from
the scattering object to the user, is at itsmaximum, if they both

VOLUME 7, 2019 110183



S. Pratschner et al.: Spatially Consistent MIMO Channel Model With Adjustable K Factor

FIGURE 8. Geometry for a circular sector scenario. The scattering object
positions r(1)

min and r(2)
min lead to a minimum product of distances while a

scattering object position rmax leads to a maximum product of distances.

attain the same maximal value within their possible range.
In the case of a circular sector, this corresponds to the case
when the scattering object is located at the border of the
sector, such that the distances ‖rBS − rS‖ and ‖rUE − rS‖
are equal and maximal, see position rmax in Fig. 8. Via ele-
mentary geometry, we obtain the solution to themaximization
problem as

ξmax =
R2

4 cos( ζ+θ2 )2

for 0 < ζ + θ ≤ 2 arccos
(

R
2(R− dS)

)
. (36)

This leads to the upper and lower bounds on the absolute
value of the sum terms:

4 cos( θ2 )
2

R2
≤ |u (rS)| ≤

1
dS (R− dS)

. (37)

Equation (32) can be solved straight forward for other geome-
tries. We focus on a circular sector geometry in this work.

APPENDIX C
UPPER BOUND ON THE SNR WITH ZF PRECODING
In this section, we provide an upper bound on the SNR (25),
obtained by ZF precoding. Due to the similarity invariance of
the tr (·) operator, we obtain

SNR =
PT
σ 2
w

1

tr
((
HHH

)−1) = PT
σ 2
w

1∑U
k=1

1
λk

, (38)

where λk for k ∈ {1, . . . ,U} denote the eigenvalues of
the non-singular matrix HHH. Let λ1 denote the smallest
eigenvalue of HHH. The channel matrix H consists of users’
channel vectors, that is, H = (h1, . . . ,hU ). A user’s channel
vector is given by hk =

√
ηk h̃k for k ∈ {1, . . . ,U} where

ηk > 0 denotes the large scale fading coefficient of user k
and h̃k describes the small scale fading with

∥∥h̃k∥∥ = 1 ∀k .
Through the Min-max Theorem by Courant and Fischer [34]

we know

λ1 = min
x

‖x‖=1

xHHHHx . (39)

Choosing a vector v = 1
√
2

(
ei + eiϕej

)
where ei is a vector

with a 1 in the ith entry and 0s elsewhere, we find an upper
bound on the smallest eigenvector as

λ1 ≤ min
v

vHHHHv

= min
i,j,ϕ

1
2

(
ηih̃Hi h̃i + ηjh̃

H
j h̃j

+
√
ηiηjeiϕ h̃Hi h̃j +

√
ηiηje−iϕ h̃Hj h̃i

)
= min

i,j
i 6=j

ηi + ηj

2
−
√
ηiηj

∣∣∣h̃Hi h̃j∣∣∣ ,
with ϕ = π − Arg

(
h̃Hi h̃j

)
. In the case of equal large scale

fading for all users, that is, for ηk = η ∀k , we obtain

λ1 ≤ η

1−max
i,j
i6=j

∣∣∣h̃Hi h̃j∣∣∣
 . (40)

Since
∑U

k=1
1
λk
> 1

λ1
, we obtain an upper bound on the SNR

as

SNR ≤
ηPT
σ 2
w

1−max
i,j
i 6=j

∣∣∣h̃Hi h̃j∣∣∣
 . (41)
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