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ABSTRACT This paper is concerned with the adaptive fixed time control problem for generalized
synchronization of mismatched dynamical systems with parametric estimations. We first introduce a new
lemma of the fixed-time stability and give a high accuracy estimation of the convergence time. Then,
according to the new lemma, the adaptive control scheme for fixed-time synchronization between integer-
order dynamical systems is mathematically derived by taking uncertain parameters into account. Meanwhile,
the corresponding adaptation laws are designed to estimate the parameter uncertainties. Further, Adaptive
fixed time sliding mode control strategy for generalized synchronization of fractional-order dynamical
systems is proposed. A novel fractional-order integral sliding mode surface is presented and its fixed time
stability to origin is analytically proved using the Lyapunov stability theory. In addition, by considering the
parametric estimations in the controller, an appropriate adaptive law is constructed to obtain the expected
results. Finally, compared with the existing finite-time stability method, some numerical simulations are
conducted to demonstrate the validity and superiority of the proposed approach.

INDEX TERMS Adaptive tuning controller, fixed-time generalized synchronization, mismatched dynamical
systems, parametric estimations, fractional-order sliding mode control.

I. INTRODUCTION
The synchronization problemis one of the emerging top-
ics in nonlinear dynamic fields. It has attracted the
widespread attention among scholars because of its applica-
tion in various fields of science and engineering including
secure communication, image encryption, signal transmis-
sion, neural network and other fields [1]–[4]. The key point of
the synchronization is to construct an appropriate controller.
It will control the state trajectories of the response system
to follow the trajectories of the drive system asymptotically.
A number of various control methods have been found in
the previous works, such as the active control [5], optimal
control [6], adaptive control [7], sliding mode control [8] and
adaptive fuzzy control [9]. Very recently, the different types
of synchronization including complete synchronization [10],
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lag synchronization [11], projective synchronization [12] and
generalized synchronization [13] have been extensively stud-
ied in the existent literature. Among all kinds of synchro-
nization, generalized synchronization between drive system
and response system characterized by two optional functions
could obtain desired types in practice application. Particu-
larly, it can be used to extend the coexistence of different
synchronization types, so generalized synchronization has
attracted more and more attentions from a lot of schol-
ars [14], [15]. Moreover, the generalized synchronization
between the mismatched dynamical systems is investigated,
Zhang et al. [13] presented a Lyapunov approach to obtain
the expected results. Wang et al. [8] discussed the gener-
alized synchronization among mismatched fractional-order
chaotic and hyper-chaotic systems with different orders.
Muthukumar et al. [15] investigated the generalized robust
synchronization approach for mismatched fractional order
dynamical systems with different dimensions via sliding
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mode control. Furthermore, by means of the proposed gen-
eralized synchronization criterion, in order to send or share
voice messages secretly, a novel audio cryptosystem is pro-
posed. Nevertheless, most of the above results on the basis of
the Lyapunov asymptotical stability theory have not consid-
ered the effects of the uncertain parameters.

From an engineering application point of view, all of
dynamical system parameters sometimes cannot be attained
exactly in advance due to the various external factors such
as linear approximation, measurement inaccuracy and mod-
eling errors. In addition, it is also noted that all the pre-
vious methods cannot achieve finite-time synchronization
and just accomplish asymptotical convergence, which implies
that convergence time cannot be estimated in advance.
Therefore, the finite-time synchronization of dynamical sys-
tems with unknown parameters has become a hot research
topic. Some relevant results of the finite-time synchroniza-
tion with and without parameter uncertainties have been
found in [16]–[22]. According to the finite time stability
method [17]. Aghababa and Aghababa [18] investigated the
adaptive finite-time synchronization between chaotic systems
with unknown parameters and nonlinear inputs. Robust adap-
tive finite-time controller was proposed in [19] to synchronize
uncertain non-autonomous chaotic systems. Cai et al. [20]
studied the generalized finite-time synchronization of chaotic
systemswith different orders for the first time. Reference [16]
used the nonlinear feedback controller to realize the robust
finite-time global synchronization. In [21], Zhao et al. fur-
ther studied adaptive finite-time generalized synchroniza-
tion between uncertain chaotic systems of different orders.
Zhang et al. [22] discussed the global finite-time synchro-
nization between different dimensional chaotic systems with
and without the parameter uncertainties. However, it should
be noteworthy that the convergence time of finite time stabil-
ity method relies on the initial condition, so it will subject to
a great inconvenience in the practical application.

In order to overcome the weakness of finite time con-
trol, Polyakov presented the fixed-time stability method
in [23], which showed the following advantages, such as
strong robustness, fast convergence speed and high precision
performance. Due to these attractive properties, more and
more attention has also been obtained [24]–[27]. In partic-
ular, Zuo proposed the fixed-time stability theory in [28].
Subsequently, the lemma was further applied to discuss
the fixed-time stability of dynamical systems in [29]–[31].
The fixed-time stability of dynamical systems proposed by
Hu et al. [29] and Xu et al. [30] is a faster convergence speed,
higher precision and less conservative than the proposed
method by Zuo [28]. A more general fixed-time stability
theorem [31] was proposed by means of adding a constant
term than the proposed method by Hu et al. [29]. Whereas,
the research of fixed-time stability or synchronization is just
at the primitive stage due to the lacking of the theory. And up
to now, regarding the results of generalized synchronization
are just proposed either were global finite-time synchroniza-
tion or did not take the unknown parameters into account.

Therefore, it should be meaningful to study the generalized
synchronization in fixed-time between mismatched dynami-
cal systems with parameter uncertainties.

Additionally, the control method of synchronization
between fractional order dynamical systems with unknown
parameters has also started to attract more attention.
Jafari et al. [32] presented an adaptive fuzzy controller with
compensation signal for synchronization and stabilization of
a class of fractional order systems with uncertain nonlineari-
ties. Behinfaraz et al. [33] provided an active adaptive control
method for synchronization in fractional-order chaotic sys-
tems with parameter uncertainty. Then, in [34], they intro-
duced the new synchronization method of fractional order
chaotic systems by considering time-varying parameter and
orders. The designed method has an expected performance.
An adaptive back-stepping strategy is presented to control
and synchronize a class of fractional order chaotic systems
with unknown parameters in Ref. [35]. Meanwhile, an adap-
tive sliding mode control scheme of synchronization between
fractional order dynamical systemswith unknown parameters
and external disturbances was studied in Ref [36]–[38].
Further, an adaptive synchronization law was applied in
fractional order chaotic Arneodo system with unknown
parameters in [39]. Nevertheless, all the above works mainly
concerned the adaptive estimation of the uncertainties and
disturbances based on Lyapunov asymptotic stability theory,
neither of them have discussed the generalized synchro-
nization with the upper bounds of fixed-time convergence
in mismatched fractional order dynamical systems.
To the best of our knowledge, there have also been no
relevant results reporting the adaptive fixed-time control
scheme with fractional derivatives. In fact, fractional order
adaptive fixed time sliding mode control strategy pro-
vides a new way to deal with a class of synchronization
problems.

Motivated by the above-mentioned works and ideas, this
paper studies the adaptive fixed time control problem for gen-
eralized synchronization of mismatched dynamical systems
in the presence of uncertain parameters. The main contribu-
tions of the proposed method here can be summarized as the
following points:
(1) We first give the definition of generalized fixed-time

synchronization and attempt to develop a new fixed-
time stability lemma, which is an extension of the
presented method by Hu et al. [29] and Xu et al. [30],
and the stabilization time is shorter than his
method.

(2) According to the new lemma, the adaptive con-
trol scheme for fixed-time synchronization between
integer-order dynamical systems is mathematically
derived by considering uncertain parameters. Mean-
while, the corresponding updated laws of parameter
estimations are designed to guarantee the fixed-time
stability of uncertain synchronization error system.
Our approach has more advantages than those
in [16], [21], [22].
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TABLE 1. Annotations for the symbols.

(3) Inspired by [8], [15], adaptive fixed time sliding
mode control strategy for generalized synchronization
of fractional-order dynamical systems is proposed.
A novel fractional-order integral sliding mode sur-
face is presented and its fixed time stability to origin
is analytically proved using the Lyapunov stability
theory. In addition, by considering the parametric
estimations in the controller, an appropriate adap-
tive law is constructed to obtain the expected
results.

(4) Comparedwith the existing finite-time stabilitymethod
[15], [22], some simulations are conducted to demon-
strate the validity and superiority of the proposed
approach. Also, it can be further applied to the var-
ious fixed-time synchronization types between other
dynamical systems.

The framework of this paper is formed as follows.
Section 2 introduces some useful definitions and lemmas of
fractional-order calculus, and develops a new global fixed-
time stability lemma. In Section 3, the adaptive control
scheme of fixed-time generalized synchronization between
integer-order dynamical systems is mathematically derived.
Then, adaptive fixed time sliding mode control strategy for
generalized synchronization of fractional-order dynamical
systems is proposed in Section 4. Some numerical examples
are demonstrated with comparison of the finite time method
in Section 5. Finally, Section 6 summarizes and discusses this
paper.

II. PRELIMINARIES
The detailed annotations for the symbols are listed
in Table 1.

For the global stability mathematical analysis, we intro-
duce some necessary lemmas as follows.

A. PRELIMINARIES OF FRACTIONAL-ORDER CALCULUS
Definition 1 [40]: The αth-order Caputo fractional inte-

gral of a function f (t) is described by

C
t0 I
α
t f (t) =

1
0(α)

∫ t

t0
(t − τ)α−1 f (τ )dτ

Definition 2 [40]:The αth-order Caputo fractional deriva-
tive of a function f (t) is defined as:

C
t0D

α
t f (t) =


1

0(m− α)

∫ t

t0

f (m)(τ )

(t − τ)α−m+1
dτ,

m− 1 < α < m
dmf (t)
dtm

, α = m

where, m is the smallest integer number.
Lemma 1 [40]: If the fractional-order derivative C

t0D
α
t x(t)

is integrable, one can obtain:

C
t0 I
α
t
C
t0D

α
t x(t) = x(t)−

∑n−1

k=0

x(k)(t0)
k!

(t − t0)k

Especially, for 0 < α ≤ 1, then Ct0 I
α
t
C
t0D

α
t x(t) = x(t)−x(t0).

Lemma 2 [40]: Assume p ∈ R, then

C
t0D

α
t x

p(t) =
0(1+ p)

0(1+ p− α)
xp−α(t)Ct0D

α
t x(t)

Lemma 3 [41]: Suppose x(t) a continuous and differen-
tiable function, then it satisfies the following inequality

C
t0D

α
t |x(t)| ≤ sign(x(t))

C
t0D

α
t x(t)

Lemma 4 [31]: If εi ∈ R, i = 1, 2 · · · n are arbitrary real
numbers, the following inequalities satisfy:

(
n∑
i=1

|εi|

)ξ
≤

n∑
i=1

|εi|
ξ 0 < ξ ≤ 1

n1−ξ
(

n∑
i=1

|εi|

)ξ
≤

n∑
i=1

|εi|
ξ , 1 < ξ

B. GLOBAL FIXED TIME STABILITY
Lemma 5 [42]: Consider the continuous positive definite

and radially unbounded function V (e(t)) satisfies the differ-
ential inequality

V̇ (e(t))≤−λVµ (e(t))− ηV (e(t)) , ∀t≥ t0, V (e0)≥0

where, λ, η > 0, 1 > µ > 0, it meet V (t) ≡ 0, ∀t >
T1
max. The convergence time T1

max is given by T 1
max = t0 +

1
(1−µ)η In

(
λ+ηV 1−µ(e0)

λ

)
.

Corollary 1: When η = 0, V̇ (e(t)) ≤ −λVµ (e(t)) ,∀t ≥
t0, the global finite time should be rewritten as T 2

max = t0 +
V 1−µ(e0)
(1−µ)λ , and T 1

max ≤ T
2
max for V (e0) ≥ 0.

Proof: When η = 0, it is easy to get V 1−µ (e(t)) ≤
V 1−µ (e (t0)) − λ(1 − µ) (t − t0), and V (e(t)) ≡ 0, for
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any t ≥ T 2
max , the global finite time is given by T 2

max =

t0 +
V 1−µ(e0)
(1−µ)λ . Then

T 1
max − T

2
max =

1
(1− µ)η

In

(
λ+ ηV 1−µ(e0)

λ

)
−
V 1−µ (e0)
(1− r)λ

=
1

(1− µ)

(
1
η
In

(
λ+ ηV 1−µ(e0)

λ

)

−
V 1−µ (e0)

λ

)

Let ψ (υ) = 1
η
In
(
λ+ηυ
λ

)
−

υ
λ
and υ = V 1−µ (e0) ≥ 0,

we have ψ̇ (υ) = 1
λ+ηυ

−
1
λ
< 0, that is T 1

max ≤ T 2
max for

V (e0) ≥ 0. The proof is completed. �
The purpose of this subsection is to develop some theoreti-

cal results of global fixed time stability and make some com-
parisons with the previous work provided by Hu et al. [29]
and Xu et al. [30].
Lemma 6 [30]: Assume that there exists a continuous

positive definite and radially unbounded function V (e(t))
and its right directional derivative satisfies the differential
inequality:

d
dt
V (e(t)) ≤ −λVµ−p/q (e(t))− ηV p/q(e(t)), e(0) = e0

where, λ, η > 0, µ > (p+ q) /q, p < q, then the origin of
the above system is globally fixed time stable and the upper
bound of settling time T (e0) can be estimated by

lim
e0→∞

[T (e0)] ≤ T 3
max =

1
λ(µ− (p+ q) /q)

+
q

η(q− p)

Lemma 7 [29]: Assume that a continuous and positive
definite function V (e(t)) satisfies differential inequality as
follow:

d
dt
V (e(t)) ≤ −

(
λV p (e(t))+ η

)k
, e(0) = e0

where, λ, η, p, k > 0, pk > 1, then the origin of the above
system is globally fixed-time stable and the upper bound of
settling time T (e0) can be estimated by

lim
e0→∞

[T (e0)] ≤ T 4
max =

1
ηk

(η
λ

) 1
p
(
1+

1
pk − 1

)
Lemma 8: Consider the following differential inequality:

d
dt
V (e(t)) ≤ −

(
λV p−q (e(t))+ ηV q(e(t)

)k
, e(0) = e0

where, k > 0, p > 1+ q, 0 < q < 1, qk < 1, pk > 1+ qk .
The solution of the above inequality starting from arbitrary
initial condition will converge to the equilibrium point in
a fixed-time upper bounded by lim

e0→∞
[T (e0)] ≤ T 5

max =( η
λ

) 1−qk
p−2q

(
1

ηk ((p−q)k−1)
+

1
ηk (1−qk)

)
.

Proof: Taking its time integration on both sides of the
above inequality, one gets:

lim
e0→∞

[T (e0)]≤ T 5
max=

∫
∞

0

dV (e(t))(
λV p−q (e(t))+ ηV q(e(t)

)k
=

∫ l

0

1(
λV p−q (e(t))+ηV q(e(t)

)k dV (e(t))
+

∫
∞

l

1(
λV p−q (e(t))+ηV q(e(t)

)k dV (e(t))
≤

∫ l

0

1
ηkV qk (e(t))

dV (e(t))

+

∫
∞

l

1
λkV (p−q)k (e(t))

dV (e(t))

=
l1−qk

ηk (1− qk)
+

l1−(p−q)k

λk ((p− q) k − 1)

where, l > 0 is an any constant, let w (l) = l1−qk

ηk (1−qk)
+

l1−(p−q)k

λk ((p−q)k−1)
, for ẇ (l) = 1

ηk
l−qk − 1

λk
l−(p−q)k = 0,

i.e., l =
( η
λ

) 1
p−2q . We get its minimum value wmin (l) =( η

λ

) 1−qk
p−2q

(
1

ηk ((p−q)k−1)
+

1
ηk (1−qk)

)
. Hence, T 5

max < wmin (l).

Remark 1: Evidently, when q = 0, Lemma 8 can derive
the form of Lemma 7. In addition, as we all know, Lemma 7 is
more effective and higher precision compared with the results
given by Polyakov [23]. Hence, the proposed fixed time
stability is less conservative in this paper.
Corollary 2: When k = 1, the upper bound of settling time

T (e0) can satisfy{
T 5
max = T 3

max , λ = η

T 5
max < T 3

max , λ 6= η.

It is apparent that

T 5
max − T

3
max =

1
ηθ (1− q)

[
(1+ θ)

(η
λ

) 1
1+θ
− θ −

η

λ

]
where, θ = p−1

1−q . Define $ (θ)=

[
(1+ θ)

( η
λ

) 1
1+θ −θ−

η
λ

]
,

θ > 0.
(a) $ (θ) = 0 for λ = η, i.e.T 5

max = T 3
max

(b) Then
$̇ (θ) =

(η
λ

) 1
1+θ

[
1−

1
1+ θ

In
η

λ

]
− 1

$̈ (θ) =
(η
λ

) 1
1+θ 1

(1+ θ)3

(
In
η

λ

)2
> 0

We obtain lim
χ→∞

$̇ (θ)= lim
θ→∞

[( η
λ

) 1
1+θ
(
1− 1

1+θ In
η
λ

)
−1
]
=

0, hence, $̇ (θ) < 0 for θ > 0, i.e. $ (θ) <

$ (0) = 0,T 5
max < T 3

max for λ 6= η. This completes the
proof. �
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Remark 2: From Lemma 6, the estimation bound of the
convergence time obtained is more accurate and more widely
in comparison with the classical results given in Zuo [28].
In Corollary 2, the condition is k = 1, so the parame-
ter range is larger and the convergence time is faster than
Lemma 6 in [30]. The superiority of the fixed-time sta-
bility in Lemma 8 will be further shown in comparison
with Lemma 6.
Remark 3: In the study of finite time and fixed time stabil-

ity or synchronization, a primary difference is that, whether
their convergence time depends on the initial condition. Some
scholars have referenced the fixed time stability theorem pre-
sented by Zuo [28]. Whereas, from Remark 1 and 2, the fixed
time stability theorem of the dynamical system in this paper
achieves a less conservative bound than the theorem proposed
by Hu et al. [29] and Xu et al. [30].

III. DESCRIPTION OF INTEGER-ORDER DYNAMICAL
SYSTEMS AND GENERALIZED SYNCHRONIZATION
SCHEME
The following n-dimensional dynamical system is considered
as the drive system

ẋ = F(x)+ f (x)φ (1)

The corresponding m-dimensional response system is
described by

ẏ = G(y)+ g(y)ϕ + u(t) (2)

where, x = [x1, x2, · · · , xn]T ∈ Rn and y = [y1,
y2, · · · , ym]T ∈ Rm are the system state vector; F(x) :
Rn → Rn and G(y) : Rm → Rm are the continuous
nonlinear functions; f (x) : Rn → Rn×ρ and g(y) : Rm →
Rm×γ are the function matrices of system parameters; φ ∈
Rρ and ϕ ∈ Rγ denote the unknown system parameters.
u(t) = [u1(t), u2(t), · · · , um(t)]T ∈ Rm is the control
input.

Consider the system (1) and the system (2), suppose that
there exist two arbitrary continuously differentiable functions
Q(x) : Rn → Rr and P(y) : Rm → Rr . Then the general-
ized synchronization error of the dynamical systems can be
described as

e(t) = Q(x)− P(y) (3)

where, if the origin is an equilibrium point of (3), there exists
an open neighborhood Uε ∈ Rr of the origin, for every
e0 = Q (x0)− P (y0) ∈ Uε.
Then the error dynamics can be given by

ė(t) = JQ(x)ẋ − JP(y)ẏ

= JQ (x) (F(x)+ f (x)φ)

− JP(y) (G(y)+ g(y)ϕ + u(t)) (4)

where JQ(x) and JP(y) denote the Jacobin matrices of the
functions Q(x) and P(y), respectively, i.e.

JQ(x) =



∂Q1(x)
∂x1

∂Q1(x)
∂x2

· · ·
∂Q1 (x)
∂xn

∂Q2(x)
∂x1

∂Q2(x)
∂x2

· · ·
∂Q2 (x)
∂xn

...
...

. . .
...

∂Qr (x)
∂x1

∂Qr (x)
∂x2

· · ·
∂Qr (x)
∂xn


,

JP(y) =



∂P1(y)
∂y1

∂P1(y)
∂y2

· · ·
∂P1(y)
∂ym

∂P2(y)
∂y1

∂P2(y)
∂y2

· · ·
∂P2(y)
∂ym

...
...

. . .
...

∂Pr (y)
∂y1

∂Pr (y)
∂y2

· · ·
∂Pr (y)
∂

ym


(5)

Assumption 1: r ≤ min{n,m}, the matrix JP(y) is row full-
rank, and J−1P (y) denotes the generalized inverse matrix of
JP(y) in this paper.
Definition 3: Consider the above systems (1) and (2),

the origin of system (4) is said to be globally fixed time stable
equilibrium. If it is globally stable in the convergence time
function T (e0) : Uε → (0,+∞), that is, there exists a
bounded constant Tmax, and

lim
t→T (e0)

‖e(t)‖ = lim
t→T (e0)

‖Q(x)− P(y)‖ = 0

‖e(t)‖ ≡ 0, ∀t ≥ T (e0) , T (e0) ≤ Tmax (6)

where, Tmax = maxe0∈UεT (e0) ∈ (0,+∞) denotes the fixed
convergence time. Then, the global synchronization of the
systems (1) and (2) is realized with a fixed time and is called
as generalized synchronization.

The generalized fixed time synchronization issue can
be diverted to the fixed time stabilization issue of error
system (4). Subsequently, the control objective is to construct
an appropriate controller u(t). Hence, in the strict sense, the
generalized fixed time synchronization between dynamical
systems with parameter uncertainties can be achieved within
the upper bounded of the convergence time.

To further study generalized fixed time synchronization of
two chaotic systems with parameter uncertainties. Therefore,
the suitable update laws are provided to estimate the uncertain
parameters φ and ϕ:

˙̂
φ(t) =

[
JQ(x) · f (x)

]T e(t)
− λsigp

(
φ̃
)
− ηsigq

(
φ̃
)
, φ̂ (0) = φ̂0

˙̂ϕ(t) = −[JP (y) · g(y)]T e(t)

− λsigp (ϕ̃)− ηsigq (ϕ̃) , ϕ̂ (0) = ϕ̂0 (7)

where φ̃ = φ̂ − φ, ϕ̃ = ϕ̂ − ϕ, p > 1, 0 < q < 1, sigε(·) =
| · |

εsign(·), and sign (·) denotes the sign function, φ̂ and
ϕ̂ are the estimations of φ and ϕ, respectively. And their initial
values are φ̂0 and ϕ̂0.
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Then, the adaptive controller u(t) can be designed as

u(t) =

−G(y)− g(y)ϕ̂

+J−1P (y)

[
JQ(x)

(
F(x)+ f (x)φ̂

)
+λsigp (e(t))+ ηsigq (e(t))

]
(8)

The error dynamics (4) can be deduced as

ė(t) = −[JQ(x) · f (x)]φ̃ + [JP(y) · g(y)]ϕ̃
− λsigp (e(t))− ηsigq (e(t)) (9)

Theorem 1: Consider the dynamical systems (1) and (2)
satisfying Assumption 1, under the adaptive controller (8),
the error dynamics (9) should be global fixed time stability
at the origin. That is, the dynamical systems (1) and (2) are
globally synchronized in a fixed time T, given by

T ≤ T 5
max =

 η(
31−

p+1
2

)
λ


1−q
p−q (

1
η (p− 1)

+
1

η (1− q)

)
(10)

Proof: Choose a continuous positive definite function
as follows

V1(t)=
∑r

i=1
e2i +

∑ρ

j=1

(
φ̂j − φj

)2
+

∑γ

k=1

(
ϕ̂k − ϕk

)2
(11)

Then, by taking time derivative of the function V (t), it can
calculate

V̇1(t) = 2eT (t)ė(t)+ 2
(
φ̂ − φ

)T
˙̂
φ + 2(ϕ̂ − ϕ)T ˙̂ϕ (12)

Substituting ė(t) from (9) and inserting the adaptation laws
from (7) into (12), we have

V̇1(t) = 2eT (t)

 −[JQ(x) · f (x)]φ̃
+[JP(y) · g(y)]ϕ̃

−λsigp (e(t))− ηsigq (e(t))


+ 2φ̃T

{ [
JQ(x) · f (x)

]T e(t)
−λsigp

(
φ̃
)
− ηsigq

(
φ̃
)}

+ 2ϕ̃T
{
− [JP(y) · g(y)]T e(t)
−λsigp (ϕ̃)− ηsigq (ϕ̃)

}
(13)

Since eT (t)[JQ(x) · f (x)]φ̃ = φ̃T
[
JQ(x) · f (x)

]T e(t) and
eT (t) [JP(y) · g(y)] ϕ̃ = ϕ̃T [JP(y) · g(y)]T e(t), simplifying
(13), one has

V̇1(t) = 2eT (t)
{
−λsigp (e(t))− ηsigq (e(t))

}
+ 2φ̃T

{
−λsigp

(
φ̃
)
− ηsigq

(
φ̃
)}

+ 2ϕ̃T
{
−λsigp (ϕ̃)− ηsigq (ϕ̃)

}
(14)

Since eT (t) sign (e (t)) |e (t)|p = |e (t)|p+1,

φ̃T sign
(
φ̃
) ∣∣∣φ̃∣∣∣p = ∣∣∣φ̃∣∣∣p+1, ϕ̃T sign (ϕ̃) |ϕ̃|p = |ϕ̃|p+1, one

can obtain

V̇1(t) = −2λ
(
(e2(t))

p+1
2
+ (φ̃2)

p+1
2
+ (ϕ̃2)

p+1
2

)
− 2η

(
(e2(t))

q+1
2
+ (φ̃2)

q+1
2
+ (ϕ̃2)

q+1
2

)
(15)

Obviously, the error dynamics (4) is asymptotically stable.
Besides, in light of Lemma 4, Eq.(15) can be derived as

V̇1(t) ≤ −31−
p+1
2 2λ


∑r

i=1
e2i (t)

+

∑ρ

j=1

(
φ̂j − φj

)2
+

∑γ

k=1

(
ϕ̂k − ϕk

)2


p+1
2

− 2η

∑r

i=1
e2i (t)+

∑ρ

j=1

(
φ̂j − φj

)2
+

∑γ

k=1

(
ϕ̂k − ϕk

)2


q+1
2

≤ −31−
p+1
2 2λV

p+1
2

1 (t)− 2ηV
q+1
2

1 (t) (16)

Based on Lemma 8, k = 1, p − q = p+1
2 > 1,

q = q+1
2 < 1, the state trajectories of the error dynam-

ics (4) will converge to zero in a given fixed time, determined
by (10). Therefore, the proof is achieved completely here. �
Remark 4: In previous works, if m = n,Q(x) =

x(t),P(y) = y(t), the authors used Corollary 1 to study the
finite-time synchronization in [18], which is a special case in
this paper. Moreover, if m 6= n, Zhang et al. [22] applied
Lemma 5 to investigate the global synchronization within
finite time dependent of initial condition. The proposed adap-
tive control method combines the superiorities of fixed time
stability theory and overcomes the weakness of convergence
time dependent on initial value. Furthermore, the controller
contains nonsingular term and has rapid and accurate conver-
gence property. Meanwhile, we give the comparison in the
following simulation result.

IV. ADAPTIVE FIXED TIME CONTROL SCHEME FOR
GENERALIZED SYNCHRONIZATION OF FRACTIONAL-
ORDER DYNAMICAL SYSTEMS
A class of fractional-order n-dimensional dynamical system
can be expressed as follows:

Dαx = f (x)+ F(x)χ (17)

The corresponding fractional-order m-dimensional
response system is given by

Dαy = g(y)+ G(y)ψ + U (t) (18)

where, α is the fractional derivative order of the dynam-
ical system, x = [x1, x2, · · · , xn]T ∈ Rn and y =
[y1, y2, · · · , ym]T ∈ Rm are the system state vector; f (x) :
Rn → Rn and g(y) : Rm → Rm are the continuous nonlinear
functions; F(x) : Rn → Rn×ρ and G(y) : Rm → Rm×γ

are the function matrices of system parameters; χ ∈ Rρ and
ψ ∈ Rγ denote the unknown system parameters. U (t) =
[U1(t),U2(t), · · · ,Um(t)]T ∈ Rm is the control input.
According to Eq.(3), similarly, the generalized synchro-

nization error of the fractional-order dynamical systems can
be defined as

e(t) = P(y)− Q(x) (19)
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Then, the fractional order error dynamical system can be
expressed as

Dαe(t) = Dα [P(y)− Q(x)]

= JP(x)Dαy− JQ(x)Dαx

= JP(y) (g(y)+ G(y)ψ + U (t))

− JQ(x)(f (x)+ F(x)χ ) (20)

where, the Jacobin matrices JQ(x) and JP(y) are written in the
form of (19).

Based on Definition 3, an appropriate controller U (t)
should be designed to achieve the fixed-time stabilization of
the synchronization error. Here, a novel fractional integral
siding surface is constructed as follows:

s(t) = Dα−1e(t)+ D−1
(
k0sigδ (e(t))

)
(21)

where, k0 > 0, δ > 0 are the adjusted coefficient.
Remark 5: The fractional-order sliding surface has been

widely applied in the integer-order and fractional-order
dynamical systems [43], [44]. Especially in the work of
Wang et al. [44], a fractional-order nonsingular terminal
sliding mode (FONTSM) surface such as s(t) = ė(t) +
kDλ−1siga (e(t)) was proposed, which was continuous and
differentiable with respect to the error e(t). But it is only
suitable for integer-order dynamical systems and not for
fractional-order dynamical systems. Nevertheless, we appre-
ciate this idea and design a novel fractional integral siding
surface (21). Furthermore, the error state, for any given initial
condition, whether far from or close to the equilibrium point,
can fast converge to e(t) = 0 in a given finite time, which will
be mathematically deduced in the following part.

Then, the time derivative of the sliding surface (21) should
satisfy the following equation

ṡ(t) = Dαe(t)+ k0sigδ (e(t)) = 0

→ Dαe(t) = −k0sigδ (e(t)) (22)

Remark 6: In order to make error dynamical system (20)
arrive the sliding surface in the approaching motion process,
the reaching law should be arranged in advance. As reported
in [45], a fast-TSM-type reaching law was designed as ṡ(t) =
−k1s(t) − k2sigσ (s(t)). This is exactly consistent with the
form of Lemma 5, which is also a finite time comparison
method. Meanwhile, according to Corollary 1, another com-
mon the sliding surface reaching law can be described as
ṡ(t) = −ksigϑ (s(t)). They all can tend to zero in finite
time. However, the stable time depends mainly on the initial
condition of the system. Therefore, a new reaching law for
fractional-order dynamical system is redesigned as ṡ(t) =
−k1sigϑ (s(t)) − k2sigσ (s(t)), that is, we can derive the fol-
lowing theorem.
Theorem 2: Consider the slidingmode dynamics (22). The

error system will be global asymptotically stable and con-
verge to the equilibrium e(t) = 0 within finite time upper
bounded by:

T ∗1 ≤T
4
max= t0+

(
‖e(t0)‖

α−δ
1

0(1− δ)0 (1+ α)
k00 (1+ α − δ)

) 1
α

(23)

Proof: Select the following Lyapunov function candi-
date:

V2(t) = ‖e(t)‖1 =
∑r

i=1
|e(t)| (24)

By applying Lemma 3, one has

DαV2(t) ≤
∑r

i=1
sign(e(t))Dαe(t) (25)

Substituting Dαei(t), i = 1, 2, . . . , r from (22) into (25),
and sign(ei)× sign(ei) = 1, one obtains

DαV2(t) ≤ −
∑r

i=1
sign(ei(t))k0|ei(t)|δsign(ei(t))

= −k0
∑r

i=1
|ei(t)|δ (26)

Using Lemma 4 the following inequality
∑r

i=1 |ei|
δ
≥(∑r

i=1 |ei|
)δ , one gets

DαV2(t) ≤ −
∑r

i=1
k0|ei(t)|δ ≤ −k0V δ1 (t) < 0 (27)

Based on Lemma 2, the above expression can be rewritten
as

DαV2(t)=
0(1− δ)

0(1+ α − δ)
V δ2 (t)D

αV α−δ2 (t)≤−k0V δ2 (t) (28)

Simplifying (28), one has

DαV α−δ2 (t) ≤ −k0
0(1+ α − δ)
0(1− δ)

(29)

It follows from Lemma 1 that

V α−δ2 (t)− V α−δ2 (t0) ≤ C
t0 I
α
t
−k00 (1+ α − δ)

0 (1− δ)
(30)

Considering Definition 1, it is easy to verify that

C
t0 I
α
t
−k00 (1+ α − δ)

0 (1− δ)

=
−k00 (1+ α − δ)

0 (1− δ)
1

0(α)

∫ t

0
(t − τ)α−1 dτ

=
−k00 (1+ α − δ)
0 (1− δ) 0(α)

(t − t0)α

α

=
−k00 (1+ α − δ) (t − t0)α

0 (1− δ) 0(1+ α)
(31)

Combining (30) and (31), we can get

V α−δ2 (t) ≤ V α−δ2 (t0)−
k00 (1+ α − δ)
0 (1− δ)

(t − t0)α

0(1+ α)
,

t0 ≤ t ≤ T ∗1 (32)

From (32), we obtain that lim
t→T ∗1

V2(t) = 0, such that

V2(t) = 0 for arbitrary t ≥ T ∗1 , that is lim
t→T ∗1
|e(t)| = 0. T ∗1

is the upper bound of convergence time, given by (23). This
completes the proof. �
In the following, to guarantee the existence of the slid-

ing motion in the presence of parameter uncertainties,
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FIGURE 1. The control diagram of the generalized synchronization.

the control input U (t) with the parametric estimations is
designed as

U (t) = −g(y)− G(y)ψ̂

+ J−1P (y)
[
JQ(x)

(
f (x)+ F(x)χ̂

)
− k0sigδ (e(t))

−k1sigϑ (s(t))− k2sigσ (s(t))

]
(33)

where, 0 < σ < 1, ϑ > 1, k1, k2 > 0, ψ̂ and χ̂ are
estimations for ψ and χ respectively. i.e. χ̃ = χ̂ − χ,

ψ̃ = ψ̂ − ψ .
In order to eliminate all unknown parameters of fractional-

order dynamical systems, the appropriate update laws are
proposed as follows:

˙̂χ (t) = −
[
JQ(x) · F(x)

]T s(t)
− k1sigϑ (χ̃)− k2sigσ (χ̃) , χ̂ (0) = χ̂0

˙̂
ψ(t) = [JP(y) · G(y)]T s(t)

− k1sigϑ
(
ψ̃
)
− k2sigσ

(
ψ̃
)
, ψ̂ (0) = ψ̂0 (34)

The fractional order error dynamics (20) can be deduced
as

Dαe(t)=− [JP(y) · G(y)] ψ̃ + [JQ(x) · F(x)]χ̃

− k0sigδ (e(t))−k1sigϑ (s(t))−k2sigσ (s(t)) (35)

Consequently, from (22), it is easy to derive that ṡ(t) =
− [JP(y) · G(y)] ψ̃ + [JQ(x) · F(x)]χ̃ − k1sigϑ (s(t)) −
k2sigσ (s(t)). The complete structure of the adaptive fast slid-
ing mode control algorithm is demonstrated in Fig. 1
Theorem 3: Consider the fractional-order dynamical sys-

tems (17) and (18) satisfying Assumption 1, the error dynam-
ics (35) should be global fixed-time stability at the origin by
adding the adaptive controller (33). That is, the dynamical
systems (17) and (18) are globally synchronized within fixed
time upper bounded by:

T ∗2 ≤ T
4
max =

1

2
σ−1
2 k2

(
2
σ−ϑ
2 k2

3
1−ϑ
2 k1

) 1−σ
ϑ−σ ( 1

ϑ − 1
+

1
1− σ

)
(36)

Proof: The following continuous positive definite
Lyapunov function is chosen as

V3(t) =
∑r

i=1

1
2
s
2

i
+

∑ρ

j=1

1
2

(
χ̂j − χj

)2
+

∑γ

k=1

1
2
(ψ̂k − ψk )

2
(37)

Combining (22) and (35), and introducing the update laws
from (34) into (37), one gets

V̇3(t) = sT (t)
{
− [JP(y) · G(y)] ψ̃ + [JQ(x) · F(x)]χ̃
−k1sigϑ (s(t))− k2sigσ (s(t))

}
+ χ̃T

{
−
[
JQ(x) · F(x)

]T s(t)
−k1sigϑ (χ̃)− k2sigσ (χ̃)

}
+ ψ̃T

{
[JP(y) · G(y)]T s(t)

−k1sigϑ
(
ψ̃
)
− k2sigσ

(
ψ̃
)} (38)

Further, since sT (t)[JQ(x) · F(x)]χ̃ = χ̃T
[
JQ(x) · F(x)

]T
s(t) and sT (t) [JP(y) · G(y)] ψ̃ = ψ̃T [JP(y) · G(y)]T s(t),
it follows

V̇3(t) = sT (t)
{
−k1sigϑ (s(t))− k2sigσ (s(t))

}
+ χ̃T

{
−k1sigϑ (χ̃)− k2sigσ (χ̃)

}
+ ψ̃T

{
−k1sigϑ

(
ψ̃
)
− k2sigσ

(
ψ̃
)}

(39)

Rearranging (39) yields

V̇3(t) = −2
ϑ+1
2 k1

 (
1
2
s
2
(t))

ϑ+1
2

+ (
1
2
χ̃2)

ϑ+1
2

+(
1
2
ψ̃

2
)

ϑ+1
2


− 2

σ+1
2 k2

(1
2
s
2
(t))

σ+1
2

+ (
1
2
χ̃2)

σ+1
2
+ (

1
2
ψ̃

2
)

σ+1
2


(40)

It is obvious that the error dynamics (35) is asymptotically
stable. Additionally, based on Lemma 4, Eq.(40) can obtain

V̇3(t)

≤ −31−
ϑ+1
2 2

ϑ+1
2 k1


∑r

i=1

1
2
s
2

i

+

∑ρ

j=1

1
2

(
χ̂j − χj

)2
+

∑γ

k=1

1
2

(
ψ̂k − ψk

)2



ϑ+1
2

− 2
σ+1
2 k2


∑r

i=1

1
2
e
2

i
(t)+

∑ρ

j=1

1
2

(
φ̂j − φj

)2
+

∑γ

k=1

1
2

(
ϕ̂k − ϕk

)2


σ+1
2

≤ −31−
ϑ+1
2 2

ϑ+1
2 k1V

ϑ+1
2

3 (t)− 2
σ+1
2 k2V

σ+1
2

3 (t) (41)

Therefore, according to Lemma 8, k = 1, p− q = ϑ+1
2 >

1, q = σ+1
2 < 1, λ = 31−

ϑ+1
2 2

ϑ+1
2 k1, η = 2

σ+1
2 k2.

We have lim
t→T ∗1

si(t) = 0, t ≥ T ∗2 , i = 1, 2 . . . r . It implies

that the error dynamic trajectories (35) will converge to the
predefined sliding surface si(t) = 0 within the fixed time
upper bounded by (36). The proof is completed. �
Remark 7: On the basis of the Theorems 2 and 3, the slave

system (18) will track the master system (17) within the
fixed time T = T ∗1 + T ∗2 . From Eq. (23), the convergence
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times T ∗1 not only depends of the initial value, but also will
be determined by the fractional order α and parameters k0, δ.
And by (36), and the upper bound of T ∗2 is only determined
by preset parameters k1, k2, ϑ , σ .
Remark 8: Most of adaptive studies for synchronization

between commensurate fractional-order dynamical systems
with known parameters, the synchronization errors can
achieve asymptotically convergence, finite time convergence
dependent on initial conditions and fixed time convergence
by the design parameters. In this paper, based on sliding
mode theory, we propose fractional order adaptive fixed-
time control scheme for generalized synchronization in non-
identical dynamical systems with parameter uncertainties.
Singularity is still the main weakness of sliding mode control.
Therefore, our control scheme combines the advantages of
fixed-time stability theory to accomplish faster and more
exact convergence with nonsingular control input.
Remark 9: From Remark 4, the generalized synchroniza-

tion has an extension of synchronization types. For the
various synchronization types between two identical or non-
identical fractional order dynamical systems with all pos-
sibilities like different dimensions, fractional orders and
with or without uncertainties and external disturbances [15],
the proposed control approach is also entirely appropriate and
can be further applied to the various fixed-time synchroniza-
tion types among other dynamical systems such as neural
networks.

V. NUMERICAL SIMULATIONS
In this section, the validity and superiority of our proposed
control scheme is demonstrated by synchronizing two mis-
matched dynamical systems with parametric estimations.
In addition, we give the comparison with finite time stability
method.

A. ADAPTIVE FIXED TIME SYNCHRONIZATION OF
INTEGER-ORDER DYNAMICAL SYSTEMS
It is assumed that the 3-D reverse butterfly-shaped chaotic
system [15] is the master system and the 4-D hyper-chaotic
Chen system [21] with the controller is the slave system.
The dynamic equations of the master and slave systems are
described in the form of systems (1) and (2) as follows.

Master system:

 ẋ1ẋ2
ẋ3

 =
 a1 (x2 − x1)
a2x1 + a3x1x3
−x1x2 − a4x3

 =
 0

0
−x1x2


+

 x2 − x1 0 0 0
0 x1 x1x3 0
0 0 0 −x3



×


a1
a2
a3
a4

 (42)

Slave system:
ẏ1
ẏ2
ẏ3
ẏ4

 =


b1 (y2 − y1)+ y4 + u1
b2y1 + b3y2 − y1y3 + u2
−b4y3 + y1y2 + u3
b5y4 + y2y3 + u4

 =


y4
−y1y3
y1y2
y2y3



+


y2 − y1 0 0 0 0

0 y1 y2 0 0
0 0 0 −y3 0
0 0 0 0 y4



×


b1
b2
b3
b4
b5

+

u1
u2
u3
u4

 (43)

In order to exhibit the chaotic behavior of the systems (42)
and (43), the parameters are chosen as a1 = 10, a2 = 40,
a3 = 16, a4 = 2.5, b1 = 35, b2 = 7, b3 = 12, b4 = 3,
b5 = 0.5. Assume the continuous differentiable functions of
the systems (42) and (43) are

Q(x) =
(

x1x2
x1 − x3

)
, P(y) =

(
0.5y1 − 0.5y2
0.5y3 − 0.5y4

)
(44)

Then, we obtain
[
e1
e2

]
=

[
x1x2 − 0.5y1 + 0.5y2

x1 − x3 − 0.5y3 + 0.5y4

]
,

moreover, one has

JQ(x) =
[
x2 x1 0
1 0 −1

]
,

JP(y) =
[
0.5 −0.5 0 0
0 0 0.5 −0.5

]
,

J−1P (y) =


1 0
−1 0
0 0
0 −1

 (45)

According to (8), the adaptive controller ui(t)(i=1, 2, 3, 4)
can be written as the following


u1
u2
u3
u4

 = −


b̂1 (y2 − y1)+ y4

b̂2y1 + b̂3y2 − y1y3

−b̂4y3 + y1y2

b̂5y4 + y2y3



+


â1x2 (x2 − x1)+ x1

(
â2x1 + â3x1x3

)
−â1x2 (x2 − x1)− x1

(
â2x1 + â3x1x3

)
â1 (x2 − x1)+ x1x2 + â4x3
−â1 (x2 − x1)− x1x2 − â4x3



+


λsigp (e1)+ ηsigq (e1)

−λsigp (e1)− ηsigq (e1)

λsigp (e2)+ ηsigq (e2)

−λsigp (e2)− ηsigq (e2)

 (46)
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Considering (9), the error dynamics can be derived as[
ė1
ė2

]
= −

[
x2 (x2 − x1) ã1 + x21 ã2 + x

2
1x3ã3

(x2 − x1) ã1 + x3ã4

]
+

[
0.5 (y2 − y1) b̃1 − 0.5y1b̃2 − 0.5y2b̃3

−0.5y3b̃4 − 0.5y4b̃5

]
−

[
λsigp (e1)+ ηsigq (e1)
λsigp (e1)+ ηsigq (e1)

]
(47)

Then, regarding (7), the appropriate updating laws can be
determined as

˙̂a1
˙̂a2
˙̂a3
˙̂a4

 =


(
(x2 − x1) (x2e1 + e2)
−λsigp (ã1)− ηsigq (ã1)

)
x21e1 − λsig

p (ã2)− ηsigq (ã2)
x21x3e1 − λsig

p (ã3)− ηsigq (ã3)
x3e2 − λsigp (ã4)− ηsigq (ã4)

 (48)

and



˙̂b1
˙̂b2
˙̂b3
˙̂b4
˙̂b5

 =



0.5 (y1 − y2) e1 − λsigp
(
b̃1
)
− ηsigq

(
b̃1
)

0.5y1e1 − λsigp
(
b̃2
)
− ηsigq

(
b̃2
)

0.5y2e1 − λsigp
(
b̃3
)
− ηsigq

(
b̃3
)

0.5y3e2 − λsigp
(
b̃4
)
− ηsigq

(
b̃4
)

0.5y4e2 − λsigp
(
b̃5
)
− ηsigq

(
b̃5
)


(49)

In numerical simulation, the initial conditions of the sys-
tems (42) and (43) are chosen as x1 (0) = 2, x2 (0) = −1,
x3 (0) = 1 and y1 (0) = 2, y2 (0) = −2, y3 (0) = 2,
y4 (0) = 1, respectively. Vectors [5, 5, 5, 5] and [2, 2, 2, 2, 2]
are set as the initial values of the parameters estima-
tion âi (0) (i = 1, 2, 3, 4) and b̂i (0) (i = 1, 2, 3, 4, 5), respec-
tively. The fixed-time synchronization control parameters are
given as λ = η = 10, p = 9/5, q = 5/9. Based on Theo-
rem 1, the estimation upper bound of convergence time can
be calculated by T ≤ T 5

max = 0.3717. The state trajectories
of the generalized fixed-time synchronization betweenmaster
and slave systems are plotted in Fig. 2. Subsequently, in the
finite-time stability Lemma 5, the parameters are selected as
λ = 5, η = 2, µ = 0.5, where the convergence time can be
estimated as T 1

max ≤ 3.0652. It is observed from Figs.2 that
the proposed controller has faster global convergence speed
and better tracking performance than the finite-time con-
trollers. The comparison results are plotted in Figs. 3 and 4.
As shown in Fig. 3, it is obvious that the generalized syn-
chronization error states of the system (42) and (43) converge
to the zero within 1.00 s, which implies that it is in good
agreement with the calculation results. The time response
curves of parameter estimations âi (0) (i = 1, 2, 3, 4) and
b̂i (0) (i = 1, 2, 3, 4, 5) are illustrated in Fig. 4, respectively.
From Fig. 4, Note that the proposed control method has less
steady state errors and smaller overshoot than the finite-time
method. The simulation results of two methods all show that
the expected value of parameter estimate has been achieved

FIGURE 2. Synchronized states of master system (42) and slave
system (43).

FIGURE 3. Time responses of synchronization errors (47).

after 2s by using a straight line. In addition, from the compar-
isons of these results above, it is easy to find that the chatter-
ing phenomenon is well suppressed and the convergence time
is more accurate in fixed-time control method, which means
its higher superiority than finite time control method.

B. ADAPTIVE SLIDING MODE SYNCHRONIZATION OF
FRACTIONAL-ORDER DYNAMICAL SYSTEMS
The proposed control strategy could be implemented in frac-
tional order chaotic systems. In this case, we choose chaotic
fractional order Rössler system (FORS) as a master system,
and hyper-chaotic fractional order Lorenz system (FOLS)
as a slave system. The mathematical expressions of the two
systems are shown as the following forms:

FORS:Dαx1Dαx2
Dαx3

 =
 −x2 − x3

x1 + c1x2
x1x3 − c2x3 + c3


=

−x2 − x3x1
x1x3

+
 0 0 0
x2 0 0
0 −x3 1

 c
c2
c3


(50)
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FIGURE 4. Time evolution of the adaptive parameters âi
(
i = 1, 2, 3, 4

)
and b̂i

(
i = 1, 2, 3, 4, 5

)
.

FOLS:
Dαy1
Dαy2
Dαy3
Dαy4

 =

d1 (y2 − y1)+ y4 + u1
d2y1 − y2 − y1y3 + u2
−d3y3 + y1y2 + u3
−y4 − y2y3 + u4

 =


y4
−y2 − y1y3

y1y2
−y4 − y2y3



+


y2 − y1 0 0

0 y1 0
0 0 −y3
0 0 0


 d1d2
d3

+

u1
u2
u3
u4


(51)

In order to exhibit chaotic behavior, parameters of the
systems are set as c1 = 0.4, c2 = 10, c3 = 0.2 and
d1 = 10, d2 = 28, d3 = 8/

3. Further, the continuous

functionsQ(x) and P(y) are given in the form of

 x1
x2
x3

 and 0.5y1
y2 − y3
0.5y4

. Then, we have JQ(x) =

 1 0 0
0 1 0
0 0 1

 , JP(y) =
 0.5 0 0 0

0 1 − 1 0
0 0 0 0.5

, J−1P (y) =


2 0 0
0 0.5 0
0 − 0.5 0
0 0 2

.

TABLE 2. Various parameters for the FORS and FOLS.

From (20), the fractional order error dynamics can be
written asDαe1Dαe2

Dαe3

 = −
 0.5 (y2 − y1) d̃1

y1d̃2 + y3d̃3
0

+
 0

x2c̃1
−x3c̃2 + c̃3


−

 k0sigδ (e1)k0sigδ (e2)
k0sigδ (e3)


−

 k1sigϑ (s1)− k2sigσ (s1)k1sigϑ (s2)− k2sigσ (s2)
k1sigϑ (s3)− k2sigσ (s3)

 (52)

By (33), the adaptive controller can be obtained as
U1
U2
U3
U4

 = −

d̂1 (y2 − y1)+ y4
d̂2y1 − y2 − y1y3
−d̂3y3 + y1y2
−y4 − y2y3



+


2 (−x2 − x3)−2k0sigδ (e1)

0.5
(
x1 + ĉ1x2

)
− 0.5k0sigδ (e2)

−0.5
(
x1 + ĉ1x2

)
+ 0.5k0sigδ (e2)

2
(
x1x3 − ĉ2x3 + ĉ3

)
−2k0sigδ (e3)



+


−2k1sigϑ (s1)− 2k2sigσ (s1)
−0.5k1sigϑ (s2)− 0.5k2sigσ (s2)
0.5k1sigϑ (s2)+ 0.5k2sigσ (s2)
−2k1sigϑ (s3)− 2k2sigσ (s3)

 (53)

Considering (34), the updating laws are described as the
following ˙̂c1˙̂c2
˙̂c3

 =
−x2s2 − k1sigϑ (c̃1)− k2sigσ (c̃1)x3s3 − k1sigϑ (c̃2)− k2sigσ (c̃2)
−s3 − k1sigϑ (c̃3)− k2sigσ (c̃3)



˙̂d1
˙̂d2
˙̂d3

 =


 0.5 (y2 − y1) s1 − k1sigϑ
(
d̃1
)

−k2sigσ
(
d̃1
) 

y1s2 − k1sigϑ
(
d̃2
)
− k2sigσ

(
d̃2
)

y3s2 − k1sigϑ
(
d̃3
)
− k2sigσ

(
d̃3
)

 (54)

Meanwhile, the fractional order α is equal 0.95, the ini-
tial conditions of the systems (50) and (51) are selected as
x2 (0) = 1.5, x3(0 = 0.1, x1 (0) = 0.5, y1 (0) = 2,
y2 (0) = −2, y3 (0) = 4, y4 (0) = 1. The various values
of design parameters can be provided from Table 2. In the
light of Theorem 3, the estimation value of convergence time

114436 VOLUME 7, 2019



J. Yang, A. Mu: Adaptive Fixed Time Control for Generalized Synchronization of Mismatched Dynamical Systems

FIGURE 5. Synchronized states of the systems (50) and (51). (Solid lines:
Fixed time method; Dashed lines: Finite time method).

FIGURE 6. Time responses of synchronization errors (52).

can be obtained by T ∗2 ≤ 1.4994. Furthermore, by calculation
from Theorem 2, the synchronization errors will converge to
zero in finite time upper bounded by T ∗1 ≤ 0.9728. The state
trajectories of the generalized synchronization in fixed time
between the systems (50) and (51) are depicted in Fig. 5.
We can see that the state trajectories of the slave system
will track the trajectories of the master system within 1.5s.
Subsequently, Time responses of the corresponding synchro-
nization errors and the estimated parameters are displayed
in Figs. 6 and 7. From Fig. 6, one can see that the synchro-
nization errors converge to zero after a short transient. It is
observed from Figs. 7 that parameter estimations have a short
transient response and almost no chattering phenomenon,
which is quite similar to the result in Fig. 4. Fig. 8 exhibits
the curves of the sliding surfaces and further reveals the
fast convergence of the system. As seen from these figures,
the proposed control approach by using fixed-time stability
theory has been fully validated.

FIGURE 7. Time evolution of the adaptive parameters ĉi
(
i = 1, 2, 3

)
and

d̂i
(
i = 1, 2, 3

)
.

FIGURE 8. The curves of the sliding surfaces.

In addition, to better demonstrate the fine performance of
the fixed time method, and finite-time stability method
is taken into account in the simulations for the comparison
purpose. The same initial conditions are chosen in the com-
parative results. Consequently, according to the finite-time
stability Lemma 5, the control parameters are selected as
λ = 3, η = 2, µ = 0.2. The setting time can be calculated
by T 1

max ≤ 2.7895. As shown in Figures 5 to 8, the over-
all simulation results are plotted graphically, respectively.
It is very clearly seen that the amplitude of chattering is well
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weakened and there is a faster steady rate and high-precision
estimation in fixed time control method. It verifies that the
proposed control method has superior performance versus
finite time control, too.

VI. CONCLUSION
This paper has focused on the adaptive fixed time control
problem for the generalized synchronization in mismatched
integer-order and fractional-order dynamical systems with
parameter uncertainties. First, we give the definition of gen-
eralized synchronization, introduce the fixed time stability
lemma and obtain a high accuracy estimation of the con-
vergence time. Second, based on the new lemma, the adap-
tive control strategy of fixed-time synchronization between
integer-order dynamical systems is mathematically deduced
by considering uncertain parameters. Meanwhile, the suitable
updating laws are proposed and the corresponding adaptive
controller is constructed to guarantee the fixed time stabil-
ity of uncertain synchronization error system. Furthermore,
consider the generalized synchronization in fractional-order
dynamical systems, a novel fractional-order integral sliding
mode surface and adaptive fixed time sliding mode control
strategy are proposed. And due to the parametric estimations
in the controller, an appropriate adaptive law is designed to
obtain the expected results and its fixed time stability to origin
is analytically proved by the aid of the Lyapunov stability
theory. Finally, compared with the existing finite-time sta-
bility method, the validity and superior performance of our
proposed fixed time control scheme is demonstrated in some
numerical simulations. It is noted that the proposed scheme
here can be further implemented to the various fixed time syn-
chronization types between other dynamical systems. And the
fixed time stability theory can be also extended to investigate
other nonlinear systems, such as neural networks, complex
networks, delayed systems and stochastic systems.
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