IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 3, 2019, accepted July 24, 2019, date of publication August 12, 2019, date of current version September 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934581

QuGAN: Quasi Generative Adversarial Network
for Tibetan Question Answering

Corpus Generation

YUAN SUN ™, CHAOFAN CHEN, TIANCI XIA™, AND XIAOBING ZHAO

School of Information Engineering, Minzu University of China, Beijing 100081, China

Minority Language Branch, National Language Resource and Monitoring Research Center, Minzu University of China, Beijing 100081, China

Corresponding author: Yuan Sun (tracy.yuan.sun@ gmail.com)

This work was supported by the National Natural Science Foundation of China under Grant 61972436, Grant 61501529, and

Grant 61331013.

ABSTRACT In recent years, the large-scale open Chinese and English question answering (QA) corpora
have provided important support for the application of deep learning in the Chinese and English QA systems.
However, for low-resource languages, such as Tibetan, it is difficult to construct satisfactory QA systems,
owing to the lack of large-scale Tibetan QA corpora. To solve this problem, this paper proposes a QA
corpus generation model, called QuGAN. This model combines Quasi-Recurrent Neural Networks and
Reinforcement Learning. The Quasi-Recurrent Neural Networks model is used as a generator for Generative
Adversarial Network, which speeds up the generation of text. At the same time, the reward strategy and
Monte Carlo search strategy are optimized to effectively update the generator network. Finally, we use the
Bidirectional Encoder Representations from Transformers model to correct the generated questions at the
grammatical level. The experimental results show that our model can generate a certain amount of effective
Tibetan QA corpus, and the BLEU-2 value increases by 13.07% than baseline. Moreover, the speed of the

model has been greatly improved.

INDEX TERMS Quasi generative adversarial network, Tibetan, QA corpus generation, reinforcement

learning, Monte Carlo search strategy.

I. INTRODUCTION

Faced with the explosive growth of Web content, traditional
information retrieval methods based on keywords are failed
to meet the needs of users. Users need more efficient and
accurate information. In 2011, the University of Washington
Professor Oren Etzioni mentioned in Nature that “web search
is on the cusp of a profound change — from simple document
retrieval to question answering” [1].

Recently, the application of deep learning to QA sys-
tems has become a hot topic [2]-[13]. However, deep
learning algorithms need to be based on a large-scale
QA corpus. In Chinese and English QA systems, there
are large-scale public QA corpora, such as Google’s Nat-
ural Questions [14], Facebook’s SimpleQuestions [15],
Microsoft’s WikiQA [16], and Baidu Chinese question and
answer dataset - WebQA [17], etc. These corpora provide
important support for deep learning applied to Chinese and

The associate editor coordinating the review of this article and approving
it for publication was Muhammad Afzal.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

English QA systems. On the other hand, for low-resource
languages, such as Tibetan, it’s hard to construct a satisfactory
QA system, owing to the lack of large-scale Tibetan QA
corpora.

However, comparing with English and Chinese, there
are some challenges when generating Tibetan QA corpus.
Tibetan is a language with strong grammar rules and has com-
plex syntactic structure. The polysemy of the word appears in
Tibetan more frequent, which makes word hard to represent.
In addition, Tibetan sentences are often much longer than
Chinese and English sentences in the same expression, which
makes the model hard to train. Complex syntactic structure
makes it not easy to generate coherent and accurate sentences.

In view of these problems, this paper proposes Quasi
Generative Adversarial Network (QuGAN) model which
can generate a large amount of accurate Tibetan QA cor-
pus. This model combines Quasi-Recurrent Neural Networks
(QRNN) [18] and Reinforcement Learning (RL), and opti-
mizes the reward strategy and Monte Carlo search strategy.

116247

https://orcid.org/0000-0003-0565-9659
https://orcid.org/0000-0002-4512-8978

IEEE Access

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

The main contributions of this paper are as follows:

(1) To speed up the Tibetan text generation, this paper
uses QRNN model as the generator. QRNN model combines
the advantages of Long Short Memory Network (LSTM)
and Convolutional Neural Network (CNN), which can handle
long sequence problems in Tibetan, and the data can be
calculated in parallel. Furthermore, to reduce the difference
of the probability distribution between the generated data
and the real data, this paper uses the Maximum Likelihood
Estimation (MLE) to initialize the random questions.

(2) The traditional reinforcement learning uses the Monte
Carlo search algorithm to score the entire generated text
sequence, so it takes a long time to convergence the Gener-
ative Adversarial Networks (GAN). It is no longer to suit-
able for Tibetan which is often composed of long sentences.
Therefore, we optimize the Monte Carlo search algorithm by
predicting the scores of next sequences according to gener-
ated partial sequences. We also optimize the reward strategy,
and effectively update the generator network.

(3) Since the grammatical rules and syntactic structure of
Tibetan are complex, this paper uses the Tibetan text corpus to
train the Bidirectional Encoder Representations from Trans-
formers (BERT) model, and optimizes the grammatical level
of the generated sentence, making the question more accurate
and coherent.

Il. RELATED WORK

At present, Chinese and English have built a large number
of QA corpora. For English corpora, such as SQuAD [19],
SimpleQuestion [15] and so on. SQuAD dataset was built
by manual extraction of questions from text paragraphs, then
given answers. SimpleQuestion is a factual dataset which
was generated factual by Freebase [20]. For Chinese corpora,
such as WebQA [17], which built by Baidu Knows. Insur-
anceQA [21] which questions were proposed by users and the
high-quality answers were provided by professionals. These
corpora are mainly based on manual annotation, and it takes a
lot of time and manpower. Therefore, many researchers start
to construct virtual question and answer pairs.

One method is template-based method, it uses the knowl-
edge base [22]-[23] or text paragraphs to extract questions
and answers through manual extraction, and converts them
into natural language questions. Curto et al. [24] proposed an
automatic question generation algorithm based on template
matching. In his work, the existing question and answer pairs
are used as the corpus of template extraction, and then the
search engine queries the question and answer pairs with the
same template to expand corpus and verify the correctness
of generated templates. Rashmi and Joshi [25] proposed a
method to generate why-questions. They established question
and answer pairs by using the causal relations annotated
in the Penn Discourse Treebank (PDTB). QALD [26] and
FREEO917 [27] are based on the knowledge base to generate
QA corpus, in which QALD mainly indicates the construction
question should start from the category and then cluster the
questions. Wang et al. [28] used closed fields to generate

116248

question and answer pairs. By logically representing the
triples in the knowledge base, they transformed the form of
closure into questions. But the quality of questions is not
guaranteed, the homogeneity of the questions is serious.

Template-based methods cannot avoid to generate
homogenous questions. The deep learning method learns
information features from the knowledge base or text para-
graph through neural networks, and then generates ques-
tions. Baueret al. [29] proposed a model for answering these
generated questions on the Narrative QA [30] dataset. They
found that many sample data cannot be reasoned and given
answers through the text information. So they introduced
common sense information (in external knowledge base)
into the conventional machine reading comprehension model.
Rao and Daumé [31] constructed a neural network model
for automatically generating questions based on the full
information expectation, and they used the QA website to
construct a QA dataset which contains triplet information.
Serban et al. [32] directly used the encoder-decoder model
to convert triples into problems. Zhou et al. [33] proposed a
method for generating problems from texts, which uses fea-
tures to encode the answer position information to generate
questions. These methods require large-scale QA corpora and
are supported by external knowledge base. However, they
are difficult to be applied directly to low-resource languages,
such as Tibetan.

In 2017, considering performance and -efficiency,
Bradbury et al. [18] proposed a hybrid structure QRNN
combining the CNN model with the RNN layer, QRNN can
parallel calculate based on time step and minibatch like CNN,
which ensures high throughput and good length scalability
for sequence data. It has the characteristics of past time
dependence as well. The work has obvious effects on dealing
with sequence data. In 2018, the University of Washington
proposed an Embedding from Language Models (ELMo)
for deeply extracting semantic features [34]. To solve the
problem of lacking the intrinsic connection of continuous
text and the ability of language structure expression in word
vector, the attention mechanism is used to calculate the
relationship between single word and words in the sentence,
then it adjusts the weight of the word to obtain the new word
expression. The model has a good effect in dealing with the
complexity and ambiguity of the word. Google released the
BERT model in 2018, they used the Transformer to encoder
and got highly performance on natural language processing
tasks [35].

In 2014, Goodfellow et al. [36] proposed GAN and applied
it to computer vision image generation. In 2018, the BigGAN
developed by Andrew Brock of Heriot-Watt University and
DeepMind team got 166 points on Inception Score (IS) for
image generation (233 points for real pictures) [37]. In terms
of text processing, the main difficulty of GAN application
is that the original GAN is mainly applied to real num-
ber space which is continuous data, while the text data is
discrete data. On the other hand, the error will be along
with the length of the sentence exponential accumulation

VOLUME 7, 2019

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

IEEE Access

r—-r——"""—""—"""">"”"”"”"”"”"V"”"/”"”/7 /= 1
\ Ti 2 .. (W ‘
I A A A
| 1 1 I
' perr @@ - @ |
I W
. p = I
} Trm (Trm Trm |
\ e e
| Ei E2 | - | Bx }
.
——————————— -4
Fo—pool\ \ \ | |
o | £ t £ | Generated
on | — — — — |—>
Random MLE f * f Data)
Fo-pool [] [1 |
S S
Con | — — | ?
t t t t Real Data
QRNN LSTM

Generator

State

FIGURE 1. The framework of QuGAN model.

when generating text. To solve these problems, in 2016,
Zhang et al. [38] attempted to apply GAN to the text gener-
ation task. They use LSTM as the generator, and CNN as
the discriminator. Also, the original sentence and the new
sentence which obtained by exchanging the positions of the
two words in the sentence are used to train. Yu et al. [39]
proposed the SeqGAN which uses LSTM as the generator
and CNN as the discriminator, and the error as a reward for
reinforcement learning. It trains in a feed-forward manner,
and updates the generator network with an exploration mode.
The BLEU value of the Chinese verse generation reached to
0.7389, and the Obama speech generation reached to 0.427.
The above generator can only reward or punish the gener-
ated sequence by indirectly passing the feedback the value
generated by the discriminator, and cannot directly obtain
the information from the sequence. In order to solve this
problem, Li ef al. [40] used the adversarial training method.
It uses the seq2seq model as the generator, the discriminator
adopts hierarchical decoding, and joint training generator and
discriminator by reinforcement learning. To generate an open
dialogue, they revised rules in the process of updating the
generator. In 2018, Fedus ef al. [41] proposed the MaskGAN
to solve the model collapse and the instability of the training
as the sentence length increases in the GAN model. The
model uses the actor-critic algorithm in reinforcement learn-
ing to train the generator, using the maximum likelihood
estimation and stochastic gradient descent to train the dis-
criminator, which guarantees the quality of the generated text.
These researches are good explorations of GAN in natural
language processing. However, the problems of not being

VOLUME 7, 2019

Reward

Discriminator

Action

able to effectively pass the gradient to the generation network
and generating sentence with grammatical confusion still
exist.

Ill. MODEL ARCHITECTURE

In order to construct the Tibetan QA corpus automatically,
this paper proposes the QuUGAN model. Firstly, the random
text sequences are initialized, and then they are sent to the
generator of the QRNN network for automatic text genera-
tion. The discriminator uses LSTM model to judge whether
the generated text is true. The reinforcement learning is
used for feedback, and the optimized Monte Carlo search
algorithm is used to accelerate the training of the model.
Finally, the BERT model is used to correct the questions at
the grammatical level. The framework is shown in Fig 1.

The model consists of five main parts:

(1) Initialization: we randomly generate a certain amount
of sample data by using characters in database. To reduce the
difference in the probability distribution of the generated data
and the real data, we initialize generate random sample data
using the Maximum Likelihood Estimation.

(2) Generator G: to accelerate the convergence speed of the
GAN model and to support the data parallelizable operation,
we use QRNN model as the generator for such strong gram-
matical rules language-Tibetan, QRNN can save a lot of time.

(3) Discriminator D: the LSTM model is used as the dis-
criminator to judge whether it is real data.

(4) Reward strategy: to make the generated data more
realistic, the reinforcement learning is used for feedback. The
possible subsequent sequences are obtained by the optimized

116249

IEEE Access

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

Monte Carlo search algorithm, and then we searched for the
residual sequence word by word (this process called action).
At the same time, aiming at the characteristics of Tibetan
language, we optimize the reward strategy to find the best
strategy that can get the maximum reward. Then the dis-
criminator scores the generated sequence in whole sentences
and feeds the score back to the generator (this process called
reward), finally updates the current state of the generator (this
process called state).

(5) Grammar optimization: to make the generated ques-
tions more coherent, the BERT model is used to modify
the Tibetan sentences, because the grammatical rules and
syntactic structure of Tibetan are complex.

IV. MODEL DETAILS

A. GENERATOR

Before the model training, we perform MLE on randomly
sample data to generate questions more efficiently and define
initialized sequence T = (f1,1,3---1,).The maximum
likelihood estimates to derive the maximum probability text
sequence T is shown in equation (1).

n
T:argmax H P(t) (1)
i=1,t;eT

where #; is a single character or word, T is the entire text
sequence as the input of the generator.

We use QRNN model as a generator. QRNN combines
LSTM with CNN to handle the problems of long sequence
and data cannot be parallelized. The QRNN mainly con-
sists of two components: convolution component and pooling
component. It can be broken down into two subcomponents
on the network structure. The first layer is a convolutional
layer for extracting input features, in which parallel process-
ing can be performed based on the sequence dimension for
the processed sequence data. The second layer is the pooling
layer, which is used to reduce the number of features, but it is
different from the common pooling layer. The common pool-
ing layer adopts the maximum pooling or average pooling,
which is a method of combining convolution characteristics
on time invariance. But it cannot deal with the large-scale
sequence problem. QRNN absorbs the time series processing
method in the Recurrent Neural Network (RNN) and adds it
to the pooling layer, which effectively solves the time series
problem. In QRNN, there are three pooling modes: f-pooling,
fo-pooling and ifo-pooling. This paper uses f-pooling.

Convolution component: it is used to extract the input
features, as shown in equations (2) - (4).

Z = tanh(W, % L) 2)
F =0 (W*L) 3
O=0W,xL) “4)

where W,,Wy,W,, are the tensors of the real number RF*¢*™,
d is the vector dimension, m is the number of channels of
the convolution component, and k is the size of sliding win-
dow on the sequence dimension. L is the current sequence,

116250

Z,F, O are the output of the convolutional layer. For example,
if the convolution operation has a window size of two in
the sequence dimension, then the above equations can be
expressed as equations (5) - (7). I; stands for the sequence on
the current time ¢, [, _1 represents the sequence of the previous
moment.

2z = tanh(W,l,_1 + W21, (5)
fr = oWil—1 + Wil (6)
Oy = oc(Whi—1 + W2l ©)

Pooling components: to reduce the extracted features,
we use f-pooling, which contains one forget gate. So the
current output can be expressed as equation (8).

h=fOh1+0-f)Ozu (®)

where h;_; stands for the output of the upper layer QRNN,
fi» z: are the output of the convolutional component in the
current layer, © is the signal of multiplication.

Although, the loop portion of these functions needs to be
calculated and parallelized along with the feature dimensions
for each time step in a sequence task. In other words, in actual
operation, the extra time is negligible when dealing with very
long sequences.

B. DISCRIMINATOR
Discriminator D as a classifier in the GAN, this paper uses the
fundamental LSTM model as the discriminator to judge if the
generated text is real. The discriminator scores the generated
sequence in whole sentences and feeds the scores back to the
generator. The discriminant function is shown in equation (9).
D(x) _ Pdata(x) (9)
Para(x) + Pg(x)
where P, is the distribution of the real sample, P, is the dis-
tribution generated by the generator. In general, the equation
gives a quantified number for judging that the sequence is a
real sample, so it can be seen that the value of discriminator
will close to 0.5 when the Pg(x) is closer to Pggu,. In order
to get better results, in our experiment, the discriminator is
set to calculate the value in multiple times. When the score is
close to 0.5 which means the discriminator does not need to
be trained.

The discriminator D in the GAN serves as a source of
rewards in reinforcement learning. So how to calculate the
rewards value is especially important. Suppose we need to
generate M sequences of texts length of N, then the reward
Ry for the generated text can be calculated as shown in
equations (10) - (11):

M
1
Ry =+) Djltvi + ti1) (10)
=
tix1:n = {tit1, tig, tigz - - tn} = MCy(tix1 4 N — (i + 1))

(11)

VOLUME 7, 2019

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

IEEE Access

Here, t1.; refers to the partial sequence that has been
generated previously, and a possible subsequent sequence
MCy(tiz1,x; N — (i + 1)) is obtained by using the optimized
Monte Carlo search algorithm. Although the text generation
still looks for the next word with the greatest expected reward
word by word, the discriminator D gives the score to the
whole generated sequence and feeds the score back to the
generator. Before next round of iterative training, the gener-
ator continually optimizes itself based on the score returned
by the current discriminator, and updates related parameters.
As shown in equations (12) - (13).

6 < 0+ nVRy (12)

RN
VRy = NZ MZ[Dj(tl:i

i=1 j=1
+ tip1n)VIog Po(tipinlti)] ¢ (13)

N is the length of each sequence here, 1 is the weight of
the reward, M is the number of sequences, and Py (t;41:n |t1:i)
stands for the probability of generating a sequence in the case
of a known sequence f1.;. It is time to stop updating the new
discriminator until the generator gives convincing data.

C. OPTIMIZED REWARD STRATEGY

As mentioned in the previous description, the discriminator D
gives a probability score for generating a sample and feeds it
back to the generator as a reward. The discriminator D will not
give a negative score to penalize the generator, even if a large
number of syntax errors in the generated data, because the
score is a probability value. In this way, the generator tends
to reduce the probability of smaller reward value samples
and increases the probability of larger reward value samples.
Moreover, due to incomplete and sparse data, this distinction
between reward and punishment is unclear which makes the
training biased of G. Therefore, this paper subtracts a penalty
value from score given by discriminator D for every generated
sample, to expand the reward and punishment boundary and
speed up the training of the model. Then, the optimized gra-
dient calculation equation of the expected reward bonus (13)
can be modified in the equation (14).

M

N
1 1
VRg = N ?:1 " E :[(Dj(tlzi

j=1

+ tit1:n) — b)V10g Py (tiy1nt1:0) | (14)

D. MONTE CARLO SEARCH OPTIMIZATION

Traditional Monte Carlo search is very time consuming.
It needs to generate samples every time. Meanwhile, it calcu-
lates the previously generated item when calculating some of
the later partial sequence reward estimates, resulting overfit.
Therefore, we optimize the Monte Carlo search algorithm

VOLUME 7, 2019

and scores the next sequence through the generated partial
sequences, so the score of the entire sequence can be quickly
obtained. For example, if it needs to calculate the score of #1.;,
the prefix is fixed by the current generator parameter, and it
repeats to generate M possible complete sequences. Then the
discriminator calculates the average reward score of the M
samples as the simulated reward score S(t1.;) of the partial
sequence. It can be calculated by equation (15).

1 M
St =+ j_ZlD,m:N) (15)

where M is the number of generated sequences, 1.y is a
sequence of length V. In this way, we can calculate the reward
of the sequence #;11.y according to equations (14) -(15), as
shown in equation (16).

S(tiv1:n) = Dj(tr.n) — S(t1:) (16)

where Dj(t.n) represents the reward given by the discrimina-
tor to the sequence #1.y. The optimized Monte Carlo search
optimization algorithm is used to predict the next sequence
of the obtained partial sequence by selecting the subse-
quent sequence with the maximum probability, as shown in
equation (17).

MCq (tig1,6; N — (i + 1)) = argmax S(tip1.v) (17)

We directly train a new discriminator D* that scores some
of the generated prefixes based on the original discrimina-
tor D. The entire prefix subsequence set of the real sample
is recorded as L. The entire prefix subsequence set of the
generated sample is also recorded as L™. Then we select
one or several subsequences from the two sets respectively
and label them as real samples or not, and send them to the
discriminator. We repeatedly train the discriminator in this
way to increase the ability to score the prefix subsequences.
Then we use the discriminator D* to calculate the score
Dj(t1;1) of prefix subsequence. Experiments show that this
method takes less time than traditional Monte Carlo search,
as shown in TABLE 6 in section V.

E. GRAMMAR OPTIMIZATION

To eliminate the grammatical errors of the sentences gener-
ated by QuGAN, this paper uses the BERT model to modify
and optimize the questions, including two parts: random mask
and next sentence prediction.

Random mask: we use 20% probability to replace some
words with the special symbol ““x”, and use BERT to predict
masked words.

The next sentence prediction: we select 50% sentences
from the generated Tibetan questions, and randomly select
50% sentences form corpus, to predict the next sentence.

F. ANSWER MATCHING

We use semantic similarity to match question and answer in
corpus. The answer with the highest similarity of the question
is the answer to the question.

116251

IEEE Access

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATASET

We have obtained 21,783 Tibetan question and answer pairs
from the Tibetan website. In our experiment, we select
17,000 pairs as the training data. The specific data set format
is shown in TABLE 1. The UUID is the unique identifier of
the question and answer pair.

TABLE 1. Examples in Tibetan QA corpus.

UUID Questions Answers
01dc7400 qmﬁéu@h\qtﬂn\gm“ an\ﬁwa il «4'7:\ A = Q@NN:\NL\
-ee34- aﬂ'g\&mx‘g@w&qqﬂ NIRRT
11e8- (What is the 8th (The eighth grammar is mainly
Zb78' grammar mainly divided into address words and
di?gom divided into?) nouns.)
01de5718 Bxemarsy R g T Rurgsar EEaSS| ESESEESES REV=
-ee34- 58 qs&'ﬁ@'m‘:}aﬂl’r\v
11e8- (What are the (Thang-ga is divided into four
9734- categories of kinds: Wa-Thang-ga, red Thang-ga,
33?807% Thang-ga?) colorless Thang-ga and gold Thang-

ga.)

B. DATA PREPROCESSING
Tibetan is an alphabetical language with characters as the
basic unit. Characters are directly separated by “.”, and
a word composed of many characters. Since the accuracy
of word segmentation in Tibetan is not high, we segment
the text in two modes: word level and character level. For
the character level, we divide the text sequence according
to the “.” symbol. For the word level, we use the Tibetan
words segmentation tool [42], and the format is as follows.
For the Tibetan QA corpus, the questions and answers are
spilt by the “$” symbol.
g\s«'ﬁé‘/ :@ﬁ""/ qﬁgg/ E% %‘%\u]'/ g\sm/ </ r\@/ /! ‘&lﬁ'/ aa«/ 1/ $ aﬁg*/ E«as/ o0
/ 'i':'/ qﬁti'al/ A/ @i'll’(‘/ 5’/ sav/a/A R/ n@&\rs\aﬂlx‘l@\

In addition, this paper uses the Word2vec tool [43] to
represent characters and words.

C. EVALUATION
‘We refer to the method of machine translation evaluation, and
use the machine translation method for Bilingual Evaluation
Understand (BLEU) [44] to evaluate.

1) N-gram

BLEU adopts a N-gram matching rule to compare the
proportion of the generated sentences similar to the n groups
of words in the corpus. The accuracy of the N-gram can be
calculated according to the equation (18).

Z ; min (hk (¢i) , maxjey, hi (Sij))
>3 min (h ()

i
i

Py = (18)

where hy (s;j) is the number of the k™ word Wy appeared
in the corpus, A (s;) is the number of Wy appeared in the
generated text ¢;. Molecular represents the minimum number

116252

of occurrences in the resulting sentence and sentence in the
corpus.

(2) Penalty factor

Since the matching degree of N-gram may be higher as the
length of the sentence becomes shorter, it tends to generate
short sentences. In order to avoid this situation, BLEU intro-
duces a length penalty factor (Brevity Penalty) in the final
scoring result. The calculation is shown in equation (19).

1 if I.>1
BP = ls (19)
e le i 1<y

where [represents the length of the generated text, [; repre-
sents the effective length of the standard text in the corpus.
When there are multiple generated texts, the length closest to
the standard text is selected. When the length of the generated
text is greater than the length of the standard text, the penalty
coefficient is 1, which means no penalty.

(3) BLEU

The accuracy of each N-gram decreases exponentially with
the increasing of the order. To balance the statistics of each
order, BLEU uses the average value to weight and multiplies
by the penalty factor, shown in equation (20).

2
BLUE = BP X exp (Z 5 log Pn> (20)

n=1

In this paper, we use BLEU-2 to evaluate the model
because BELU-2 has low computational complexity and cal-
culates rapidly.

D. PARAMETERS SETTING

Through experiments, we set the parameters of QRNN,
LSTM and BERT model, shown in TABLE 2-3.

TABLE 2. Main parameters setting in QRNN.

Parameter Value
Batch_size 128
Vector_size 64
Conv_size 3
Learning_rate 0.001
Train_iter 1000

TABLE 3. Main parameters setting in LSTM.

Parameter Value
Batch size 128
Vector size 64
Learning_rate 0.01
Epoch 200
n 0.95
b 0.5

VOLUME 7, 2019

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

IEEE Access

TABLE 4. Main parameters setting in BERT model.

TABLE 6. Time performance comparison.

Parameter Value Model Time (Hrs /100 sentences)
Hidden_units num 768 LSTM+MC 17
Vector_size 64 LSTM+MCO 11
Layers_num 12 QRNN+MC 6
Attention_heads 12 QRNN+MCO 45
Vocab_size 4756
Epoch 200

E. EXPERIMENTAL RESULTS OF MODELS
We use BLEU-2 as the evaluation, and conduct the following
experiments.
SeqGAN: we use the SeqGAN model [39] as the baseline.
QuGAN: includes QRNN, LSTM, RL with optimization
strategy and Monte Carlo optimization.
QuGAN-MCO: removed Monte Carlo optimization
(MCO) part from the QuGAN model.
QuGAN-MCO+BERT:add the BERT model.
QuGAN+BERT:includes MC optimization and adds
BERT model.
All the experiments consider the character-level and word-
level. The experimental results are shown in TABLE 5 and
Fig. 2.

TABLE 5. Experimental results of different models.

BLEU-2
Model Character- Increase Words Increase
level level

SeqGAN 0.719 — 0.663 —
QuGAN 0.727 +0.008 1 0.672 0.009 1
QuGAN-MCO 0.742 +0.023 T 0.731 0.068 1

QuGAN- +

MCO+BERT 0.822 0.103T 0.786 0.123 1
QuGAN+BERT 0.813 +0.094 T 0.769 0.106 1

0.9+
—a— Character-level
—e— Word-level

0.8+

BLEU-2

0.74

0.6

T T T T T
SeqGAN QuGAN QuGAN QuGAN QuGAN
-MCO -MCO+BERT +BERT

FIGURE 2. The experimental results in different models.

Moreover, we use QRNN and LSTM as generator respec-
tively, and compare the speed of the models. Also,we con-
duct some experiments on MC optimization, they are shown
in TABLE 6 and Fig. 3.

VOLUME 7, 2019

From TABLE 5-6 and Fig.2-3, we can find:

(1) For all the models, the BLEU-2 of word-level is lower
than character-level, the average value is 0.04. The main
reason is that the accuracy of Tibetan word segmentation is
not high, and the wrong results will affect the whole results
in the experiments.

(2) Compared with the SeqGAN model, the BLEU-2 value
of QuGAN model is superior to the SeqGAN model.

(3) When removing MC optimization, the BLEU-2
increase 0.015 than QuGAN, and increases 0.023 than base-
line. But the speed of the model with MC optimization
is obviously faster than without MC optimization, which
is shown in TABLE 6. LSTM+MCO increases 35.29%
than LSTM+MC, and QRNN+MCO increases 25% than
QRNN+MC. The main reasons are as follows. Firstly, in the
MC optimization process, the grammatical structure of the
Tibetan text is not combined, and the search segment selected
is randomly selected by the machine every time. Secondly,
the simple MC mainly scores the entire sentence generated
once, avoiding the overall error caused by the segmentation
error. MC optimization are not collected to make the sentence
with the highest score. This shows that the optimized MC will
lose a little accuracy in the final result but can significantly
shorten the model training time.

(4) When adding BERT model, the BLEU-2 val-
ues increase 0.094 and 0.103 than baseline. QuGAN-
MCO+BERT model has the highest BLEU-2 value 0.822 in
the character-level. This proves that language model has a
significant effect on Tibetan text generation.

204

Time (hrs)
o)
N

N

N \.
T T T T

LST™M LST™M QRNN QRNN

+MC +MCO +MC +MCO

FIGURE 3. Time consuming of different models.

TABLE 6 and Fig. 3 show the speed of using dif-
ferent models. When adding MC optimization, the speed
of LSTM+MCO increases 35.29% than LSTM-+MC,
and QRNN+MCO increases 25% than QRNN+MC.

116253

IEEE Access

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

TABLE 7. Examples of Tibetan QA corpus generated by QuGAN model.

Random initialization MLE

Generated by Our Model

gq':m’qqsrlqam'ﬁ's:"
(Poetry, weather, complete.)

%-%\q'm'gq':ﬂ%x\ $ gqﬁ:‘r&%&muﬁq‘m%ﬂ
(What is poetry? $ Beautiful words, words, sentences.)

BBy =R § E YRy
(What is poetry? $ A kind of writing.)

:;M RER £ ‘S VAR ‘;\ R 3\6l'qu“&'ﬂwm‘ﬁ:‘\x:‘%‘qu‘
@zi'g\awg:gq‘q'm'q%q'a'\l\v'a:'5:‘%’:!1'E\TQEﬁ'ﬂa'g'chmﬁTa@ng'
B

(What is a consonant letter? $ It does not make

sense in itself, encountering the base word can
be fully issued corresponding tone.)

SRR AN AR SRRV S B AR R AR

(What is the practice?) (What is a consonant letter? $ Prefix words and suffixes.)
%‘%ﬂ'm'gwéx\ %‘%ﬂ'&!‘s RC) d&‘ $ a0 vd\ 'uo\‘ ng‘ \u‘ u‘ L\L\&ue“

(What's fundamental?) (What are the four fundamentals? $ No lying, no harm.)

%-%ﬂ'm'gq%ﬂ $@'§EN'@'m\g}:’gﬂ:’mﬁ'sm%ﬂ
(What's fundamental? $ The root or basic source
or basic of the physical object.)

Meanwhile, the speed of using the QRNN model is much
higher than the LSTM model by about 2.83 times. It is proved
that MC optimization and QRNN have a certain acceleration
effect on the model. It is also seen that the speed of the QRNN
model is higher than the MC optimization.

Finally, we produce 3584 question and answer pairs.
Examples are shown in TABLE 7.

VI. CONCLUSION
In this paper, we propose the QuGAN model which combines
QRNN and RL. And the BERT model, optimized reward
strategy and Monte Carlo search strategy are used to improve
the performance. However, due to not consider the Tibetan
grammar characteristics, there are certain invalid questions.
In the future, we will increase the accuracy of the generated
corpus and enrich the information by adding the argument
function and Tibetan grammar information.

REFERENCES

[1] O. Etzioni, “Search needs a shake-up,” Nature, vol. 476, pp. 25-26,
Aug. 2011.

[2] W.T.Yih, X. D. He, and C. Meek, “Semantic parsing for single-relation
question answering,” in Proc. 52nd Annu. Meeting Assoc. Comput. Lin-
guistics, Baltimore, MD, USA, 2014, pp. 643-648.

[3] L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman, “Deep learning
for answer sentence selection,” Dec. 2014, arXiv:1412.1632. [Online].
Available: https://arxiv.org/abs/1412.1632

[4] R. Socher, C. C.-Y. Lin, C. D. Manning, and A. Y. Ng, “Parsing nat-
ural scenes and natural language with recursive neural networks,” in
Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, Jul. 2011,
pp. 129-136.

[5] G. Alex, “Generating sequences with recurrent neural networks,”
Aug. 2013, arXiv:1308.0850. [Online]. Available: https://arxiv.org/
abs/1308.0850

[6] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient
flow in recurrent nets: The difficulty of learning long-term dependen-
cies,” A Field Guide Dyn. Recurrent Netw., vol. 6, no. 4, pp. 237-243,
2001.

[71 S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recurrent

neural networks,” in Proc. 32nd Int. Conf. Mach. Learn., Lille, France,

Jul. 2015, pp. 2067-2075.

[9] D. Wang and E. Nyberg, “A long short-term memory model for answer
sentence selection in question answering,” in Proc. ACL, Beijing, China,
2015, pp. 707-712.

[8

116254

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao, “‘An end-to-end
model for question answering over knowledge base with cross-attention
combining global knowledge,” in Proc. ACL, Vancouver, BC, Canada,
2017, pp. 221-231.

W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schiitze, “Simple ques-
tion answering by attentive convolutional neural network,” Oct. 2016,
arXiv:1606.03391. [Online]. Available: https://arxiv.org/abs/1606.03391
J. Yin, W. X. Zhao, and X.-M. Li, “Type-aware question answering over
knowledge base with attention-based tree-structured neural networks,”
J. Comput. Sci. Technol., vol. 32, no. 4, pp. 805-813, 2017.

Tim Rocktischel, E. Grefenstette, K. M. Hermann, T. Kocisky, and
P. Blunsom, “Reasoning about entailment with neural attention,”
Sep. 2015, arXiv:1509.06664. [Online]. Available: https://arxiv.org/abs/
1509.06664

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, and K. Toutanova,
“Natural questions: A benchmark for question answering research,” Trans.
Assoc. Comput. Linguistics, vol. 7, no. 29, pp. 453-466, 2019.

A. Bordes, N. Usunier, S. Chopra, and J. Weston, ‘“Large-scale simple
question answering with memory networks,” Jul. 2015, arXiv:1506.02075.
[Online]. Available: https://arxiv.org/abs/1506.02075

Y. Yang, W. Yih, and C. Meek, “WIKIQA: A challenge dataset for open-
domain question answering,” in Proc. EMNLP, Lisbon, Portugal, 2015,
pp. 2013-2018.

P. Li, W. Li, Z. He, X. Wang, Y. Cao, J. Zhou, and W. Xu, “Dataset
and neural recurrent sequence labeling model for open-domain factoid
question answering,” Sep. 2016, arXiv:1607.06275. [Online]. Available:
https://arxiv.org/abs/1607.06275

J. Bradbury, S. Merity, C. Xiong, and R. Socher, ““Quasi-recurrent neural
networks,” in Proc. ICLR, Toulon, France, 2017, pp. 1-20.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
questions for machine comprehension of text,” in Proc. EMNLP, Austin,
TX, USA, 2016, pp. 2383-2392.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
A collaboratively created graph database for structuring human knowl-
edge,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, Vancouver, BC,
Canada, 2008, pp. 1247-1250.

M. Feng, B. Xiang, M. R. Glass, L. Wang, and B. Zhou, “Applying deep
learning to answer selection: A study and an open task,” in Proc. IEEE
Workshop Autom. Speech Recognit. Understand. (ASRU), Scottsdale, AZ,
USA, Dec. 2015, pp. 813-820.

R. Das, M. Zaheer, S. Reddy, and A. McCallum, ‘“Question answering on
knowledge bases and text using universal schema and memory networks,”
in Proc. ACL, Vancouver, BC, Canada, 2017, pp. 358-365.

D. Rajarshi, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar,
A. Krishnamurthy, A. Smola, and A. McCallum, “Go for a walk and
arrive at the answer: Reasoning over paths in knowledge bases using
reinforcement learning,” Nov. 2017, arXiv:1711.05851. [Online]. Avail-
able: https://arxiv.org/abs/1711.05851

S. Curto, A. C. Mendes, and L. Coheur, “Question generation based
on lexico-syntactic patterns learned from the web,” Dialogue Discourse,
vol. 3, no. 2, pp. 147-175, 2012.

VOLUME 7, 2019

Y. Sun et al.: QUGAN for Tibetan QA Corpus Generation

IEEE Access

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

P. Rashmi and A. Joshi, “A discourse-based approach to generating why-
questions from texts,” in Proc. Workshop Question Gener. Shared Task
Eval. Challenge, Arlington, VA, USA, 2008, pp. 1-3.

L. Vanessa, C. Unger, P. Cimiano, and E. Motta, “Evaluating ques-
tion answering over linked data,” J. Web Semantics, vol. 21, pp. 3-13,
Aug. 2013.

Q. Q. Cai and A. Yates, “‘Large-scale semantic parsing via schema match-
ing and lexicon extension,” in Proc. 51st Annu. Meeting Assoc. Comput.
Linguistics, Sofia, Bulgaria, 2013, pp. 423—433.

T. Wang, X. Yuan, and A. Trischler, “A joint model for question answering
and question generation,” Jun. 2017, arXiv:1706.01450. [Online]. Avail-
able: https://arxiv.org/abs/1706.01450

L. Bauer, Y. Wang, and M. Bansal, “Commonsense for generative multi-
hop question answering tasks,” in Proc. EMNLP, Brussels, Belgium, 2018,
pp. 4220-4230.

K. Tomas, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, and
E. Grefenstette, ““The narrative QA reading comprehension challenge,” in
Proc. Trans. Assoc. Comput. Linguistics, Melbourne, VIC, Australia, 2018,
pp. 317-328.

S. Rao and H. Daumé, “Learning to ask good questions: Ranking clari-
fication questions using neural expected value of perfect information,” in
Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, Melbourne, VIC,
Australia, 2018, pp. 2737-2746.

I. V. Serban, A. Garcia-Durdn, C. Gulcehre, S. Ahn, S. Chandar,
A. Courville, and Y. Bengio, “Generating factoid questions with recurrent
neural networks: The 30m factoid question-answer corpus,” May 2016,
arXiv:1603.06807. [Online]. Available: https://arxiv.org/abs/1603.06807
Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou, “Neural question
generation from text: A preliminary study,” in Proc. Nat. CCF Conf.
Natural Lang. Process. Chin. Comput., Dalian, China, 2017, pp. 662-671.
M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, ‘“‘Deep contextualized word representations,” in Proc.
NAACL, New Orleans, LA, USA, 2018, pp. 2227-2237.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,”” Oct. 2018,
arXiv:1810.04805. [Online]. Available: https://arxiv.org/abs/1810.04805
1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. 27th Int. Conf. Neural Inf. Process. Syst., New Orleans, LA, USA,
Dec. 2014, pp. 2672-2680.

A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training
for high fidelity natural image synthesis,” Sep. 2018, arXiv:1809.11096.
[Online]. Available: https://arxiv.org/abs/1809.11096

Y. Z. Zhang, Z. Gan, and L. Carin, “Generating text via adversarial
training,” in Proc. NIPS, Barcelona, Spain, 2016, pp. 1-6.

L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient,” in Proc. 31st AAAI Conf. Artif.
Intell., San Francisco, CA, USA, Feb. 2017, pp. 2852-2858.

J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky, “Adversarial
learning for neural dialogue generation,” Sep. 2017, arXiv:1701.06547.
[Online]. Available: https://arxiv.org/abs/1703.06547

W. Fedus, I. Goodfellow, and A. M. Dai, “MaskGAN: Better text gener-
ation via filling in the .7 Mar. 2018. arXiv:1801.07736. [Online].
Available: https://arxiv.org/abs/1801.07736

C. J. Long, H. D. Liu, M. H. Nuo, and J. Wu, “Tibetan POS
tagging based on syllable tagging,” (in Chinese), J. Chin. Inf.
Process., vol. 29, no. 5, pp. 211-216, 2015. [Online]. Available:
http://jcip.cipsc.org.cn/CN/Y2015/V29/15/211

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, ‘“Distributed
representations of words and phrases and their compositionality,” in Proc.
26th Int. Conf. Neural Inf. Process. Syst., Lake Tahoe, Spain, Dec. 2013,
pp. 3111-3119.

C. Callison-Burch, M. Osborne, and P. Koehn, ‘‘Re-evaluation the role of
bleu in machine translation research,” in Proc. EACL, Trento, Italy, 2006,
pp. 249-256.

VOLUME 7, 2019

YUAN SUN received the M.S. and Ph.D.
degrees from the Institute of Automation, Chinese
Academy of Sciences (CAS), Beijing, China,
in 2004 and 2007, respectively. She is currently
an Associate Professor with the School of Infor-
mation Engineering, Minzu University of China.
She has more than 50 papers published in var-
ious journals and international conferences. Her
current research interests include natural language
processing and knowledge engineering.

CHAOFAN CHEN received the B.E. degree from
the Hubei University of Automotive Technology,
China, in 2018. He is currently pursuing the M.S.
degree with the Minzu University of China. His
current research interests include question answer-
ing and information extraction.

TIANCI XIA received the B.E. degree from Tianjin
Polytechnic University, China, in 2015, and the
M.S. degree from the Minzu University of China,
Beijing, China, in 2019.

XIAOBING ZHAO received the M.S. degree from
Chungwoon University, Hongseong, South Korea,
and the Ph.D. degree from Beijing Language and
Culture University, Beijing, China, in 2003 and
2007, respectively. She is currently a Full Pro-
fessor with the Minzu University of China. She
has more than 80 papers published in various
journals and international conferences. Her cur-
rent research interest includes natural language
processing.

116255

	INTRODUCTION
	RELATED WORK
	MODEL ARCHITECTURE
	MODEL DETAILS
	GENERATOR
	DISCRIMINATOR
	OPTIMIZED REWARD STRATEGY
	MONTE CARLO SEARCH OPTIMIZATION
	GRAMMAR OPTIMIZATION
	ANSWER MATCHING

	EXPERIMENTAL RESULTS AND ANALYSIS
	DATASET
	DATA PREPROCESSING
	EVALUATION
	PARAMETERS SETTING
	EXPERIMENTAL RESULTS OF MODELS

	CONCLUSION
	REFERENCES
	Biographies
	YUAN SUN
	CHAOFAN CHEN
	TIANCI XIA
	XIAOBING ZHAO

