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ABSTRACT In this paper, a new quadratic-criterion-based model predictive iterative learning control
(QMPILC) algorithm for tracking problem of batch processes is proposed. In the proposed QMPILC design,
a parametric time-varying model consisting of a set of local models is established for nonlinear batch
processes by using the just-in-time-learning method. In order to describe the processes more accurately,
the model is updated with batch running. On basis of the identification model, iterative learning control is
combined with model predictive control based on a quadratic performance criterion, and the control law can
be obtained by solving a convex optimization problem. According to the real-time feedback information,
the input is updated to reject real-time disturbance. As a result, the proposed QMPILC algorithm improves
control performance and optimization efficiency. In addition, the convergence and tracking performance of
QMPILC are analyzed. The proposed methods are illustrated on batch reactor. The results are provided to
show excellent performance of tracking product qualities.

INDEX TERMS Iterative learning control, batch processes, just-in-time-learning, local models, model
predictive control.

I. INTRODUCTION
Iterative learning control (ILC) is an effective control tech-
nique for systems which have a repeat movement character-
istic. The general idea of ILC is to update control signal for
the current batch by using the information of the pervious
batches. Then output trajectory converges to desired refer-
ence trajectory after several iterations [1]–[3]. Thus, ILC is
suitable for the control systems whose control task is tracking
desired trajectory and ends in a finite time, and it has been
widely applied in batch processes whose characteristics are
repetitive, nonlinear and time-varying [4], [5]. Batch pro-
cesses systems are one of the most important research areas in
process industry [6], and they have been widely applied to the
manufacture of low-volume and high-value products such as
semiconductors, pharmaceuticals, polymeric materials, and
injection products. [7].

The associate editor coordinating the review of this article and approving
it for publication was YangQuan Chen.

In many general ILC algorithms, the control input of
the current batch is calculated before the beginning of the
batch [8]–[11]. However, it is difficult to guarantee the control
performance when there exists real-time disturbance since
the type of ILC is an open-loop control. At present, many
researches focus on studying the convergence [12], [13] and
the ability of reject disturbance of ILC [14]. In order to deal
with real-time disturbance and uncertainties, it is reasonable
to combine ILC with other real-time feedback algorithms
such as PID [15] and MPC [16]. Then the inputs of the
systems can be adjusted according to the feedback informa-
tion. Oh et al. proposed a MPC technique combined with
ILC to reject real-time disturbance [17]. Lu et al. proposed
a new two-stage design based on the combination of ILC
and MPC [18]. Shi et al. presented a two-dimensional con-
trol scheme by combining ILC in the outer loop and MPC
in the inner loop [19]. Wang et al. proposed an advanced
ILC-based PI control for batch processes [20]. In above men-
tioned results, the controllers are designed based on linear
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time-invariant models. However, the linear time-invariant
models usually can not describe the nonlinearity of batch
process accurately. Thus, it may lead to worse control per-
formance for nonlinear batch processes due to serious model
errors. ILC strategies for nonlinear process have also been
studied in some papers. Lee et al. presented a batch-MPC
based on a linearized model [21]. Nevertheless, establishing
a mechanism model is often difficult and costly. Jia et al.
proposed a quadratic criterion-ILC scheme based on data-
driven models [22], [23]. The control input was obtained
by using some intelligent optimization algorithms such SQP,
PSO and GA, which may lead to a suboptimal solution for
the optimization problem. In addition, these optimization
algorithms are often complex and time-consuming. Su et al.
proposed an integrated B2B-NMPC control method based on
a multiway partial least-squares models [24]. However, a rig-
orous convergence analysis to verify the control strategy was
not presented. Therefore, the aim of this paper is to develop
an integrated control schemewhich can improve the real-time
control performance and the optimization efficiency of the
system for batch processes with strong nonlinearity. In this
paper, considering the problems of nonlinearity, constraints
and real-time control, we propose a quadratic-criterion-
based model predictive iterative learning control (QMPILC)
algorithm by using the just-in-time-learning (JITL) method.
A time-varying parameter model is established by linearizing
the nonlinear model along the nominal trajectories according
to input and output data. Then, the controller is designed
based on a quadratic performance criterion, and the input
of the system is obtained by solving a convex optimization
problem.

The main contributions of this paper are summarized as
follows:

(1) Based on the JITL method, the design of the model
predictive iterative learning controller for nonlinear batch
processes is proposed. The control law is obtained by solving
a convex optimization problem, which improves the effi-
ciency of the system.

(2) The analyses of the convergence and the tracking per-
formance for the proposed system are given in this paper.

The rest of the paper is organized as follows: In Section 2,
a data-driven based model is established for nonlinear batch
processes. In Section 3, a design method of model predic-
tive iterative controller is presented. The convergence and
stability results are given in Section 4. Section 5 shows the
results of applying the proposed method to batch processes,
and some conclusions are drawn in Section 6.

II. BATCH PROCESS DESCRIPTION
In this paper, a single-input single-output process is consid-
ered. The batch run length is fixed, and it is divided into N
equal intervals. The model for nonlinear batch processes can
be described as follows:

yk (t) = f (yk (t − 1), yk (t − 2), · · · , yk (t − ny), uk (t − 1),
uk (t − 2), · · · , uk (t − nu))
t = 1, · · · ,N ; k = 1, 2, · · · (1)

where t is the discrete-time index; subscript k is the batch
index; y ∈ R and u ∈ R denote the product quality variable
(output) and the control variable (input), respectively; ny
and nu are integers related to the model order; and f is the
nonlinear function.

The JITL method is a data-based methodology for non-
linear process modeling. It can be used to approximate a
nonlinear processes by establishing local models in the oper-
ating range of interest. According to query data, relevant data
samples are selected from reference database based on some
similarity criterion. Then local models are established based
on the relevant data, and a process model is constructed by
using the local models.

The nominal input trajectory and the corresponding output
trajectory are defined as

U s
k = [usk (0), u

s
k (1), · · · , u

s
k (N − 1)]T (2)

Y sk = [ysk (1), y
s
k (2), · · · , y

s
k (N )]T (3)

We can obtain the following local linear deviation model
by subtracting the nominal trajectories from the operation
trajectories.

ȳk (t) =
Bk (q, t)
Ak (q, t)

ūk (t) (4)

where q is the time-wise unit forward-shift operator, ȳk (t) =
yk (t) − ysk (t), ūk (t) = uk (t) − usk (t), Ak (q, t) = 1 +
a1k (t)q

−1
+ a2k (t)q

−2
+ · · · + a

ny
k (t)q−ny , and Bk (q, t) =

b1k (t)q
−1
+b2k (t)q

−2
+· · ·+bnuk (t)q−nu . Here, aik (t) and b

i
k (t)

are coefficients which vary with time and batch. Since the
JITL method usually employs a second-order model [25],
the following local model is considered.

ˆ̄yk (t) = a1k (t)ȳk (t − 1)+ a2k (t)ȳk (t − 2)+ bk (t)ūk (t − 1)

(5)

Then a database {4(t),8(t)} at time t is constructed based
on the historical process data as

4(t) = [y1(t), y2(t), · · · , yn(t)]T (6)

8(t) =


y1(t − 1) y1(t − 2) u1(t − 1)
y2(t − 1) y2(t − 2) u2(t − 1)

...
...

...

yn(t − 1) yn(t − 2) un(t − 1)

 (7)

where n is the number of the process data in database.
For query data qk (t) = [ysk (t − 1), ysk (t − 2), usk (t −

1)] obtained from the nominal trajectory, a relevant dataset
{4L(t),8L(t)} consists of L samples which are select from
{4(t),8(t)} based on a similarity criterion [26]. By sub-
tracting ysk (t) and qk (t) from the relevant dataset, we can
obtain a relevant deviation dataset {4̄L(t), 8̄L(t)}. Then the
coefficients of the local model can be identified by using the
least square method.

[a1k (t), a
2
k (t), bk (t)]

T
= (8̄T

L (t)8̄L(t))−18̄T
L (t)4̄L(t) (8)
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FIGURE 1. The structure of the QMPILC system.

A time-varying parameter state-space description is
given as

xk (t + 1) = Ak (t + 1)xk (t)+ Bk (t + 1)ūk (t)
ˆ̄yk (t) = Ckxk (t) (9)

where

Ak (t) =
[

0 1
a2k (t) a1k (t)

]
, Bk (t) =

[
0

bk (t)

]
,

Ck =
[
0
1

]T
, xk (t) =

[
x1k (t)
x2k (t)

]
Denote

ˆ̄Yk = [ ˆ̄yk (1), ˆ̄yk (2), . . . , ˆ̄yk (N )]T (10)

Ūk = [ūk (0), ūk (1), . . . , ūk (N − 1)]T (11)

According to Eq. (9), the system deviation model can be
written as

ˆ̄Yk = Ĝk Ūk (12)

where Ĝk is a matrix whose elements are ĝi,jk = Ck
i−j−1∏
l=0

Ak (i− l)Bk (j)(i, j = 1, 2, · · · N ).
The assumptions for the system are given as follows:
A1. Ĝk has a full row-rank;
A2. The initial state of the system is xk (0) = 0.
The nonlinear processes are operatedwithin a narrow range

of the nominal trajectories, and they can be described by the
time-varying parameter model which consists of a set of local
linear models. The time-varying parameter model is recom-
puted after completing a batch run. Therefore, the model can
well represent nonlinear batch processes.

III. DESIGN OF QMPILC STRATEGY
FOR BATCH PROCESSES
The structure of the proposed QMPILC system is shown
in Fig. 1. The model predictive iterative learning controller
can perform real-time control based on the real-time feedback
information and the tracking error of pervious batch. Let
Yd = [yd (1), yd (2), · · · , yd (N )]T represents the desired ref-
erence trajectory. The tracking error sequence of the process

and of the deviation model are defined as Ek = Yd − Yk
and Êk = Yd − Ŷk = Ȳk,d − ˆ̄Yk , respectively, where
Ȳk,d = Yd − Y sk is the deviated reference trajectory in the kth
batch. In this paper, the operation trajectory of the last batch
is set as the nominal trajectory of the current batch. Both
prediction horizon and control horizon in the QMPILC algo-
rithm are Np which decrease with time, namely, Np = N − t .
Then, at time t , we can obtain a predictive control sequence
by solving a quadratic optimization problem, and only first
element of the predictive control sequence is sent to process,
namely, u(t) = u(t|t).
Model accuracy and convergence rate is closely related to

the trajectory of the initial batch. In this study, the initial input
u1(t) can be obtained by using the local inverse model of the
system as

u1(t) = f −1(yd (t + 1), y1(t), y1(t − 1))

= 2inv[yd (t + 1), y1(t), y1(t − 1)]T (13)

where 2inv = [α1inv(t), α
2
inv(t), βinv(t)] is the regression vec-

tor. By using the JITL method, the local inverse model can
be established based on the data points near the query vector
q0(t) = [yd (t + 1), y1(t), y1(t − 1)] [27]. Then initial input
u1(t) is computed according to the regression vector.
The following definition is given to represent the prediction

horizon.

Fk (
t1
t2 |t) = [fk (t1|t), fk (t1 + 1|t), · · · , fk (t2|t)]T

The MPC strategy can be used to improve the ability of
rejecting disturbance. The output prediction ˆ̄yk (t + Np|t) is
calculated as

ˆ̄yk (t + Np|t) = Ck
t+1∏

i=t+Np

Ak (i)xk (t)

+Ck
t+2∏

i=t+Np

Ak (i)Bk (t + 1)ūk (t|t)

+ · · · + CkBk (t + Np)ūk (t + Np − 1|t)

(14)
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Therefore, the predictive output sequence of a batch pro-
cess at time t is obtained as

ˆ̄Yk (
t+1
t+Np |t) =

ˆ̄Yk (Ūk (tt+Np−1|t))

= 9k (t + 1)xk (t)+ ĜNk (t)Ūk (
t
t+Np−1|t) (15)

where

9k (t) = [[CkAk (t)]T , · · · , [Ck
t∏

i=t+Np−1

Ak (i)]T ]T

ĜNk (t) =


Ĝk (

t+1
N |t + 1)

Ĝk (
t+1
N |t + 2)
...

Ĝk (
t+1
N |N )



=


ĝt+1,t+1k 0 · · · 0
ĝt+2,t+1k ĝt+2,t+2k · · · 0

...
...

. . .
...

ĝN ,t+1k ĝN ,t+2k · · · ĝN ,Nk


The tracking error of the prediction model for the remain

trajectory is defined as

Êk (
t+1
t+Np |t) = Yd (t + 1)− Ŷk (

t+1
t+Np |t)

= Ȳk,d (t + 1)− ˆ̄Yk (
t+1
t+Np |t) (16)

where Yd (t + 1) = [yd (t + 1), yd (t + 2), · · · , yd (t + Np)]T ,
and Ȳk,d (t + 1) = [ȳk,d (t+1), ȳk,d (t+2), · · · , ȳk,d (t+Np)]T .

From Eqs. (12), (16), an iterative relationship between
Êk (

t+1
t+Np |t) and Ek−1(t) can be derived as follows:

Êk (
t+1
t+Np |t) = Ek−1(t + 1)−9k (t + 1)xk (t)

− ĜNk 1Uk (
t
t+Np−1|t) (17)

where Ek−1(t + 1) = [ek−1(t + 1), · · · , ek−1(t + Np)]T , and
1Uk (tt+Np−1|t) = [uk (t|t)− uk−1(t), · · · , uk (t + Np − 1|t)
− uk−1(t + Np − 1)]T .
Based on the tracking error of the process model, the mov-

ing quadratic criterion objective function can be constructed
as follows:

Jk (1Uk (tt+Np−1|t))

= min
1Uk (tt+Np−1|t)

∥∥∥Êk (t+1t+Np |t)
∥∥∥2
Qt
+

∥∥∥1Uk (tt+Np−1|t)∥∥∥2Rt (18)

Qt and Rt are both weighting matrices defined as Qt =
q × INp×Np and Rt = r × INp×Np , where q and r are both
positive real numbers.

In industry control applications, the following constraint of
control input is usually considered.

U low
≤ Uk ≤ Uup (19)

The inequality (19) can be rewritten as

81Uk ≥ �k (20)

where

8 = [I − I ]T

�k =

[
U low

− Uk−1
−(Uup

− Uk−1)

]
U low and Uup are the lower and upper bounds of the input
sequence, respectively.

The optimization problem (18) can be cast into the follow-
ing formulation.

min
λ,1Uk (tt+Np−1|t)

λ

s.t.
∥∥∥Êk (t+1t+Np |t)

∥∥∥2
Qt
+

∥∥∥1Uk (tt+Np−1|t)∥∥∥2Rt ≤ λ (21)

Using Schur complement [28], the constraint (21) can be
converted to an LMI as follows: λ Êk (

t+1
t+Np |t)

T 1Uk (tt+Np−1|t)
T

∗ Q−1t 0
∗ ∗ R−1t

 ≥ 0 (22)

Thus, the control input with constraint can be obtained by
solving the following convex optimization problem.

min
λ,1Uk (tt+Np−1|t)

λ

s.t.

 λ Êk (
t+1
t+Np |t)

T 1Uk (tt+Np−1|t)
T

∗ Q−1t 0
∗ ∗ R−1t

 ≥ 0

(23)[
INp×Np
−INp×Np

]
1Uk (tt+Np−1|t)≥

[
U low(t)− Uk−1(t)
−Uup(t)+ Uk−1(t)

]
(24)

Inequalities (23) and (24) are the LMIs in regard to
1Uk (tt+Np−1|t). The control law is directly updated based on
the information obtained from the current and the pervious
batch runs. In summary, the proposed QMPILC algorithm is
given as follows:
Step 1: Set k = 1. Calculate the control action for the first

batch based on the local inverse model of the system, and
initialize Qt and Rt .
Step 2: After the completion of the kth batch run, we can

obtain the input sequence Uk and the output sequence Yk .
Then setUk and Yk as the nominal input and the nominal out-
put of the next batch, respectively. According to the historical
process operation data, the deviation model of the next batch
is identified by using the JITL method.
Step 3: Set t = 1. At time t in the (k + 1)th batch, the pre-

dictive control sequence Uk+1(tt+Np−1|t) can be obtained by
solving LMIs (23) and (24). Then the first element uk+1(t|t)
of the sequenceUk+1(tt+Np−1|t) is implemented to the control
system.
Step 4: If t < N , set t = t + 1 and go back to Step 3, else

set k = k + 1 and go to Step 2.
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IV. THE ANALYSIS OF CONVERGENCE
In this section, we will give the analyses of the convergence
and stability based on the proposed control algorithm.

(1) Perfect model
Theorem 1: Consider a batch process described by Eq. (1)

controlled by the proposed control algorithm. Under assump-
tions A1 − A2, the control sequence will converge to a con-
stant, and the tracking error sequenceEk will converge to zero
if there is no modeling error. That is,1Uk = Uk−Uk−1→ 0
and Ek → 0 as k →∞.

Proof: Let

Uk (t1t2) = [uk (t1), uk (t1 + 1), · · · , uk (t2)]T

1Uk (t1t2) = Uk (t1t2)− Uk−1(
t1
t2)

Vk =
∥∥∥Êk∥∥∥2

Q0
+ ‖1Uk‖2R0

ĜPk (t) = [Ĝk (1t |t + 1)T , ĜTk (
1
t |t + 2)T , · · · ĜTk (

1
t |N )T ]T

where Ĝk (1t |t + i) = [ĝt+i,1k , ĝt+i,2k , · · · , ĝt+i,tk ].

According to Eqs. (9) and (12), Eq. (18) can be rewritten as

Jk (1Uk (tt+Np−1|t))

=

∥∥∥Ek−1(t+1)− ĜPk (t)1Uk (0t−1)− ĜNk (t)1Uk (tN−1|t)∥∥∥2Qt
+
∥∥1Uk (tN−1|t)∥∥2Rt

=

∥∥∥ek−1(t + 1)−Ĝk (1t |t+1)1Uk (
0
t−1)−ĝ

t+1,t+1
k 1u(t|t)

∥∥∥2
q

+ ‖1uk (t|t)‖2r+
N−t∑
i=2

∥∥∥ek−1(t + i)−Ĝk (1t |t + i)1Uk (0t−1)
− Ĝk (

t+1
N |t + i)1Uk (

t
N−1|t)

∥∥∥2
q
+ ‖1uk (t + i− 1|t)‖2r

(25)

At time t + 1, 1Uk (
t+1
N−1|t + 1) is the optimal solution

of the objective function (18), and due to u(t) = u(t|t),
the following inequality holds.

Jk (1Uk (
t+1
N−1|t + 1))

=

∥∥∥Ek−1(t + 2)− ĜPk (t + 1)1Uk (0t )

− ĜNk (t+1)1Uk (
t+1
N−1|t+1)

∥∥∥2
Qt+1
+

∥∥∥1Uk (t+1N−1|t+1)
∥∥∥2
Rt+1

≤ Jk (1Uk (
t+1
N−1|t)) =

∥∥∥Ek−1(t + 2)− ĜPk (t + 1)1Uk (0t )

− ĜNk (t + 1)1Uk (
t+1
N−1|t)

∥∥∥2
Qt+1
+

∥∥∥1Uk (t+1N−1|t)
∥∥∥2
Rt+1

=

N−t∑
i=2

∥∥∥ek−1(t + i)− Ĝk (1t |t + i)1Uk (0t−1)
− Ĝk (

t+1
N |t + i)1Uk (

t
N−1|t)

∥∥∥2
q
+ ‖1uk (t + i− 1|t)‖2r

(26)

From Eqs. (25) and (26), we get∥∥∥ek−1(t+1)−Ĝk (1t |t+1)(t)1Uk (0t−1)−ĝt+1,t+1k 1uk (t|t)
∥∥∥2
q

+ ‖1uk (t|t)‖2r +
∥∥∥Ek−1(t + 2)− ĜPk (t + 1)1Uk (0t )

− ĜNk (t+1)1Uk (
t+1
N−1|t+1)

∥∥∥2
Qt+1
+

∥∥∥1Uk (t+1N−1|t+1)
∥∥∥2
Rt+1

≤

∥∥∥Ek−1(t + 1)− ĜPk (t)1Uk (
0
t−1)− Ĝ

N
k (t)1Uk (

t
N−1|t)

∥∥∥2
Qt

+
∥∥1Uk (tN−1|t)∥∥2Rt (27)

According to Eq. (27), after N iterations, the following
inequality is obtained.

Vk ≤ Jk (1Uk (0N−1|t))

=

∥∥∥Ek−1 − Ĝk1Uk (0N−1|0)∥∥∥2Q0
+

∥∥∥1Uk (0N−1|0)∥∥∥2R0 (28)

Since 1Uk (0N−1|0) is the optimal solution of the objective
function (18) at time t = 0, we have∥∥∥Ek−1 − Ĝk1Uk (0N−1|0)∥∥∥2Q0

+

∥∥∥1Uk (0N−1|0)∥∥∥2R0
≤ Jk (0) = ‖Ek−1‖2Q0

= Vk−1 − ‖1Uk−1‖2R0 (29)

From inequality (29), we have

Vk ≤ Vk−1 − ‖1Uk−1‖2R0 (30)

Inequality (30) leads to

Vk +
k−1∑
j=1

1UT
j R01Uj ≤ V1 <∞ (31)

Since1UT
j R01Uj ≥ 0 and the sequence {

k−1∑
j=1
1UT

j R01Uj}

is non-decreasing, we can conclude that the sequence

{

k−1∑
j=1

1UT
j R01Uj} converges and the following equation

holds.

lim
k→∞

1UT
k−1R01Uk−1

= lim
k→∞

(
k−1∑
j=1

1UT
j R01Uj −

k−2∑
j=1

1UT
j R01Uj)

= 0 (32)

It implies that

lim
k→∞

1Uk = 0 (33)

Thus, we haveEk → E∞ as k →∞. Because1Uk (tN−1|t)
is the optimal solution of the objective function at time t ,
it leads to

1
2

∂Jk (1Uk (tN−1|t))

∂1Uk (tN−1|t)

= −ĜNk (t)
T
Qt (Ek−1(t + 1)− ĜPk (t)1Uk (

0
t−1))

+ (ĜNk (t)
T
Qt ĜNk (t)+ Rt )1Uk (

t
N−1|t) = 0 (34)
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According to Eq. (12) and Ek = Êk , we get

lim
k→∞

(Ek−1 − Ek ) = lim
k→∞

Ĝk1Uk (35)

From Eqs. (33), (35) and (34), we have

− ĜN∞(t)
T
QtE∞(t + 1)

+ (ĜN∞(t)
T
Qt ĜN∞(t)+ Rt )1U∞(

t
N−1|t) = 0 (36)

Because Ĝk is a full row-rank and Rt and Qt are posi-
tive definite matrices in the objective function, Eq. (33) and
Eq. (36) result in

lim
k→∞

Ek = 0 (37)

Therefore, if there is no modeling error, zero tracking error
will be achieved under the proposed control method.

(2) Model-plant mismatch
Theorem 2: Considering that there exist the model errors

between the prediction model and the actual process. Under
assumptions A1− A2, the tracking error Ek of the proposed
optimization strategy can be bounded in a small region,
namely, Ek → ε as k → ∞, where ε is a small positive
constant.

Proof: The prediction error of the output is defined as

εk = Ŷk − Yk (38)

In this study, since the prediction error is bound by a small
positive constant, we have

|εk | < δ (39)

According to Eq. (36), we get

−ĜTk Q0Ek−1 + (ĜTk Q0Ĝk + R0)1Uk (0N−1|0) = 0 (40)

According to Eqs. (12), (18) and (38), the update model for
tracking error based on the actual process can be obtained as

Ek = Ek−1 − Ĝk1Uk + εk (41)

From Eqs. (33), (40) and (41), it follows that

lim
k→∞

Ek = lim
k→∞

εk (42)

Because εk is bound, the tracking error Ek can converge
to a small region, that is, Ek → ε as k → ∞. Therefore,
the tracking performance of the system depends on the accu-
racy of the prediction model.

V. PERFORMANCE ANALYSIS AND DISCUSSION
In section, two cases will be conducted to show the effective-
ness of the proposedmethods. It assumes that the mechanistic
model of process is unavailable and the disturbance is unmea-
surable.

A. CASE 1
Consider the batch process described by the following linear
time-varying model. The terminal time is tf = 50 and the

sampling period is ts = 1.

yk (t) =
K (t)

T (t)s+ 1
uk (t) (43)

where

T (t) = 0.001t2 + 3

K (t) = −0.03t2 + 1.7t + 5

The desired reference trajectory is

yd (t) =


0.4t t ∈ [0, 15]
6 t ∈ [15, 25]
6− 0.2(t − 25) t ∈ [25, 40]
3 t ∈ [40, 50]

(44)

The discretization of the process model is described as
follows:

yk (t) =
b1(t)q−1

1+ a1(t)q−1
uk (t) (45)

where

a1(t) = − exp(−ts/T (t)) (46)

b1(t) = K (t)(1− exp(−ts/T (t))) (47)

The design parameters are given as follows: q = 1 and
r = 10. The root mean square error (RMSE) of the track-
ing error Ek is used to show the tracking performance.
Figs. 2 and 3 depict output and input of the control system,
respectively. Fig. 4 shows the RMSE of the tracking error.
In order to test the ability of rejecting disturbance, the dis-
turbance whose value is 0.6 is added into the output at time
t = 20 in the 7th batch. The output and input are shown
in Figs. 5 and 6, respectively. The tracking performance of
the system with external disturbance is shown in Fig. 7.

FIGURE 2. Output trajectories in the 1st, the 3rd and the 15th batches of
the system.

From Figs. 2 and 3, a fast convergence rate is obtained by
using the proposed control strategy. Figs. 5 and 7 show that
the proposed control system provides the ability of rejecting
disturbance, and output still converge to the reference trajec-
tory after the disturbance added into the system.
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FIGURE 3. Input trajectories in the 1st, the 3rd and the 15th batches of
the system.

FIGURE 4. Curve of RMSE of Ek .

FIGURE 5. Output trajectories in the 7th, the 8th and the 9th batches of
the system with external disturbance.

B. CASE 2
The proposed control strategy is applied to control a
typical nonlinear batch rector, in which a first-order
irreversible exothermic reaction A → B → C take
place [30]. The following dynamic equations describe the

FIGURE 6. Input trajectories in the 7th, the 8th and the 9th batches of the
system with external disturbance.

FIGURE 7. Curve of RMSE of Ek for the system with external disturbance.

reaction process.

ẋ1 = −k1 exp(−E1/T )x21 (48)

ẋ2 = k1 exp(−E1/T )x21 − k2exp(−E2/T )x2 (49)

where x1 and x2 represent the reactant concentration of
A and B, respectively, and T denote the reaction temperature.
The final time tf is fixed to be 1.0 h. The values of parameters
k1, k2, E1 and E2 are given in Table 1.

TABLE 1. Parameter values for the batch reactor.

In this reaction, the reactor temperature is divided
into 10 equal intervals, and it is normalized by using
u = (T − Tmin)/(Tmax − Tmin), in which Tmin and Tmax
are 298(K) and 398(K), respectively. u is the control variable
which is bounded as 0 ≤ u ≤ 1, and x2(t) is the output
variable. The control objective is to minimize the end-time
tracking error by adjusting the control input.
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The initial operating conditions are x1(0) = 1 and
x2(0)= 0. The ideal value of end-time output is yd (tf)= 0.61.
The parameters of the control system are chosen as follows:
q = 1 and r = 0.0001.

FIGURE 8. Trajectories of product quality variable in the 1st, the 5th and
the 15th batches.

FIGURE 9. Input temperature profiles in the 1st, the 5th and the 15th
batches.

The proposed control strategy is compared with integrated
MPC strategy [22] and batch to batch ILC [29]. The output
trajectories in the 1st, the 5th and the 15th batches and the
corresponding input trajectories of the system are shown
in Figs. 8 and 9, respectively. The tracking performance of
the proposed control strategy is shown in Fig. 10. In Fig. 10,
output trajectories converge to the reference trajectory after
two batches. Fig. 11 shows the endpoint tracking error values
based on three control strategies. Since the input of the first
batch is obtained by using the inverse model of the sys-
tem, the proposed strategy provides a faster convergence rate
than integrated MPC and batch to batch ILC. The majority
of the process nonlinearity is removed by subtracting the
nominal trajectories from the batch operation trajectories in
our scheme, which result in a higher precision of the model
in this paper than that in [22]. Thus convergence accuracy
is improved. Moreover, the control input can be obtained

FIGURE 10. Tracking performance of the system based on the proposed
control strategy.

FIGURE 11. Comparisons of endpoint errors based on three control
strategies.

FIGURE 12. Trajectories of product quality variable in the 9th, the 10th
and the 11th batches of the system with external disturbance.

by solving a convex optimization problem, which leads to
a higher operational efficiency than that of integrated MPC
strategy.

The external disturbance with value being 0.02 at time
t = 0.4 h in the 9th batch is added to the output of
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FIGURE 13. Input temperature profiles in the 9th, the 10th and the 11th
batches of the system with external disturbance.

FIGURE 14. Tracking performance of the system with external
disturbance.

FIGURE 15. Comparison of endpoint errors based on three control
strategies with external disturbance.

the system. In Figs. 12 and 14, due to a real-time feedback
loop, the control system can reject disturbance, and the output
still converges to the reference trajectory in the batch direc-
tion. Fig. 15 shows the ability of rejecting the disturbance

based on three control methods. It indicates the proposed con-
trol strategy provides a better ability on disturbance rejection
compared with the methods in [22] and [29].

VI. CONCLUSION
Amodel predictive iterative learning control algorithm based
on quadratic-criterion for batch processes has been proposed
in this paper. By using the JITL method, a model whose
parameters vary with time and batch canwell describe nonlin-
ear batch process. A quadratic-criterion-based model predic-
tive iterative learning control design has been given, and the
control law has been obtained by solving a convex optimiza-
tion problem. The analysis of convergence has been also pro-
vided. The proposed methods have been illustrated on batch
processes, and the results show that system performance has
been improved.
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