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ABSTRACT For the problem of anti-background interference of weak-small targets in infrared images,
target extraction and texture detail processing are key tasks in the image fusion algorithm. The single-band
infrared data can not fully reflect image details and contour information. There are texture differences in
different bands of data, which makes it difficult to recognize targets. Therefore, it is necessary to fuse
dual-band data to identify weak-small targets clearly. To solve these question, in this paper, we propose an
effective image fusion framework using Latent Low-Rank Representation (LatLRR) and Discrete Wavelet
Transform (DWT). Firstly, all source images are trained as L matrix by LatLRR which is used to extract
salient features. And the original images are decomposed into high frequency and low frequency by DWT.
Then high frequency parts are fused by maximum absolute value and low frequency parts are fused by
weighted-average. On this basis, the training matrix L and high frequency fusion parts are used for contrast
modulation fusion. Finally, the fused image is reconstructed by combining the contour parts and feature
parts. The experimental results demonstrate that our proposed method achieves state-of-the-art performance
in objective and subjective assessment.

INDEX TERMS Image fusion, infrared dual-band image, latent low-rank representation, discrete wavelet
transform.

I. INTRODUCTION
In infrared dual-band sensor, the infrared dual-band image
fusion is an important task. Infrared image reflects target and
background radiation character. For single-band image, if the
image has the weak-small target, it is easy to be submerged
because of complex background. So the fusion of weak-
small target needs comparison and analysis for the dual-band
image.

At present, the fusion algorithms of infrared and visible
imaging are more common. Because visible image can reflect
the detail information of all scene, but visible light trans-
mission is easily affected by the environment, resulting in
limited detection distance. Infrared technique detects a long
distance and uses thermal radiation to identify target. The
disadvantage is that the image contrast is poor and the detail
information is not rich. For infrared technology detection
distance, the paper using infrared dual-band detector obtains
mediumwave image (3-5um) and longwave image (8-14um).

The associate editor coordinating the review of this manuscript and
approving it for publication was Yu Zhang.

The image fusion method is used to enhance the detail and
improve the recognition rate of the target.

As we all know, the extraction and processing of the fea-
tures are key tasks in dual-band infrared image fusion, and
the fusion performance is directly affected by the different
features and processing methods undertaken.

A. ANALYSIS OF IMAGE FUSION ALGORITHM
Because the infrared dual-band image fusion algorithms are
much fewer. So this paper learns from infrared and visible
image fusion algorithm. At present, the image fusionmethods
are mainly divided into three categories which include multi-
scale transformation method, sparse representation method
and neural network method.

Multi-scale transform is a better algorithm for extracting
image detail parts. It can decompose original images into
components of different scales, where each component rep-
resents the sub-image at each scale and real-world objects
typically comprise components at different scales. Many
studies have shown that multi-scale transforms are consistent
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with human visual characteristics, and this property can
enable fused images to have good visual effect, such as Pyra-
mid transform [1], Discrete wavelet transform (DWT) [2],
Stationary wavelet transform (SWT) [3], Non-subsampled
contour transform (NSCT) [4], [5] and Shift-invariant shear-
let transform (NSST) [6] etc.

Because the multi-scale method can extract the edge and
texture details of the image, so Huang et al. proposed an
infrared and visible image fusion method that was based
on curvelet transformation and visual attention mechanisms.
Their model could elevate the signal-to-noise ratio of fused
images and highlight dim targets [7]. Zhu et al. proposed an
infrared and visible image fusion method that was based on
an improved multi-scale top-hat transform model, this model
could highlight the target of infrared images and preserve
details of visible images [8].

Sparse representation is an effective tool for characterizing
the human visual system and has been successfully applied
in different fields, such as machine learning, image analysis,
and pattern recognition. Sparse representation image fusion
algorithms aim to learn an over-complete dictionary from a
large number of high-quality natural images. Then, the source
images can be sparsely represented by the learned dictionary,
thereby potentially enhancing the representation of meaning-
ful and stable images [9]. Meanwhile, sparse representation-
based fusion methods divide source images into several
overlapping patches by using a sliding window strategy,
thereby potentially reducing visual artifacts and improving
robustness to mis-registration [10].

There are many methods based on combining dictionary
construction methods for image fusion, such as adaptive
sparse representation [11], multi-scale dictionary learn-
ing [12], PCA [13], [14] and online dictionary learning [15].
Yang and Li took the first step to employ the SR theory
for image fusion [16]. The main problems of SR-based
fusion method are the sparse coding of the sparse coeffi-
cients and the dictionary construction algorithm. The fusion
result is achieved by a linear combination of the sparse
coefficients and the constructed dictionary. Yin et al. pro-
posed a multi-scale dictionary learning method by integrating
the wavelet into dictionary learning, thus potentially tak-
ing advantage of multi-scale representation and dictionary
learning. Li and Wu [17] proposed a low-rank representa-
tion (LRR) based fusion method. They use LRR instead
of SR to extract features, then l1 − norm and the max
selection strategy are used to reconstruct the fused image,
but this method does not go into the details. In [18], [19],
Li et al. proposed a Latent Low-Rank Representation fusion
algorithm. The source images decomposed into low-rank
parts and saliency parts. The low-rank parts are fused by
weighted-average strategy, and the saliency parts are simply
fused by sum strategy. Han et al. [20] proposed an adaptive
two-scale image fusion method. The algorithm decomposes
infrared and visible images into a two-scale representation
using LatLRR to generate low-rank parts and saliency parts,
with respect to the fusion rule of the low-rank parts, then

construct adaptive weights by adopting fusion global-local-
topology particle swarm optimization to obtain more useful
information from the source images. However, in the two
algorithms, the fusion image contains few details of thermal
radiation. And Li et al. [21] proposed a novel deep decom-
position method. The LatLRR algorithm is utilized to learn a
project matrix which is used to extract salient features. The
base part and multi-level detail parts are obtained by deep
decomposition LatLRR. The fusion algorithm is useful for
image detail extraction.

A neural network usually consists of many neurons, thus
it can imitate the perception behavior mechanism of the
human brain to deal with neuron information. The interac-
tions among neurons characterize the transmission and pro-
cessing of neuron information, and the neural network has
the advantages of strong adaptability, fault tolerance and anti-
noise capabilities.

With the rise of deep learning, deep features of
source images are used to reconstruct the fused image.
Liu and Wu [22] proposed a convolutional neural network
(CNN) based fusion method. Image patches which contain
different blur versions are used to train a network and obtain
a decision map. The fused image is obtained by using the
decision map and source images. But the fusion result has
a poor contrast. The residual network (ResNet) and zero-
phase component analysis (ZCA) were applied into image
fusion tasks by Liu et al. [23]. The ResNet is used to extract
deep features from source images, then ZCA is utilized to
normalize the deep features and obtain initial weight maps.
Finally the fused image is reconstructed using a weighted-
averaging strategy. The result achieves less performance in
visual quality. Li and Wu [24] proposed a densefuse to
infrared and visible images. They propose a novel deep
learning architecture which is constructed by encoding net-
work and decoding network. Encoding network is used to
extract image features and decoding network is used to obtain
fused image. Because the encoding network and decoding
network has more layers, so the algorithm operation is low.
Ma et al. [25] proposed a generative adversarial network for
infrared and visible image fusion. The method establishes an
adversarial game between a generator and a discriminator,
where the generator aims to generate a fused image combine
major infrared intensities with additional visible gradients,
and the discriminator aims to force the fused image to have
more details existing in visible images. Though the algorithm
keeps thermal radiation of infrared image, but many details
are lost in the fusion of infrared dual-band images.

B. RESEARCH ON INFRARED DUAL-BAND
IMAGE FUSION ALGORITHM
Although multi-scale transforms, sparse representation and
deep learning methods obtain good fusion performance, but
for infrared images fusion, the infrared image is different
from the visible image. Visible light fully reflects the detailed
information of the whole scene, but visible light transmission
is difficult to penetrate fog, rain and dust, thus the detection
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distance is limited. However infrared technology uses thermal
radiation to convert infrared band information, that is more
than the human eye to catch the visible information. Infrared
technology can identify hot targets well, and the detection
is far, but the image contrast is poor and the details are not
rich.

At present, for infrared dual-band image fusion algorithm,
Qu et al. [26] proposed dual-band infrared images fusion
based on gradient pyramid decomposition. The method uses
four Gradient operators, based on the Gaussian pyramid
decomposition, to make a filtering in the horizontal, ver-
tical, and two diagonal directions. By this way, they can
extract the edge information of the source image well, and
keep the details of the characteristics. The fused image has
a better definition and contains enough effective messages.
But the edges of the fused image are not clear. And for
dim small targets fusion Method. Sun et al. [27] proposed
dim small targets detection based on dual-band infrared
image fusion. They use wavelet transformation to decompose
the source images. In wavelet transformation domain high-
frequency part, they calculate local fractal dimension and set
up fusion rule to merge corresponding sub-images of two
source images. In low frequency, they extract local maximum
gray level to fuse them. Then reconstruct image by wavelet
inverse transformation and obtain fused image. However,
the background noise of the fused image is the same size as
the target, so the target cannot be distinguished.

For a long distance target in complex background, a weak-
small target is formed in the infrared dual-band image, which
is mainly reflected in two aspects. On the one hand, weak-
small targets have a small imaging area and only occupy
one or a few pixels on the detector, lacking shape and struc-
tural information. Target detection often cannot directly uti-
lize pattern, size and other features for pattern recognition.
On the other hand, weak-small target in the image is usually
the farthest distance imaging. After a long distance of atmo-
spheric attenuation, the energy reaching the imaging system
is usually weak, so the signal intensity of the target is weak.
Since the background and noise occupy a large proportion in
the field of view, the signal-to-noise ratio of the whole image
is relatively low.

Infrared image fusion algorithms are applied to the weak-
small target image fusion, those methods still have draw-
backs. Fusion image background noise amplifies while detail
information is lost. Therefore, it is necessary to propose a
new method suitable for weak-small target image fusion.
Eventually, the signal-to-noise ratio of the fused image is
improved, and the intensity of the weak-small target is
highlighted.

Based on the above questions, we propose a fusion algo-
rithm based on LatLRR and DWT for infrared dual-band
image fusion. The algorithm uses DWT to obtain the image
saliency part, then uses LatLRR to extract the depth features
of the saliency part. Firstly, the original image is decomposed
into high frequency and low frequency by DWT. High fre-
quency displays saliency parts and low frequency displays

contour parts. The LatLRR is utilized to learn a project matrix
which is used to extract salient features. Secondly, high
frequency parts are fused by maximum absolute value and
low frequency parts are fused by weighted-average, The
training matrix and high frequency fusion parts are used for
contrast modulation fusion. Finally, the fused image is recon-
structed by combining the contour parts and the detail parts.
In fusion result, the contrast between target and background
has obvious changes.

The rest of this paper is arranged as follows. Section 2
describes a brief introduction of related works. Section 3
introduces fusion framework based on LatLRR and DWT.
Section 4 shows the experiments results. Section 5 draws the
conclusions.

II. RELATED WORKS
A. FEATURE EXTRACTION ALGORITHM
At present, sparse representation and deep learning are com-
monly used as feature extraction methods. Liu and Yan [28]
proposed Latent Low-Rank Representation for subspace seg-
mentation and feature extraction. Li et al. [21] used the
residual network (ResNet) to solve the image degradation
problem, and extract the depth features through fast con-
nections and residual representations. Liu et al. [29] used
VGG19 to extract the depth features in the image and adopted
multi-level fusion for the decomposed details. Ma et al. [25]
used GAN to build a counter generator and discriminator to
extract infrared radiation characteristics in the image.

We select different algorithms to do contrast experiments
for infrared weak-small targets dual-band images. Through
these experimental results, we can find that the LatLRR
method is best than the other algorithms. Because LatLRR
algorithm is an unsupervised feature extraction method, com-
bining subspace segmentation with feature extraction can
easily extract the salient features in the image. Given a source
image, LatLRR decomposes it into the principal features:
the salient features and the noise. The salient features are
automatically extracted from original image so as to produce
effective features for recognition.

B. IMAGE DECOMPOSITION THEORY
Image decomposition is a crucial part of image fusion
processing. Multi-scale transforms can decompose original
images into components of different scales. In this paper,
we select various multi-scale decomposition methods for
infrared images. Finally, the DWT is selected through com-
parative analysis. Because DWT can greatly remove the
correlation between extracted different features by selecting
appropriate filters. The high frequency wavelet coefficients
in the image contain the overall details. The DWT in image
processing is given as follows.

Given separable two-dimensional scaling and wavelet
functions, the scaled and translated functions are:

ϕj,m,n(x, y) = 2j/2ϕ(2jx − m, 2jy− n) (1)

ψ i
j,m,n(x, y) = 2j/29(2jx − m, 2jy− n)i = {H ,V ,D} (2)
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where ϕj,m,n(x, y) and ψ i
j,m,n(x, y) are, respectively, scale

functions and wavelet functions at different scales and posi-
tions. j is the scale order. The larger the j is, the smaller the
scale will be, which is equivalent to that the higher frequency
makes it closer to the detail. m and n are the offsets of the
position.
f (x, y) is an intensity image of size M × N , and then the

discrete wavelet transform of the image is:

Wϕ(j0,m, n) =

M−1∑
x=0

N−1∑
y=0

f (x, y)ϕj0,m,n (x, y)

√
MN

(3)

W i
ψ (j,m, n) =

M−1∑
x=0

N−1∑
y=0

f (x, y)ψ i
j,m,n(x, y)

√
MN

(4)

Wϕ(j0,m, n) is an approximation of f (x, y) at scale j0. Its
horizontal, vertical and diagonal details for scale j ≥ j0 are
W i
ψ (j,m, n) coefficients. GivenWϕ andW i

ψ of Equations (3)
and (4), f (x, y) is obtained via the inverse discrete wavelet
transform by the following formula:

f (x, y) =

∑
m

∑
n
Wϕ(j0,m, n)ϕj0,m,n(x, y)

√
MN

+

∑
i=H ,V ,D

∞∑
j=j0

∑
m

∑
n
W i
ψ (j,m, n)ψ

i
j,m,n(x, y)

√
MN

(5)

III. THE PROPOSED FUSION METHOD
In this section, the proposed algorithm based on LatLRR
and DWT fusion is introduced in detail. The decomposition
method and fusion strategies for contour parts and saliency
parts will be presented in the next subsection.

The frame of image fusion algorithm is shown in Fig. 1.
Input infrared images are medium wave image and long
wave image. All process divided into two parts. In the first
part, all source images are trained as L matrix by LatLRR.
In the second part, medium wave image and long wave
image are decomposed to low frequency (contour) and high
frequency (saliency), respectively, by DWT. Contour feature
uses Weighted-average strategy fusion, and saliency feature
uses Maximum absolute value strategy fusion. Then L matrix
is used to extract the detailed information. Gray modulate is
used to extract deep detail feature by saliency feature and
detail information. Finally, the fused image is reconstructed
by adaptive strategies.

A. TRAINING THE PROJECT MATRIX L
LRR is an effective method for exploring the multiple sub-
space structures of data. Usually, the observed data matrix
itself is chosen as the dictionary, which is a key aspect of
LRR. But this representation method can not preserve the
local structure information. In 2011, Liu and Yan [28] pro-
posed LatLRR theory, LatLRR seamlessly integrates sub-
space segmentation and feature extraction into a unified

framework. As a subspace segmentation algorithm, LatLRR
is an enhanced version of LRR and outperforms the state-of-
the-art algorithms. Being an unsupervised feature extraction
algorithm, LatLRR is able to robustly extract salient features
from corrupted data, and thus can work much better than the
benchmark that utilizes the original data vectors as features
for classification. So the low-rank structure and salient struc-
ture can be extracted by LatLRR from raw data. The LatLRR
problem is reduced to solve the following optimization
problem.

min
Z ,L,E

‖Z‖∗ + ‖L‖∗ + λ‖E‖1 (6)

s.t. X = XZ + LX + E (7)

where λ > 0 is the balance coefficient, ‖ · ‖∗ denotes the
nuclear normwhich is the sum of the singular values ofmatrix
and ‖ · ‖1 is l1 − norm. X denotes observed data matrix,
Z is low-rank coefficients, XZ denotes principal features,
L is a project matrix which is named salient coefficients,
LX denotes salient features, and E is sparse noisy matrix.

Equation (6) is solved by the inexact Augmented
Lagrangian Multiplier (ALM) [29]. The salient component
LX is obtained by (7).

In this paper, the source image is divided into M image
patches, and the size of image patch is n × n. X indicates
the observed matrix and each column denotes an image
patch. The size of project matrix L is just related to image
patch size. Once the project matrix is learned by LatLRR,
it can be used to process other images which are arbitrary
size.

We use thermal imager (IRCAM Equus 327) to collect
infrared medium wave and long wave images under different
backgrounds. At the same time, we also select some infrared
and visible images by downloading the TNO Image Fusion
Dataset [30]. The project matrix L is learned by LatLRR,
where the size of L is just related with image patch.

In the learning phase, all training images are divided into
image patches by slidingwindows techniquewithout overlap-
ping. We select 16∗16 image patch size. 1200 image patches
are randomly chosen to generate an input matrix X in which
each column indicates all pixels of one image patch. Then the
size of X is N ∗M , where N = n× n andM = 1200.

The project matrix L could be learned by LatLRR. The
256 ∗ 256 size of L will be obtained to use extract features.

B. DISCRETE WAVELET TRANSFORM (DWT)
DECOMPOSITION THEORY
Because the dual-band infrared images quantization digits are
uniform, the radiation in the high-temperature scene is mainly
concentrated on the middle band. Its corresponding radiation
contrast of the long band is relatively small. So the quantized
target cannot be distinguished from the scene and vice versa
at low temperatures.

In order to enhance the contrast between weak-small target
and background in the fused image, and the detector can
clearly identify target. Based on this, we use the discrete
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FIGURE 1. The framework of image fusion algorithm.

wavelet transform decomposition theory, because discrete
wavelet transform has good localization properties in time
domain and frequency domain [31]. High frequency com-
ponents using subtle time domain sampling step, it can be
focused to any details of an object, making a pace of time
domain and frequency domain. It also can decompose a
signal into sub-signals with different spatial resolution and
frequency domain characteristics, without losing the infor-
mation contained in the original signal, and find orthogonal
basis to realize non-redundant signal decomposition. There-
fore, we choose discrete wavelet transform to decompose the
image.

Image decomposition method is shown in Fig. 1. In the
medium and long wave thermal imager, random noise is
generated duo to the influence of the detector effect which
causes noise in the image. Therefore, it is necessary to remove
the image surface noise. The paper uses the median filter
function to filter out the noise in the image. Because median
filtering is a nonlinear smoothing technique, it can effectively
suppress noise and protect edge information [32]. Assume
medium wave image and long wave image are A and B,
respectively. The fusion steps are as follows:

The low frequency parts adopt the weighted-average fusion
method based on local energy.

1) The wavelet coefficients of the low frequency parts are
extracted from the results of A and B wavelet transform.
2) For the two images A and B, the energy of the

local region within the low frequency band is calculated
respectively.

E(A, p) =
∑

q∈Q
w(q)C2

J (A, q) (8)∑
q∈Q

w(q) = 1 (9)

where w(q) denotes weight. When the point q is closer to the
point p, the weight is larger.Q is a neighborhood of p. E(B, p)
can be obtained by the same principle.

3) Define a match matrix:

M (p) =
2

E(A, p)+ E(B, p)
·

∑
q∈Q

w(q)CJ (A, q)CJ (B, q)

(10)

The value of each point in the matching matrix changes
between 0 and 1, and the closer to 1 means the higher the
degree of correlation.

4) Define thresholds TH , if M (p) < TH , so:

CJ (f , p) =

{
CJ (A, p), E(A, p). ≥ E(B, p)
CJ (B, p), E(B, p). < E(A, p)

(11)

Otherwise:

CJ (F, p) =


if E(A, p). ≥ E(B, p)
WmaxCJ (A, p), WminCJ (b, p)
else if E(B, p). ≥ E(A, p)
WmaxCJ (B, p), WminCJ (A, p)

(12)

Among:

Wmin = 0.5− 0.5
(
1−M (p)
1− TH

)
(13)

Wmax = 1−Wmin (14)

The high frequency parts adopt the fusion method of select
max absolute value:

DF = max(DA,DB) (15)

DA, DB, DF denote image A, image B, fusion image F .

C. THE ANALYSIS PRODUCE OF SALIENCY PARTS
In order to make weak-small targets clear and prevent the
background noise amplification in the fused image, we pro-
cess the image after high frequency fusion. Firstly, we use
Matrix L to learn by LatLRR from training data (medium
wave and long wave images). Secondly, Image details infor-
mation is obtained by Matrix L and high frequency fusion
result. On this basis, image details information and high
frequency fusion result are used to obtain image features by
grayscale contrast modulation. The process of saliency parts
are shown in Fig. 2.

The detail parts are calculated by (16):

DE = L × DF (16)
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FIGURE 2. The process of saliency parts.

where DF and L denote, respectively, the high frequency
fusion result and the project matrix which is learned by
LatLRR. DE is the extracted detail information.

At the same time, the high frequency fusion result DF is
established as Gaussian decomposition, then it is filtered in
two dimensions. The filter window function uses the template
5 ∗ 5. According to symmetry, normalized type and other
relevant constraints, the template can be obtained as follows:

w =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (17)

DF (i, j) is filtered by a two dimensional F filter in the
matrixw, thenDF1(i, j) is obtained by two dimensional cross-
correlation. Namely:

DF1(i, j) = filter2(w,DF (i, j)) (18)

Gray contrast formula is used to process the image to
obtain:

C(i, j) =
DF (i, j)− DF1(i, j)

DF1(i, j)
(19)

The contrast C(i, j) is extracted by gradient operator and
discretized by gray level. New grayscale I (x, y):

I (x, y) =
C(i, j)− C(i, j)min

C(i, j)max − C(i, j)min
(20)

Gray maximum is C(i, j)max = max
x,y

C(i, j); gray minimum

is C(i, j)min = min
x,y

C(i, j).

The grayscale image I1(x, y) is convolved by I (x, y) and
detail information DE .

I1(x, y) = I (x, y) ∗ DE (x, y) (21)

The grayscale discretization of I1(x, y) is performed by the
gradient operator, the gray value is enhanced by contrast, and
the fused image based on the gray contrast is obtained I2(x, y):

I2(x, y) = 255 ·
I1(i, j)− I1(i, j)min

I1(i, j)max − I1(i, j)min
(22)

D. RECONSTRUCTION
Once the fused detail feature I2(x, y) is obtained, we use
the fused detail feature I2(x, y) and low frequency fused part
DL(x,y) to reconstruct the final fused image, as shown in (23):

F(x, y) = I2(x, y)+DL(x,y) (23)

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The aim of the experiment is to validate the proposed method
using objective criteria and to carry out a comparison with
existing methods.

A. EXPERIMENTAL SETTINGS
In our experiment, as show in Fig. 3 and Fig. 4, we choose
infrared medium wave and long wave images based on dif-
ferent backgrounds, and we also choose some infrared and
visible images for comparison.

For comparison, we select several recent and classical
fusion methods to perform the same experiment, including:
principal component analysis (PCA) [33], non-subsampled
contourlet transform (NSCT) [4], visual saliency map and
weighted least square optimization (VS-WLSO) [34], ResNet
and zero-phase component analysis (ResNet-ZPCA) [21],
Latent Low-Rank Representation (LatLRR) [28], novel deep
decomposition method (NDD) [22], Deep Learning Frame-
work (DLF) [19], generative adversarial network (GAN) [25],
DenseFuse (DF) [24].

For all fusion algorithms. GAN and DF are implemented
with Tensorflow and GTX 1080Ti, 16GB RAM. ResNet-
ZPCA and DLF are implemented in MATLAB R2018a and
Visual Studio 2015. Other fusion algorithms are implemented
in MATLAB R2018a.

B. SUBJECTIVE EVALUATION
The main purpose of the subjective visual effect evaluation
is to discriminate the sharpness of the target in the image,
the contrast of the target and the background. The general
subjective quality assessment method is to judge the image
quality by the observer’s score normalization. The advantage
is that it can truly reflect the visual quality of the image and
the evaluation result is reliable. The disadvantage is that it
cannot be described by applying a mathematical model, and
it is difficult to achieve real-time quality evaluation. In this
paper, nine kinds of contrast experiments are selected. Some
algorithms are classic traditional fusion methods, and some
are the latest image fusion algorithms proposed at this stage.
Combining the algorithm proposed in this paper with the
other nine algorithms, we select some observers to evaluate
the results of ten algorithms. The evaluation is divided into
three levels: good, general and poor.

The fusion results which are obtained by the nine exist-
ing methods and the proposed method are shown in Fig. 5.
The first two columns, the fusion results on two typical
infrared and visible image pairs from TNO database. After
three columns, three typical infrared medium wave and long
wave image pairs from collect data. For different test images,
we evaluate the relative performance of the fusion methods
using visual standard. As can be seen from the Fig. 5. The
fused images contain many fuzzy phenomenon around the
detail information by NSCT, ResNet-ZPCA, LatLRR and
DLF methods. Although NDD and DF algorithms increased
image grayscale, but the overall image details are not clear.
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FIGURE 3. Four pairs of collect images. The top row contains infrared medium wave images, and the second
row contains visible images.

FIGURE 4. Four pairs of source images. The top contains infrared images, and the second row contains
visible images.

TABLE 1. Subjective visual evaluation result.

Finally, through the normalization of the observer’s evalu-
ation, the subjective visual evaluation results are as shown
in Table. 1.

In contrast, the best visual effect is obtained by our pro-
posed method. The proposed method not only works better in
terms of highlighting the target, but also enhance the image
contrast and brightness. In summary, the proposed method is
superior to other nine methods in both inheriting the features
of source images and preserving important details. Mean-
while, the overall brightness of the fused image is improved
by the proposed method due to adopting both the contour and
saliency information.

C. OBJECTIVE EVALUATION
For infrared weak-small target images under different back-
grounds, the following problems will appear in infrared
fusion.

1) The infrared target is small and unclear, occupying only
a few pixels in the image.

2) The remote contour of infrared image collected is not
clear.

3) After fusion, the background noise is enlarged and the
information is distorted.

So we put forward four evaluation indicators for specific
problems.

1) For the infrared image target is small, only a few pixels
in the image, the target is not clear. We propose information
entropy (EN ), which is an index to measure the richness of
information contained in an image.

2) For the fused image which is easily distorted, we pro-
pose structural similarity (SSIM ), which is used to eval-
uate the probability of image information being distorted.
The larger value of SSIM indicates the better image
quality.

3) For the low signal-to-noise ratio of the fused image,
we propose the peak signal to noise ratio (PSNR) index. The
higher value of PSNR indicates the better quality and effect
of the fused image.
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FIGURE 5. Comparison of the fusion results from different algorithms.
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FIGURE 6. Quantitative comparisons of the first column image.

4) Aiming at the lost edge information of the fused
image and the blurred image, we propose edge retention
index QAB/F .
EN is defined based on information theory, which mea-

sures the amount of information the fused image con-
tains [35]. Mathematically, EN is defined as follows:

EN = −
L−1∑
i=0

pilog2pi (24)

where L denotes the number of gray level. We set it to
256 in our experiments. pi is the normalized histogram of
corresponding gray level in the fused image. The larger value
of EN indicates the better performance fusion method.
SSIM is used to model the image loss and distortion, which

measures the structural similarity between source images and
fused images [36]. SSIM mainly consists of three compo-
nents: loss of correlation, luminance distortion, and contrast
distortion. The product of three components is the assessment
result of the fused image, and SSIM is defined as follows:

SSIMX ,F =
∑
x,f

2uxuf + C1

u2x + u
2
f + C1

·
2σxσf + C2

σ 2
x σ

2
f + C2

·
σxf + C3

σxσf + C3
(25)

SSIM =
(
SSIMA,F + SSIMB,F

)/
2 (26)

where SSIMX ,F denotes the structural similarity between
source image X and fused image F , x and f represents
the image patch of the source image and fused image in a
local window of size M ∗ N , σx and σy denote the stan-
dard deviation, σxf is the standard covariance correlation
of source and fused image, µx and µf denote the mean
value of source image and fused image, respectively. C1, C2
andC3 are parameters to make the algorithm stable. SSIMA,F
and SSIMB,F denote the structural similarities between
infrared/visible images and fused image.
PSNR is the ratio between the maximum possible power of

a signal and the power of corrupting noise [37]. The PSNR of
the fusion result is defined as follows:

PSNR = 10log10

 (fmax)2MN
M−1∑
m=0

N−1∑
n=0

[R (m, n)− F(m, n)]2

 (27)

where R (m, n) and F(m, n) are the reference and fused
images, respectively.M and N are image dimensions. fmax is
the maximum gray scale value of the pixels in the fused
image.
QAB/F is to evaluate the fusion performance by measuring

how much edge information the fusion image obtains from
the source image [38]. QAB/F evaluation process is as fol-
lows. Firstly, the source images and fused images are edge-
extracted. And then the edge retention between each source
image and the fused image is calculated. Finally, the weighted
edge retention is used as the final quantitative evaluation
index. QAB/F is defined as follows:

QAB/F =

N∑
i=1

M∑
j=1

(QAF (i, j)wA(i, j)+ QBF (i, j)wB(i, j))

N∑
i=1

M∑
j=1

(wA(i, j)+ wB(i, j))

(28)

wA(i, j) and wB(i, j) are the weights of the corresponding
pixels.QAF (i, j) andQBF (i, j) are similarity measures of input
image and fused image. The larger index of QAB/F indicates
themore image edge information retained by the fused image.

The following figures show the evaluation indexes of ten
algorithms for five images. The ten algorithms are princi-
pal component analysis (PCA), non-subsampled contourlet
transform (NSCT), visual saliency map and weighted least
square optimization (VS-WLSO), Latent Low-Rank Rep-
resentation (LatLRR), novel deep decomposition method
(NDD), ResNet and zero-phase component analysis (ResNet-
ZPCA), Deep Learning Framework (DLF), generative adver-
sarial network (GAN), DenseFuse (DF) and the proposed
algorithm in order.

Fig. 6 and Fig. 7 show the comparison of evaluation
indexes after the fusion of visible images and infrared images.
It can be seen from the data that the algorithm proposed in
this paper is better in all four evaluation indicators. Compared
to other infrared and visible image algorithms, the algorithm
highlights the infrared information of the target, retaining the
details of the visible light.

Fig. 8 to Fig. 10 show the comparison of evaluation indexes
after the fusion of medium wave images and long wave
images in the different backgrounds. For weak-small targets,
the proposed fusion algorithm obtains better results in EN ,
SSIM , PSNR and QAB/F . Analyze each fusion algorithm.
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FIGURE 7. Quantitative comparisons of the second column image.

FIGURE 8. Quantitative comparisons of the third column image.

FIGURE 9. Quantitative comparisons of the fourth column image.

FIGURE 10. Quantitative comparisons of the fifth column image.

The PCA method uses down-sampling processing to obtain
an approximate image, and up-samples the approximate
image to obtain image detail information. The final fused
result has good indicators in EN and SSIM . The NSCT
method is used to decompose image into a low frequency sub-
band and a high frequency sub-band. The low frequency sub-
band parts are fused by the weighted averaging method, and
the high frequency sub-band parts are fused by the absolute
value of the pixel. The final fused image has better indi-
cators in PSNR and EN . The VS-WLSO method uses the
rolling guidance filter and Gaussian filter to decompose input
images into base and detail layers, the detail layers extract

multiple features. The fused image has better indicators in
EN , SSIM and PSNR. The LatLRR method uses LatLRR to
learn a project matrix which is used to extract salient features.
The fused image has good indicators in EN , SSIM and PSNR.
The NDDmethod uses deep decomposition LatLRR to obtain
the base part andmulti-level detail parts.With adaptive fusion
strategies, the fused result has good indicators in EN and
PSNR. The DLF method is used to decompose the image into
base parts and detail content, the detail content use a deep
learning network to extract multi-layer features. The fused
image has better indicators in SSIM and PSNR. The ResNet
is used to extract deep features from Source images. The ZCA
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and l1− norm are utilized to normalize the deep features and
obtain initial weight maps. The fused result has a poor indica-
tor in SSIM . The DF and the GAN methods are not adaptive
to the network architecture, resulting in unsatisfactory image
fusion results and poor evaluation indicators.

In particular, all algorithms are compared. The proposed
method has rich image information, no distortion and good
image quality. Overall, the proposed fusion algorithm has
obvious advantages for the fusion of weak-small targets in
infrared dual-band images.

V. CONCLUSION
In this paper, we have investigated the problem of weak-
small target fusion in infrared dual-band image. At the same
time, the multi-scale transforms, sparse representation and
deep learning fusion algorithms have been proposed based
on infrared image and visible image. We have proposed an
infrared weak-small targets image fusion method based on
LatLRR andDWT. Firstly, the source images are decomposed
into high frequency and low frequency by DWT. High fre-
quency displays saliency parts and low frequency displays
contour parts. At the same time, the LatLRR is utilized to
learn a project matrix which is used to extract salient features.
Secondly, high frequency parts are fused by maximum abso-
lute value and low frequency parts are fused by weighted-
average. The training matrix and high frequency fusion parts
are used for contrast modulation fusion. Finally, the fused
image is reconstructed by combining the outline parts and
detail parts. We use both subjective and objective methods
to evaluate the proposed method. The experimental results
show that the proposed method exhibits better performance
than other compared methods. Especially, This algorithm can
improve the detection distance of dual-band detectors, and
provide a technical support for accurate target recognition and
detection.
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