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ABSTRACT Performance of an entangled quantum channel is affected by classical feedback assisted
in quantum communications. For example, in quantum-gate teleportation schemes, the capacity of an
independent entangled quantum channel is reduced by utilizing two-way simultaneous classical commu-
nication (TWSCC↔). However, by exploiting the superposition of high-dimensional quantum channels,
the transmission efficiency of the quantum-gate teleportation can be dramatically improved with TWSCC↔.
In this study, we investigate the possibility of achieving an efficient scheme of nonlocal high-dimensional
quantum computation by using hyperentangled photon pairs, atoms, and an optical micro-resonator coupled
system. The feasibility and efficiency of the scheme are also discussed. Results prove that, for nonlocal
quantum computing, high-dimensional quantum operation performs better than traditional methods that
decompose the high-dimensional Hilbert space into two-dimensional quantum space under limited prior-
shared maximally entangled resources.

INDEX TERMS Quantum computing, optical resonators, quantum mechanics.

I. INTRODUCTION
Entanglement is an important resource that is widely
used in quantum information processing [1], such as dis-
tributed quantum computation [2]–[4] and quantum cryp-
tography [5]–[11]. For example, with nonlocal maximal
entanglement and one-way classical communication, one
can teleport an unknown quantum state without moving the
particle itself [12]. According to the no-cloning theorem,
the sender loses the quantum state while it is recovered
on the receiver with the probability 100%. Similarly, with
nonlocal maximal entanglement and classical communica-
tion, the gate-operation can be teleported without moving
any control-particle itself [13]. Different from quantum-state
teleportation, after quantum-gate teleportation, the unknown
control-qubit remains at the sender while the target-
qubit kept by the receiver is nonlocally controlled by
control-qubit. Moreover, quantum-gate teleportation requires
two-way (forward-back) classical communication (TWCC)
instead of one-way classical communication in quantum-state
teleportation.

The associate editor coordinating the review of this article and approving
it for publication was Siddhartha Bhattacharyya.

Nonlocal quantum operation is an important component of
nonlocal interactions and controlling. It not only plays a key
role in realizing distributed quantum computation, but also
exhibits potential applications in the domain of quantum com-
munication and quantum information [2]–[4]. The quantum-
gate teleportation, as an important realization method of
nonlocal quantum operation, shows the nontrivial character-
istics of quantum mechanics and attracts a lot of attention.
In 2005, Zhou et al. proposed the first quantum-gate tele-
portation scheme using an atom-cavity coupled system [13].
The two-qubit controlled-Not (CNOT) gate [1] can be tele-
ported from the controller (Alice) to the controllee (Bob) with
a prior-shared two-dimensional maximally entangled Bell
state and two-way simultaneous classical communication
(TWSCC↔). When the time of local operations is ignored,
the communication time of TWSCC↔ is equal to the trans-
mission time of one-way classical communication. In 2015,
Wang et al. illustrated that with a hyperentanglement (The
entanglement of photons can simultaneously exist onmultiple
degrees of freedoms)-assisted quantum channel, the capac-
ity for transmitting nonlocal CNOT gates can be doubled
with TWSCC↔ [14]. On the other hand, time consumption
is an important issue in quantum communication, which is
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also related to the cost of entanglement in the context of
distributed quantum computation [2], [4]. In 2012, Li et al.
introduced the classes of nonlocal unitaries which leads to
a fast protocol with TWSCC↔ methods [15]. According to
Ref. [15], two or more two-dimensional gates, which form
a controlled abelian group, can be simultaneously teleported
with only one prior two-dimensional maximally entangled
Bell state assisted by TWSCC↔ methods. It means that if
two gates are noncommutative, although they have a common
control-qubit, one needs two prior-shared two-dimensional
maximally entangled Bell states to simultaneously teleport
these two gates with a fast protocol. Otherwise, the trans-
mission time is doubled by consuming only one prior-shared
two-dimensional maximally entangled Bell state with other
two-way classical communication (TWCC) methods. The
time and entanglement resources are traded off in the gate-
teleportation operations with TWSCC↔. Thus, finding a bet-
ter performance of nonlocal quantum computing with less
entanglement and less time is an important task.

The manipulation of high-dimensional quantum informa-
tion and quantum superposition enables an exponential com-
putation speedup of the quantum computer than the classical
machines [16]–[18]. In addition, high-dimensional quantum
systems can also increase the channel capacity [19] and
the security of quantum communication [20]. Moreover,
the influence of noise can be efficiently eliminated [21]
and the implementation of quantum logic gate can be
simplified [22]. With these advantages, high-dimensional
quantum information processing has attracted much more
attention recently [1]. Motivated by the advantages of high-
dimensional quantum systems, the present study investigates
high-dimensional quantum control operation for nonlocal
quantum computing. Specifically, by exploiting the superpo-
sition of high-dimensional entanglement-assisted channels,
one can improve the quantum-gate teleportation capacity of
the prior-shared entanglement with TWSCC↔ method dra-
matically under limited prior-shared maximally entangled
resources.

In this study, we investigate the possibility of achieving
an efficient nonlocal high-dimensional quantum computa-
tion by using hyperentangled photon pairs, assisted with
the atoms and optical-microresonator coupled system. The
feasibility and efficiency of the scheme are discussed. Also,
we present the upper bound of the gating transfer capacity
of quantum-gate teleportation scheme with TWSCC↔: with
n parallel two-dimensional maximally entangled quantum
channels, one can deterministically teleport at most n(n+1)/2
two-dimensional two-body or multi-body nonlocal quantum
gates, in which any two of these gates cannot be determinis-
tically teleported in a two-dimensional maximally entangled
quantum channel with TWSCC↔. In our previous work [14],
we proved that with hyperentanglement in twoDOFs, one can
teleport two CNOT gates in parallel. However, the capacity
of the hyperentangled channel in Ref. [14] is not fully uti-
lized. By exploiting the superposition between two indepen-
dent Bell states channels, one can teleport another nonlocal

controlled gate (three-qubit Toffoli [23] gate) simultaneously,
which can be demonstrated by using four-dimensional quan-
tum controlled gate teleportation. The efficiency of the quan-
tum gate-teleportation can be improved by exploiting the
superposition of high-dimensional quantum channels with
TWSCC↔.

II. BASIC IDEAS FOR A FOUR-DIMENSIONAL NONLOCAL
QUANTUM CONTROLLED-FLIP (CF) GATE TELEPORTATION
In this section, we show how to build a nonlocal four-
dimensional two-qudit controlled-flip (CF) gate U(±)

A
B (the

superscripts denote the control qudit and the subscripts
represent the target qudit), in which if the state of control
qudit is |i〉, after the gating operation, the state of the target
qudit is changed as |j〉 → |j ± i〉 (i, j = 0, 1, 2, 3) where
i ± j in the |j ± i〉 means modding 4, with a hyperentan-
gled Bell-state channel. The 4-dimensional CF gate U(+)

A
B

can be decomposed into three two-dimensional quantum
gates as CA1

B1
CA2
B2
T A2B2B1

or CA1
B1
CA2
B2
T A1B1B2

. Here, the qubit Ai
belongs to Alice and the qubit Bj belongs to Bob (i, j,=
1, 2). TWSCC↔ enables any one of the three gates T A1B1B2

,
CA2
B2

and CA1
B1

to be teleported with a prior-shared two-
dimensional maximally entangled Bell state, but any two
of these gates cannot be deterministically parallel in a two-
dimensional maximally entangled quantum channel with
TWSCC↔. If parallel channels are not applicable, then three
two-dimensional maximally entangled channels are needed
to transmit these three gates in turn. However, by exploit-
ing the superposition between channels, one can com-
plete the same task with only two parallel two-dimensional
maximally entangled quantum channels. Thus, high-
dimension quantum computing teleportation can utilize two-
dimensional maximally entangled resources with a higher
capacity than the previous nonlocal quantum computing
scheme [14].
We suppose that two four-dimensional network nodes A

and B exist, and A is the control unit while B is the target
unit. The initial states of these two nodes are prepared in
|9〉A = α|0〉A+β|1〉A+γ |2〉A+ξ |3〉A and |9〉B = α′|0〉B+
β ′|1〉B + γ ′|2〉B + ξ ′|3〉B respectively, where |α|2 + |β|2 +
|γ |2+|ξ |2 = 1 and |α′|2+|β ′|2+|γ ′|2+|ξ ′|2 = 1. A nonlocal
quantum CF gate is implemented when a four-dimensional
maximally entangled Bell state is prior-shared by Alice and
Bob. The state is |ϕ0〉CD = 1

2 (|00〉 + |11〉 + |22〉 + |33〉)CD,
and classical communication in each direction is necessary.
Alice holds system AC and Bob holds system BD. The entire
scheme can be understood through the following steps:

Step (I): A quantum CF operationU(−)
A
C occurs between A

and C with A as the control qudit. The combined state of A,
C and D becomes

1
2
[|0〉C (α|00〉 + β|11〉 + γ |22〉 + ξ |33〉)AD

+ |1〉C (α|01〉 + β|12〉 + γ |23〉 + ξ |30〉)AD
+ |2〉C (α|02〉 + β|13〉 + γ |20〉 + ξ |31〉)AD
+ |3〉C (α|03〉 + β|10〉 + γ |21〉 + ξ |32〉)AD]. (1)
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Step (II): Simultaneously, Bob performs another four-
dimensional CF operation U(+)

D
B on B and D. Then Bob

performs four-dimensional Fourier transform F̃ on D, which
can be described as

|0〉 F̃−→
1
2
(|0〉 + |1〉 + |2〉 + |3〉) = |ϕ0〉,

|1〉 F̃−→
1
2
(|0〉 + i|1〉 − |2〉 − i|3〉) = |ϕ1〉,

|2〉 F̃−→
1
2
(|0〉 − |1〉 + |2〉 − |3〉) = |ϕ2〉,

|3〉 F̃−→
1
2
(|0〉 − i|1〉 − |2〉 + i|3〉) = |ϕ3〉. (2)

Alice and Bob can obtain the combined state of A, B, C, and
D as

1
2
[|ϕ0〉D(α|00〉 + ξ |13〉 + γ |22〉 + β|31〉)CA

⊗ (α′|0〉 + β ′|1〉 + γ ′|2〉 + ξ ′|3〉)B
+ |ϕ1〉D(β|01〉 + α|10〉 + ξ |23〉 + γ |32〉)CA
⊗ (α′|1〉 + β ′|2〉 + γ ′|3〉 + ξ ′|0〉)B
+ |ϕ2〉D(γ |02〉 + β|11〉 + α|20〉 + ξ |33〉)CA
⊗ (α′|2〉 + β ′|3〉 + γ ′|0〉 + ξ ′|1〉)B
+ |ϕ3〉D(ξ |03〉 + γ |12〉 + β|21〉 + α|30〉)CA
⊗ (α′|3〉 + β ′|0〉 + γ ′|1〉 + ξ ′|2〉)B. (3)

Step(III): Alice and Bob measure the states of particles
C and D on the basis of {|0〉, |1〉, |2〉, |3〉}CD at the same
time. Then, Alice and Bob exchange detection results with
TWSCC↔. IfC andD are finally detected in the state |00〉CD,
then the state of AB can be described as

α|0〉A(α′|0〉 + β ′|1〉 + γ ′|2〉 + ξ ′|3〉)B
+β|1〉A(α′|1〉 + β ′|2〉 + γ ′|3〉 + ξ ′|0〉)B
+ γ |2〉A(α′|2〉 + β ′|3〉 + γ ′|0〉 + ξ ′|1〉)B
+ ξ |3〉A(α′|3〉 + β ′|0〉 + γ ′|1〉 + ξ ′|2〉)B. (4)

In this case, a four-dimensional 2-qudit CF gate U(+)
A
B is

performed nonlocally. The matrix form of the gate U(+)
A
B can

be described as

U(+)
A
B =


I4 0 0 0
0 X 0 0
0 0 X2 0
0 0 0 X3

 (5)

Here, I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and X =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

,

under the basis expanded by {|00〉, |01〉, |02〉, |03〉, |10〉,
|11〉, |12〉, |13〉, |20〉, |21〉, |22〉, |23〉,|30〉, |31〉,|32〉,|33〉}AB.
If we encode a four-dimensional qudit by two two-
dimensional qubits as |0〉K = |00〉K2K1 , |1〉K = |01〉K2K1 ,
|2〉K = |10〉K2K1 , and |3〉K = |11〉K2K1 (K = A, B, C , and
D). The four-dimensional CF gate U(+)

A
B can be decomposed

into three two-dimensional quantum gates as CA1
B1
CA2
B2
T A1B1B2

.

TABLE 1. Relation between final states of photons and corresponding
single-spin operation.

The four-dimensional maximally entangled Bell states can be
decomposed into two two-dimensional Bell states |ϕ0〉CD =
1
√
2
(|00〉 + |11〉)C1D1 ⊗

1
√
2
(|00〉 + |11〉)C2D2 ,

If the state of the CD is detected in the other state, then
the CF gate performed on the AB could succeed after an
additional single-qubit operation on B or A. As a result, the
correspondence between the measurement results and appro-
priate local single-qudit gate rotation operations on A or B
is shown in Table 1. The deterministic CF gate is achieved
with a success probability of 100% in principle using prior-
shared entanglement, local operations, and classical com-
munication. It also shows that one can teleport three gates
(T A2B2B1

, CA2
B2

and CA1
B1
) in parallel, with two prior-shared two-

dimensional maximally entangled Bell states and TWSCC↔.

Here, F =


1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i

 under the basis expanded by

{|00〉, |01〉, |02〉, |03〉, |10〉, |11〉, |12〉, |13〉, |20〉, |21〉, |22〉,
|23〉, |30〉, |31〉, |32〉, |33〉}AB.

III. DETERMINISTIC FOUR-DIMENSIONAL QUANTUM CF
GATE USING WHISPERING GALLERY MODE
MICRORESONATORS
In this section, we focus on the physical implementation of
the local four-dimensional quantum CF gate. Here, the four-
dimensional Bell state is encoded on the spatial-modeDOF of
two photons because this DOF ismore stable against the noise
and can easily manipulate the states of the quantum systems.
In particular, performing the high-dimensional quantum fast
Fourier transform on the single photon is easywith only linear
optics [24]. The two-photon hyperentanglement in the polar-
ization and spatial-mode DOFs |ϕ0〉 = 1

2 (|HH〉 + |VV 〉) ⊗
(|a1b1〉 + |a2b2〉)ab = 1

2 (|00〉 + |11〉 + |22〉 + |33〉)PAPB can
be generated by parametric down conversion techniques on
nonlinear crystals [25], and with linear optics, its form can
be changed into the following four-dimensional spatial-mode
two-photon entangled state: |ϕ0〉 = 1

2 (|a0b0〉 + |a1b1〉 +
|a2b2〉 + |a3b3〉)PAPB . Here, ai and bj are spatial-modes of
photons PA and PB, respectively (i, j = 0, 1, 2, 3). The
basic building block of our high-dimensional CF gate is the
four-dimensional controlled-X gate (if the state of control
qubit is |1〉, after the gating operation, the state of the target

VOLUME 7, 2019 115333



W.-L. Xu et al.: Efficient Teleportation for High-Dimensional Quantum Computing

FIGURE 1. (a) Schematic of four-dimensional controlled-X gate
comprising a WGM microresonator and a 3-type atom 31. Two
degenerate ground states | ± 1〉 and an excited state |A2〉 exist in an
atom. The qubits in the atom system are usually encoded on the | ± 1〉
state, while the |A2〉 works as an auxiliary state. The transition
| + 1〉 → |A2〉 is only induced by the R−polarized photon. An atom is fixed
on the resonator, and four tapered fibers are coupled with a WGM
resonator. The ports in0 − in3 and out0 − out3 represent input ports and
output ports, respectively. (b) Schematic of the 4-dimensional
controlled-X2 gate comprising a WGM microresonator and a 3-type atom
32. The Half-wave plate adds a π phase on the R photon. c1, c2, c3, and
c4 are four circulators rotating counterclockwise.

four-dimensional qudit is changed as |j〉 → |j + 1〉 where
j+1 in the |j+1〉means modding 4) and the four-dimensional
controlled-X2 gate (if the state of control qubit is |1〉, after the
gating operation, the state of the target four-dimensional qudit
is changed as |j〉 → |j+ 2〉 where j+ 2 in the |j+ 2〉 means
modding 4) between a four-dimensional photon in spatial-
mode DOF and an atomic qubit of a whispering-gallery-
mode (WGM) microresonator coupled unit. The core of our
architecture are the reflection and transmission rules of cir-
cularly polarized lights interacting with a WGM-waveguide
system.

A. INTERACTION BETWEEN A POLARIZED PHOTON AND
A 3-TYPE ATOM-WGM RESONATOR COUPLED SYSTEM
In our scheme, we use the three-level 3-type atom-WGM-
waveguide unit as the basic building block. As shown
in Fig.1 (a), two degenerate ground states | ± 1〉 exist in
an atom and an excited state |A2〉. The qubits in the atom
system are usually encoded on the | ± 1〉 state, while the
|A2〉 works as an auxiliary state. The transition | + 1〉 →
|A2〉 is only induced by the R-polarized photon with the
transition frequency ω0, while the transition | − 1〉 → |A2〉 is
induced by the L-polarized photon. We couple four tapered
fibers with a WGM resonator, and exploit the laser cool-
ing to fix the atom on the resonator. In Fig.1(a), the ports
in0 − in3 and out0 − out3 represent input ports and output
ports, respectively. The frequency of the input photon is the
same as that of the bare resonator. When the atom is coupled
with the resonator strongly, the resonance frequency of the
resonator is modified so that the buildup of the resonator field
is prevented. In this case, the input photon is off-resonant with
the resonator and is transmitted via the bus waveguide with

the spatial mode unchanged. That is to say, the single-photon
input from port inj is output from port outj. When the atom is
not coupled with the resonator, the photon input from port inj
is coupled into the bare resonator and be dropped to the field
outj+1 (j = 0, 1, 2, 3) finally.
The interaction between a single-mode quantum electro-

magnetic field and a single two-level atom is the simplest
model of the interaction between a quantum electromagnetic
field and a substance; this interaction is the Rabi model,
which is a J-C model after the rotating wave approximation.
Compared with the J-C model, an 3-type atom system has
similar characteristics. We assume that we input a single
photon pulse with a frequency of ωp from port in0 and obtain
the input field ain that drives the Heisenberg equations of
motion for the cavity field. The equations can be expressed as:

da
dt
= −[i(ωc − ωp)+

κ1

2
+
κ2

2
]a(t)− gσ−(t)+

√
κ1ain

dσ−
dt
= −[i(ω0 − ωp)+ γ ]σ−(t)− gσz(t)a(t) (6)

where a is the cavity-field annihilation operator driven by the
input field, and ω0 and ωc denote the frequency of the atom
and the resonator field, respectively. σz and σ− represent the
inversion operator and lowering operator of the atom. κ1 and
κ2 represent the coupling losses of the fiber and resonator,
respectively. γ stands for the atomic spontaneous emission
rate, and g is the coupling strength between the resonator and
the atom.

To maximize the drop and add efficiencies in our scheme,
we make κ1 = κ2 = κ . The atom is prepared in the ground
state. We have 〈σz〉 = −1 through the entire process to ensure
the weak excitation through the single-photon pulse on the
3-type atom. The input and output relation can be described
as aout = ain−

√
κa. According to this relation, the reflection

and transmission coefficients for the coupled system can be
expressed as

t(ωp) =
i(ωc − ωp)[i(ω0 − ωp)+ γ ]+ g2

[i(ωc − ωp)+ κ][i(ω0 − ωp)+ γ ]+ g2

r(ωp) = −
κ[i(ω0 − ωp)+ γ ]

[i(ωc − ωp)+ κ][i(ω0 − ωp)+ γ ]+ g2
(7)

Through the complex dynamics, we can determine that if the
initial state of the3-type atom is |+1〉, when the R circularly
polarized single-photon pulse interacts with the atom-WGM
resonator system, the transition is |+1〉 → |A2〉. In this case,
the R photon transports through the input path with a phase
shift φ. On the contrary, if the initial state of the3-type atom
is | − 1〉, then R photon is coupled with the resonator and the
photon is transported from port |inj〉 to |outj+1〉with the phase
shift φ0.

When the system is in resonance, namely, ω0 = ωc = ωp,
the reflection and transmission coefficients can be simplified.
The rule of the spin-selective optical transition for the four-
dimensional hybrid quantum gate unit shown in Fig.1 (a) can
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be expressed as

|inj,+1〉 → |outj,+1〉, |inj,−1〉 → −|outj+1,−1〉 (8)

where, j = 0, 1, 2, 3. According to this rule, we can know that
if the initial state of the atom is | − 1〉, then the R-polarized
photon flips with an acquired phase shift π . Otherwise, the
R-polarized photon maintains the original state in the initial
state of the atom which is | + 1〉.

B. IMPLEMENTATION OF A FOUR-DIMENSIONAL LOCAL
QUANTUM CF GATE BETWEEN TWO QUBITS AND A
FOUR-DIMENSIONAL PHOTON
In this section, we investigate the possibility of building a
four-dimensional CF gate as shown in Fig.1. The control
qubits are stationary in the 3-type atom 1 (31) and 3-type
atom 2 (32) whose initial state is |φ〉3231 = (α|00〉+β|01〉+
γ |10〉 + ξ |11〉)3231 , here |α|

2
+ |β|2 + |γ |2 + |ξ |2 = 1, | +

1〉3 = |0〉3 and | − 1〉3 = |1〉3, while the four-dimensional
spatial-mode state of the single-photon PA serves as the target
qudit whose initial state is |φ〉PA =

1
2 (a|a0〉+b|a1〉+c|a2〉+

d |a3〉)PA with |a|
2
+|b|2+|c|2+|d |2 = 1. Here, the |aj〉(j =

0, 1, 2, 3) denotes the four-dimensional spatial-mode state of
the photon PA, which is correspondingly given by

|a0〉 = |in0〉PA , |a1〉 = |in1〉PA ,

|a2〉 = |in2〉PA , |a3〉 = |in3〉PA . (9)

As shown in Fig.1(a), the incident photon PA may pass
through the half-waves plates (HWPs), which can add a π
phase on the photon. After the photon flies through the four-
dimensional controlled-X gate as shown in Fig.1(a), the state
of the composite system (PA −31 −32) is changed as

|φ〉3231 |φ〉PA

=
1
2
α|00〉3231 (a|out0〉 + b|out1〉 + c|out2〉 + d |out3〉)PA

+
1
2
β|01〉3231 (a|out3〉 + b|out0〉 + c|out1〉 + d |out2〉)PA

+
1
2
γ |10〉3231 (a|out0〉 + b|out1〉 + c|out2〉 + d |out3〉)PA

+
1
2
ξ |11〉3231 (a|out3〉 + b|out0〉+c|out1〉 + d |out2〉)PA .

(10)

Then, the photon PA passes through the four-dimensional
controlled-X2 gate as shown in Fig.1 (b), where the c1-c4 are
circulators (counterclockwise). Based on the assumption that
the state of32 is | − 1〉, the photons will couple into the brae
resonator; otherwise, when the state of32 is | + 1〉, the atom
couples with the resonator strongly and the photon remains in
the initial mode. When the spatial-mode of photon is encoded
as follows

|out0〉 = |a′0〉PA , |out1〉 = |a
′

1〉PA ,

|out2〉 = |a′2〉PA , |out3〉 = |a
′

3〉PA , (11)

after the four-dimensional controlled-X2 gate, the state of the
composite system (PA −31 −32) is changed as

|φ〉3231 |φ〉PA

=
1
2
α|00〉3231 (a|a

′′

0〉 + b|a
′′

1〉 + c|a
′′

2〉 + d |a
′′

3〉)PA

+
1
2
β|01〉3231 (a|a

′′

3〉 + b|a
′′

0〉 + c|a
′′

1〉 + d |a
′′

2〉)PA

+
1
2
γ |10〉3231 (a|a

′′

2〉 + b|a
′′

3〉 + c|a
′′

0〉 + d |a
′′

1〉)PA

+
1
2
ξ |11〉3231 (a|a

′′

1〉 + b|a
′′

2〉 + c|a
′′

3〉 + d |a
′′

0〉)PA . (12)

According to Eq. (12), if we encode a four-dimensional qudit
by 2 two-dimensional atom qubits as |0〉3 = |00〉3231 ,
|1〉3 = |01〉3231 , |2〉3 = |10〉3231 , and |3〉3 = |11〉3231 ,
then we can successfully perform the four-dimensional CF
gating U3

(−),PA
successively.

If one encodes the spatial-mode of the photon as

|a0〉 = |in0〉PA , |a1〉 = |in3〉PA ,

|a2〉 = |in2〉PA , |a3〉 = |in1〉PA , (13)

then, the four-dimensional CF gating U3
(+),PA

can be
achieved. Thereafter, with U3

(±),PA
and nonlocal entangle-

ment, one can perform the four-dimensional quantum gate
teleportation by following the three steps described in
Section 2.

C. FEASIBILITY AND EFFICIENCY OF FOUR-DIMENSIONAL
CF OPERATION
The atom and microresonator coupled system is the basic ele-
ment of our scheme. In this section, we provide a brief discus-
sion of the experimental implementation of the key element
of our scheme. The key element is the four-dimensional CF
operation, which is based on the Jaynes-Cummings model.
As described in Ref. [26], under the resonance condition with
the help of HWPs, the reflection and transmission coefficients
t(ωp) and r(ωp) of the coupled atom-WGM cavity system can
be written as

t(ωp) =
2G2

1+ 2G2 , r(ωp) =
1

1+ 2G2 , (14)

where G = g/
√
κγ . The nitrogen-vacancy (NV) cen-

ters in diamonds [26], [27] are promising 3-type three-
level candidates for our scheme given its long coherence
time at room temperature [28], [29] and its application in
quantum error correction [30]. For simplification, we con-
sider the cases in which the initial photon state is |a0〉.
After a ideal U3

(+),PA
, the hybrid system becomes |E(0)〉 =

(ξ0|0〉|a0〉 + ξ1|1〉|a1〉 + ξ2|2〉|a2〉 + ξ3|3〉|a3〉)3231 PA with
the initial atomic state is (ξ0|0〉 + ξ1|1〉 + ξ2|2〉 + ξ3|3〉)3132

(63
i=0|ξi|

2
= 1). In the imperfect resonance case, the state

of the hybrid system becomes |E(0)′〉 = (t2ξ0|0〉|a0〉 +
rtξ0|0〉|a1〉 + rtξ0|0〉|a2〉 + r2ξ0|0〉|a3〉 + tξ1|1〉|a1〉 +
rξ1|1〉|a3〉+ tξ2|2〉|a2〉+ rξ2|2〉|a3〉+ξ3|3〉|a3〉)3231 PA . The
fidelity is F = |〈E(0)′|E(0)〉|2. To obtain the average fidelity
by averaging over all input states, we apply the idea of the
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FIGURE 2. Average fidelity (F̄ , the blue line) and efficiency (Ē , the red
line) of four-dimensional CF operation as a function of the parameter G.

Here, F =
[|ξ0|

2t2+(|ξ1|
2+|ξ2|

2)t+|ξ3|
2]2

[|ξ0|
2(r2+t2)2+(|ξ1|

2+|ξ2|
2)(t2+r2)+|ξ3|

2]
and

E = |ξ0|2(r2 + t2)2 + (|ξ1|2 + |ξ2|2)(t2 + r2)+ |ξ3|2.

first kind of curved surface integral in four-dimensional case
to obtain an average value. The average fidelity of our CF
operation for all input states on the hybrid system is

F =
[|ξ0|2t2 + (|ξ1|2 + |ξ2|2)t + |ξ3|2]2

[|ξ0|2(r2 + t2)2 + (|ξ1|2 + |ξ2|2)(t2 + r2)+ |ξ3|2]

F̄ =

∫
S FdS∫
dS

=

∫ 1
0 dx0

∫ 1−x0
0 dx1

∫ 1−x0−x1
0

√
4F(xj)dx2∫

dS
(15)

where xj = |ξj|2 (j = 0, 1, 2), and |ξ3|2 = 1− x0− x1− x2. S
is the generalized area (volume) of parallel three-dimensional
surface composed of 6 vectors in the four-dimensional space
in which 4 vertices are x0 = 1, x1 = 1, x2 = 1, x3 = 1.
The length of each vector is

√
2. Here, xi is the axis of four-

dimensional space. Thus, we can easily determine that
∫
dS

is
√
4

3!
To evaluate the performance of the gate operation,

we numerically simulated the results of the fidelities as
a function of G in the resonant case, as shown in Fig.2.
When G is larger than 1.6, the fidelity of the CF operation
is higher than 0.95. As shown by the results of Ref. [26],
G ≥ 3 in the resonance situation is not difficult to achieve
in experiments. The experimental cavity-QED parameters
[g, κ, γtotal, γ ]/2π = [0.3, 26, 0.013, and 0.0004] GHz
of an NV center coupled to a microdisk with Q ∼ 104

has been demonstrated [30]. The coherent coupling rate
of the NV center in Ref. [30] is almost one-third of the
total coupling rate within the narrow-band zero phonon
line (ZPL), but the ZPL emission rate has been enhanced
to 70% [31]–[34] in similar experimental systems. Based
on these experimental parameters, the result of our simula-
tion is in good qualitative consistency with the theoretical
speculations.

IV. DISCUSSION
Through TWSCC↔, any one of three gates T A1B1B2

, CA2
B2
,

and CA1
B1

can be teleported with a prior shared two-
dimensional maximally entangled Bell state, but any two
of these gates cannot be deterministically paralleled in a
two-dimensional maximally entangled quantum channel with
TWCC↔. Although CA1

B1
and CA2

B2
are commutative, the con-

trol party (the system A1A2) and controllee party (the system
B1B2) are both four-dimensional quantum systems for the
combination of these two nonlocal gates. Only one prior-
shared two-dimensional maximally entangled Bell state is not
enough for teleporting the two gates CA1

B1
and CA2

B2
. We notice

that the control party of T A1B1B2
is nonlocal, so the controlled-

Abelian-group-rule described in Ref. [15] is not applica-
ble to this case. To accomplish the task of teleporting two
gates T A1B1B2

and CA1
B1

or T A1B1B2
and CA2

B2
simultaneously with

TWSCC↔ using only one prior nonlocal two-dimensional
Bell state, we can try to construct a fast protocol similar
to that in Ref. [13], [15]. However, extra nonlocal CNOT
gates, which require another prior-shared maximally entan-
gled resources are needed to accomplish this task deter-
ministically (with 100% probability). If parallel channels
are not applicable, then three two-dimensional maximally
entangled channels are needed to teleport three nonlocal
gates T A1B1B2

, CA2
B2
, and CA1

B1
in turn.

In the four-qubit A1A2B1B2 system, besides T A1B1B2
, CA2

B2
,

and CA1
B1
, one and only one nonlocal controlled-flip gate

T A2B2B1
which can be deterministically teleported with a two-

dimensional maximally entangled Bell-state channel but can
not be parallel teleported with any one of the other three
gates using a two-dimensional maximally entangled quan-
tum channel and TWSCC↔. Thus, the results can proved
that, with only two prior-shared two-dimensional maximally
entangled Bell state resources and TWSCC↔, one can not
teleport four nonlocal gates T A1B1B2

, T A2B2B1
, CA2

B2
and CA1

B1
,

deterministically and simultaneously. The upper bound of
the gating transfer capacity of quantum-gate teleportation
with TWSCC↔ and 2 two-dimensional maximally entangled
quantum channels is that: one can deterministically teleport
at most three nonlocal two-body or multi-body unitary con-
trolled gates in which any two of these three gates cannot be
parallel within only one two-dimensional maximally entan-
gled quantum channel. Thus, with our scheme, the nonlo-
cal four-dimensional quantum computing not only improves
the quantum-gate teleportation efficiency of paralleled two-
dimensional maximally entangled quantum resources with
TWSCC↔ but also makes the best use of parallel maximally
entangled quantum resources with the shortest communica-
tion time.

With a good knowledge of four-dimensional quantum com-
puting teleportation in the hybrid system, we are able to
extend our scheme to a 2n-dimensional case. In a nonlo-
cal 2n-dimensional quantum system ÃB̃ in which a logic
qudit K̃ = Kn ⊗ · · · ⊗ K2 ⊗ K1 is constructed with
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n two-dimensional physical qubits K1,K2,. . . and Kn (K =
A or B), a 2n-dimensionalCF gate operation can be identified
by means of the nonlocal two-dimensional quantum two-
qubit or multi-qubit gates-operation sequence as

CF Ã
B̃
= CA1

B1
CA2
B2
. . .CAn

Bn · T
A2B2
B1

T A3B3B2
. . . T AnBnBn−1

·T A3B3B2B1
T A4B4B3B2

. . . T AnBnBn−1Bn−2
. . .

·T An−1Bn−1Bn−2...B2B1
T AnBnBn−1...B3B2

·T AnBnBn−1...B2B1
, (16)

where one needs n two-qubit CNOT gates CAi
Bi (i = 1,2,. . . n),

(n-1) two-dimensional three-qubit Toffoli gates T
AjBj
Bj−1

(j =

2, 3, . . . n), (n − 2) four-qubit Toffoli gates T AkBkBk−1Bk−2
(k =

3, . . . n),. . . , one n-control-bit Toffoli gate T AnBnBn−1...B2B1
and

so on. According to this conclusion, one can easily prove that
any two of these gates cannot be paralleled within only one
two-dimensional maximally entangled quantum channel with
a fast proposal. However, with non-simultaneous TWCC,
one prior-shared two-dimensional maximally entangled Bell
state is enough to teleport some pairs of these gates. For
example, in the four-dimensional case, T A2B2B1

and CA2
B2

can
be teleported simultaneously with twice the time of the fast
proposal using non-simultaneous TWCC. Therefore, a trade
off occurs between the time and entanglement resources for
nonlocal quantum computing with TWSCC↔.

A 2n-dimensional CF gate operation also can be identified
by means of the gate operation sequence as

CF2n = CX2n ⊗ CX2
2n ⊗ CX

4
2n ⊗ · · · ⊗ CX

2n−1
2n (17)

where CX k2n (k = 1,2,4, . . . 2n−1) represents the controlled
flip operation between a two-dimensional qubit state of the
i-th atom 3i (i = logk2 + 1) and a 2n-dimensional pho-
ton in the spatial-mode DOF. Any 2n-dimensional nonlocal
CX k2n operation can be constructed by the 2-dimensional
maximally entangled quantum channel and local CX k2n oper-
ation on the hybrid system. Thus, n two-dimensional maxi-
mally entangled quantum channels are enough to teleport a
2n-dimensional CF gate with 2n-dimensional local quantum
operation in the shortest time.

Although the TWSCC↔ limits the capacities of entangle-
ment-assisted quantum channels, the high-dimensional local
operations of the quantum system, which exploit the super-
position between independent channels, can overcome this
deficiency to avoid wasting additional nonlocal entangle-
ment resources. Therefore, with n two-dimensional maxi-
mally entangled quantum channels, one can deterministically
teleport at most n(n+ 1)/2 two-body or multi-body nonlocal
quantum gates with a two-dimensional nonlocal controller,
in which any two of these gates can not be paralleled within
only one two-dimensional maximally entangled quantum
channel. If parallel channels are not applicable, only n two-
body or multi-body nonlocal quantum gates of Eq.(16) with
a fast protocol can be transferred, and then gating trans-
fer capacity of n independent two-dimensional maximally

FIGURE 3. The gating transfer capacity of quantum-gate teleportation
scheme with n independent or n parallel two-dimensional maximally
entangled quantum channels using TWSCC↔.

entangled channels is only proportional to n. Thus, high-
dimension quantum computing teleportation can utilize two-
dimensional maximally entangled resources with a higher
capacity than the previous parallel two-dimensional quantum
computing scheme [14]. To vividly demonstrate the merits of
our scheme, we calculate the gating transfer capacity of the
present scheme as pictured in Fig. 3. The black curve ‘‘inde-
pendent channels’’ represents the number of nonlocal gates
that can be teleported by n independent two-dimensional
maximally entangled quantum resources, whereas the red line
‘‘parallel channels’’ indicates that of our scheme. Apparently,
in our scheme, the gating transfer capacity of n parallel two-
dimensional maximally entangled quantum channels can be
improved remarkably. Furthermore, less time is required in
a nonlocal computation manner, and it is on a shorter tem-
poral scale for the experimental realization. According to
the preceding discussion, under limited prior-shared maxi-
mally entangled resources, nonlocal high-dimensional quan-
tum control-operation outperforms the traditional method,
which decomposes the high-dimensional Hilbert space into
two-dimensional quantum space, with high efficiency and
short communication time.

V. SUMMARY
In summary, the capacity of the high-dimensional quan-
tum channel for the operation has been discussed. We have
proposed a scheme for the nonlocal quantum computation.
By using the atom-microresonator coupling local system and
hyperentanglement, we have conducted the high-dimensional
nonlocal quantum computation between two different quan-
tum network nodes, thereby greatly improving the effi-
ciency of nonlocal and long-distance quantum computing.
Compared with the previously proposed schemes that often
use photon as a single flying qubit to transmit interaction
between two separate nodes, our method consists of an entan-
gled qubit pair as a quantum channel. Thus, environmen-
tal noise can be suppressed by entanglement purification
operation. Moreover, the present scheme can be effectively
combined with the long-distance quantum communication
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proposals, such as hyperentanglement purification and hyper-
entanglement repeater schemes.
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