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ABSTRACT Our research aims to develop the regime switching Markov chain (RSMC), a discrete time
Markov chain whose underlying regime is depending on a hidden Markov model, which express the dynam-
ics of sovereign credit rating migration. Estimated based on a version of the Expectation-Maximization
algorithm, the regime in RSMC indicates either economic expansion or contraction. Then, we apply RSMC
to the monthly time series of the sovereign credit rating of 41 nations from January 1994 to December 2018.
At first, we confirm that the estimation of RSMC is superior to a homogeneous Markov chain. It implies
that the credit rating dynamics are subject to the underlying economic condition. Secondly, we observe that
the second tier and non-investment credit ratings in economic contractions are likely to be downgraded.
We also detect the continental clustering of economic contractions for the Asian currency and European
sovereign debt crises. Lastly, we discover that the forecasting performance of RSMC is superior to that of
the benchmark, especially for the second tier and non-investment credit ratings. In conclusion, we claim that
RSMC can improve the management of sovereign credit risk exposures.

INDEX TERMS Credit migration, economic forecasting, hiddenMarkov models, Markov processes, regime
switching, sovereign credit rating.

I. INTRODUCTION
For decades, the world economy has been suffering from
various sovereign risks such as the Asian currency crisis in
the late 1990s and the European sovereign debt crisis in
the late 2000s. An inevitable consequence of such a risk
is the degrading of the sovereign credit rating; both market
participants and policy-makers have made efforts to respond
promptly to risk exposure to credit migration, a transition
probability matrix that represents the dynamics of credit
ratings over time. For instance, the risk exposure of credit
rating migration has been applied to develop a structural
model for the pricing of bonds [1], credit derivatives [2],
the term structure of credit spreads [3], and the investigation
of global financial conditions [4]. Furthermore, the renovated
regulatory requirements of the Basel Committee accentuate
the efficiency of credit ratings as creditworthiness indicator
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of obligors and the accuracy and up-to-dateness of models for
credit rating dynamics. Thus, sophisticated credit risk models
are being developed or demanded by banks to assess the risk
of their credit portfolio better by recognizing the different
underlying sources of risk.

Consequently, the default probabilities for specific rating
categories but also the probabilities for moving from one
rating state to another are essential issues in credit risk
management and pricing. Systematic changes in migration
matrices have substantial influences on credit Value-at-Risk
of a portfolio and the prices of credit derivatives like collater-
alized debt obligations. Therefore, rating transition matrices
are of particular interest in determining the economic capital,
expected loss, and VaR for credit portfolios within the Basel
framework. They can also be helpful for the pricing of more
complex credit products in the industry. Therefore, the devel-
opment of a realistic model that accommodates the observed
behavior of sovereign credit migration is essential in market
practice and regulations.
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In the modeling perspective, a homogeneous Markov
chain, which assumes homogeneity in time and population,
has been the common instrument for credit rating migra-
tion. Fuertes and Kalotychou [5] applied markov model to
sovereign credit migration rating. D’Amico et al. [6] pre-
dicted EU’s credit rating inequality for 3 major companies
credit rating using Markov chain model and dynamic entropy
measure. Hu et al. [7] estimated transition matrices for
sovereign credit ratings with various methods. Major rating
agencies such as Fitch, Moody’s, or Standard & Poor’s peri-
odically report the estimated transition matrix of the Markov
chain. The estimated transition matrix serves as a key input
element of some advanced risk management methodologies
such as J.P. Morgan’s Credit Metrics or McKinsey’s Credit
Portfolio View. However, much empirical literature has dis-
covered non-Markovian behaviors in credit rating migration.
For instance, Carty and Fons [8], Nickell et al. [9], and
Bangia et al. [10] showed that business cycle affects the
credit rate migrations; Fei et al. [11] suggested a Mixture of
Markov Chains (MMC) model to explain credit rating migra-
tion risk in consideration of the stochastic business cycle
effects; Frydman [12] and Frydman and Schuermann [13]
claims population heterogeneity among bond issuers to bet-
ter describe bond ratings migration; Siu et al. [14] and
Ching et al. [15] developed multivariate Markov chain model
describing inter-dependency and intra-dependency of credit
ratings; D’Amico et al. [16]–[18] applied semi-Markov chain
approach to credit rating migration with emphasis on the
sojourn time modelling; Boreiko et al. [19] suggested a cou-
pled Markov chain model to measure the effects of macroe-
conomic factors on credit-rating migration. Indeed, the credit
rating migration model based on the HMM has been studied
in previous researches such as korolkiewicz and Elliot [20],
korolkiewicz [21], Elliott et al. [22], Petropoulos et al. [23]
A regime switching model has been widely applied for

various financial time series. For instance, Hamilton [24],
Pagan and Schwert [25], and Ang and Bekaert [26] con-
sidered economic states (regimes) that govern the dynam-
ics of the observed time series; Goldfeld and Quandt [27]
introduced Markov switching regressions in econometrics;
Neftci [28], Hamilton and Susmel [29]; andGray [30] worked
for the extensions of autoregressive, ARCH, and GARCH
models respectively. Also, the increasing importance of the
model can be found in various financial domains including
option pricing [31], [32], foreign exchange [33], and interest
rates [34].

In this respect, the purpose of this paper is to develop
a flexible and realistic credit migration model, called the
Regime Switching Markov Chain (RSMC), that incorpo-
rates the non-Markovian behaviors using the hidden Markov
Model (HMM). Similar to the concept of regime switching
model, we consider a credit rating migration process as a
non-homogeneous process in that the transition probabilities
of credit ratings depend on the economic condition such
as the periods of economic expansion or contraction. Also,
we consider the credit rating as a discrete type stochastic

migration process. Eventually, the model should possess a
time-variant embedded (discrete time) Markov chain tran-
sition probabilities from one state to another for the dif-
ferent underlying economic condition. In RSMC, the credit
rating migration is modelled by integrating a revised struc-
ture of HMM, which represents the unobserved economic
regime switching process, into a discrete time Markov chain,
which represents the observed credit migration process.
Therefore, the credit migration probabilities in the economic
expansion period are different from those in the contrac-
tion period. That is, the economic condition of expansion
or contraction is regarded as an unobservable regime but
affects the credit migration process, simultaneously. Then,
we present a version of the Expectation-Maximization (EM)
algorithm similar to the Baum-Welch algorithm [35] as a
parameter estimation method. EM algorithm developed by
Dempster et al. [36] is a recursive procedure to estimate max-
imum likelihood parameters in incomplete-data problems.

Our model is novel for its discrete time-variant nature
based on the consolidation of the HMM into a Markov chain.
Although we assume that the observed states are dependent
on the underlying regime as in a standard HMM, our model
considers that the observed process in a given regime has a
Markov property. This assumption makes our model distinct
from a single regime Markov chain and HMM. Furthermore,
based on our model, we investigate the sovereign credit rating
migration in terms of estimation and forecasting. In summary,
the empirical results show that the performance of RSMC
is superior to that of single regime Markov chain in both
estimation and forecasting experiments, which suggests the
possible implementation of RSMC in risk management of
sovereign credit risk and related financial products.

This paper is organized as follows. Section 2 introduces
the mathematical background of RSMC; Section 3 presents
forward, and backward algorithms, and other preliminary
results, all of which are used to derive a version of EM
algorithm for parameter estimation; Section 4 evaluates the
proposed model by applying the model to the S&P sovereign
credit rating migration record; and Section 5 concludes. Note
that we provide proofs for the equations used in Section 3 and
present a model selection criterion to compare the fitting
performance between the benchmark Markov chain and the
proposed RSMC model in the Appendix.

II. REGIME SWITCHING MARKOV CHAIN MODEL
Our model aims to propose a discrete time and discrete value
regime switching Markov chain, which incorporates time-
varying property. We consider a discrete time Markov chain
{Xk : k = 0, 1, 2, . . .} and a discrete time stochastic process
{Yk : k = 0, 1, 2, . . .}. We assume that Yk is observed credit
rating at time k and Xk is a underlying economic condition
which is unobservable. The state spaces of Xk and Yk are
SX = {1, 2, . . . ,N } and SY = {1, 2, . . . ,M}, respectively.
In Figure 1, the concepts of the Markov chain, HMM,

and RSMC are sequentially illustrated in schematic dia-
grams. A standard Markov chain only possesses the observed
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process, Yk , where the current credit rating of Yk is only
dependent on the previous rating Yk−1. The standard HMM
assumes that the hidden process Xk is a Markov chain and
the dynamics of observation Yk is governed by either Xk (or
Xk−1). Hence, observations in HMM, Yk , are assumed to be
independent of each other. In contrast, our model consists
of the hidden process, Xk , and the observed process, Yk ,
where the current credit rating of Yk is not only dependent
on the previous rating Yk−1 but also affected by the previous
economy condition of Xk−1.
As Xk is a Markov chain, P(Xk+1|Xk ,Yk ) = P(Xk+1|Xk )

for k = 0, . . . ,L − 1, where X` = [X0,X1, . . . ,X`] and
Y` = [Y0,Y1, . . . ,Y`] for ` = 0, . . . ,L, and we define the
hidden economy state transition probability,

aij := P(Xk+1 = j|Xk = i), i, j ∈ SX (1)

Note that
∑

j∈SX aij = 1 for all i ∈ SX . For the probability
of X0, we define a0(i) := P(X0 = i) and set a0(1) = 1 and
a0(i) = 0 for i 6= 1 in our model.

The conditional probability of the observed process Yk is
P(Yk+1|Xk ,Yk ) = P(Yk+1|Yk ,Xk ), and we define the credit
rating transition probability given the economy state i as

ei(r, s) := P(Yk+1=s|Yk=r,Xk= i), i ∈ SX , r, s ∈ SY
(2)

which satisfy
∑

s∈SY ei(r, s) = 1 for all i ∈ SX and r ∈ SY .
For the probability of Y0, e0(r) := P(Y0 = r), r ∈ SY
satisfying

∑
r∈SY e0(r) = 1.

Our regime switching Markov chain model is built in the
following parameter set,

θ := {aij, ei(r, s), a0(i), e0(r), i, j ∈ SX , r, s ∈ SY } (3)

III. PARAMETER ESTIMATION FOR RSMC MODEL
A. FORWARD/BACKWARD EQUATIONS AND STATE
FILTER/SMOOTHER
We describe how to estimate parameters in θ of (3) using
forward and backward equations (recursions), and also derive
some useful and preliminary results which will be used in the
parameter estimation procedure.

Let fj(Yk ) := P(Yk ,Xk = j), and its value is computed
using the following forward equation, for j ∈ SX

fj(Yk ) =
N∑
i=1

fi(Yk−1)ei(Yk−1,Yk )aij, k = 1, . . . ,L (4)

with the initial value f1(Y0) = 1 and fj(Y0) = 0 for
j = 2, . . . ,N . The proof of (4) is provided in Appendix A.
Let bi(Yk ) := P(Yk+1

|Yk ,Xk = i) where Yk
=

[Yk ,Yk+1, . . . ,YL] for k = 0, . . . ,L − 1, and its value is
computed using the following backward equation, for i ∈ SX

bi(Yk ) = ei(Yk ,Yk+1)
∑
j∈SX

aijbj(Yk+1), k = 0, . . . ,L − 1

(5)

For the start of recursive computation, we artificially set
b1(YL) = 1 and bi(YL) = 0 for i = 2, . . . ,N . The proof
of (5) is provided in Appendix A.

By applying fj(Yk ) and bi(Yk ), we can evaluate various
quantities of interest. The probability P(Yk ) for k = 0, . . . ,L
is evaluated as

P(Yk ) =
∑
i∈SX

P(Yk ,Xk = i) =
∑
i∈SX

fi(Yk ) (6)

The state filter for state i at time k , which is the conditional
probability of hidden state i given Yk , is

P(Xk = i|Yk ) = P(Xk = i,Yk )/P(Yk )
= fi(Yk )/

∑
i∈SX

fi(Yk ) (7)

The state filter is the probability that the status of the
economy at time k is i state (level) based on the history of
credit ratings up to time k , and can be used for economic
condition forecasting.

The state smoother for state i at time k , which is the
conditional probability of hidden state i given YL , is

P(Xk = i|YL) =
fi(Yk )bi(Yk )

P(YL)
(8)

The state smoother in (8) is the probability that the status
of economy at time k (k ≤ L) is state (level) i based on
the whole history of credit ratings throughout the observation
period from time 0 to L, YL = [Y0, . . . ,YL]. For this reason,
state smoother cannot provide the information on the current
economic condition but can evaluate the past unobserved
economic condition more accurately using the whole credit
rating history. The proof of (8) is found in Appendix A.

Let nij :=
∑L−1

k=0 1(i,j)(Xk ,Xk+1) be the total count that Xk
moves from state i to j, where 1z(Z ) is an indicator function
where it is unity if Z = z and zero otherwise. Hence, nij is the
number of times that the economic condition switched from
state i to state j.

We can derive the conditional expectation of nij given YL ,
n̂ij, as follows.

n̂ij = E
[
nij|YL

]
=

L−1∑
k=0

fi(Yk )ei(Yk ,Yk+1)aijbj(Yk+1)
P(YL)

(9)

Also let ni(r, s) :=
∑L−1

k=0 1(r,s)(Yk ,Yk+1) · 1i(Xk ) be the
total count that Yk moves from state r to state s under Xk = i.
We can interpret ni(r, s) as the number of times the credit
rating moves from state r into state s under the economy con-
dition of level i. We can evaluate the conditional expectation
of ni(r, s) given YL , n̂i(r, s), as follows.

n̂i(r, s) = E [ni(r, s)|YL]

=
1

P(YL)
∑

k∈IY (r,s)

fi(Yk )bi(Yk ). (10)

where IY (r, s) := {k : (Yk ,Yk+1) = (r, s), k = 0, . . . ,L−1}.
The proof of (9) and (10) are presented in Appendix A.
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FIGURE 1. Schematic diagrams using directed graph. Note that Xk in dashed circles and Yk in solid circles represent state and observation processes,
respectively, and arrows represent the dependency structure of the model.

B. EM ALGORITHM FOR RSMC MODEL
The EM algorithm, an iterative procedure to obtain maximum
likelihood (ML) estimates of model parameters [36], works
well in incomplete (missing) data problems where direct ML
estimation is not easy. In Section 2, we assume that the eco-
nomic state sequence {Xk} is unobservable. Hence, we must
estimate parameters based on observed data only. For this
reason, EM algorithm is a valid method for our parameter
estimation.

Let θ ∈ 2 be a set of parameters as in (3), and2 denotes
the union of all possible parameter sets. Under the assumption
that all data, (XL ,YL), are known, the log-likelihood func-
tion, lnL(θ ), can be written as

lnL(θ ) = lnPθ (XL ,YL)
= ln a0(X0)+ ln e0(Y0)

+

L∑
k=1

{
ln aXk−1Xk + ln eXk−1 (Yk−1,Yk )

}
= ln a0(X0)+ ln e0(Y0)+

∑
i∈SX

∑
j∈SX

nij ln aij

+

∑
i∈SX

∑
r∈SY

∑
s∈SY

ni(r, s) ln ei(r, s) (11)

where nij and ni(r, s) are defined in Section 3.A. In our
model, we refer to all sovereign credit ratings together and
provide commonmodel parameters applied to each sovereign
rating.

Assuming that we have m nations having their own credit
rating time series, we denote the credit rating of the hth
country at time k as Y (h)

k , and define nation h’s credit rat-
ing time series, Y (h)

L = [Y (h)
0 , . . . ,Y (h)

L ]. The correspond-
ing economy condition for the hth country at time k as
X (h)
k , and define nation h’s economic condition time series,

X (h)
L = [X (h)

0 , . . . ,X (h)
L ]. Then the log-likelihood function is

extended to

lnL(θ ) =
m∑
h=1

lnPθ (X (h)
L ,Y (h)

L )

=

m∑
h=1

(
ln a0(X

(h)
0 )+ ln e0(Y

(h)
0 )

+

L∑
k=1

{
ln aX (h)

k−1X
(h)
k
+ ln eX (h)

k−1
(Y (h)
k−1,Y

(h)
k )

})

=

m∑
h=1

ln a0(X
(h)
0 )+

m∑
h=1

ln e0(Y
(h)
0 )

+

m∑
h=1

∑
i∈SX

∑
j∈SX

n(h)ij ln aij

+

m∑
h=1

∑
i∈SX

∑
r∈SY

∑
s∈SY

n(h)i (r, s) ln ei(r, s) (12)

where n(h)ij =
∑L

k=1 1(i,j)(X
(h)
k−1,X

(h)
k ) and n(h)i (r, s) =∑L

k=1 1(r,s)(Y
(h)
k−1,Y

(h)
k ) · 1i(X

(h)
k−1)

However, in reality, {X (h)
L : h = 1, . . . ,m} is unknown.

To estimate θ with incomplete data, we use the conditional
expectation of lnL(θ ) given {Y (h)

L : h = 1, . . . ,m} under the
set of parameters in (3) at the tth iteration of EM algorithm,
θ (t) ∈ 2 = {a(t)ij , e

(t)
i (r, s), a(t)0 (i), e(t)0 (r) i, j ∈ SX , r, s ∈ SY }

for t = 0, 1, 2, . . .,

Q(θ; θ (t)) := Eθ (t)
[
lnL(θ )| Y (1)

L , . . . ,Y (m)
L

]
=

m∑
h=1

ln a0(X
(h)
0 )+

m∑
h=1

ln e0(Y
(h)
0 )

+

m∑
h=1

∑
i∈SX

∑
j∈SX

n̂(h)ij ln aij

+

m∑
h=1

∑
i∈SX

∑
r∈SY

∑
s∈SY

n̂(h)i (r, s) ln ei(r, s)

where n̂(h)ij and n̂(h)i (r, s) are Eθ (t) [n
(h)
ij |Y

(h)
L ] and

Eθ (t) [n
(h)
i (r, s)|Y (h)

L ] computed under θ (t) using (9) and (10)
respectively.

The related EM algorithm is described as follows.
• E-step: Compute the conditional log-likelihoodQ(θ; θ (t)).
• M-step: Choose the new θ ′ ∈ 2 to maximize Q(θ; θ (t)).
• Update t ← t + 1 and θ (t+1)← θ ′.

First, initialize the counter index t = 0 and θ (0) ∈ 2.
Then repeat the following expectation-step (E-step) and
maximization-step (M-step) until the given stopping criterion
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is satisfied. Our way to set θ (0) for EM algorithm is described
in Appendix B.

Some typical stopping criteria are as follows. The
algorithm stops when the change in total log-likelihood is
sufficiently small or when the difference between the updated
parameter value and the previous one is smaller than a spec-
ified value. Baum-Welch algorithm [37] is a special ver-
sion of the EM algorithm for the standard HMM depicted
in Figure 1-(b).

Under the Karush-Kuhn-Tucker condition, we obtain θ ′

maximizing Q(θ; θ (m)) as follows.

âij =

∑m
h=1 n̂

(h)
ij∑m

h=1
∑

j∈SX n̂
(h)
ij

(13)

êi(r, s) =

∑m
h=1 n̂

(h)
i (r, s)∑m

h=1
∑

s∈SY n̂
(h)
i (r, s)

(14)

From (13) and (14), our EM algorithm is described in
Algorithm 1.

Algorithm 1 EM Algorithm for the Estimation of aij and
ei(r, s) in θ
Input : Initial value of aij, ei(r, s) for i, j ∈ SX and

r, s ∈ SY
Output : aij and ei(r, s) for i, j ∈ SX and r, s ∈ SY

maximizing the log-likelihood
1 Initialize aij, ei(r, s) for i, j ∈ SX and r, s ∈ SY
2 Set f1(Y0) = 1 and fj(Y0) = 0 for j = 2, . . . ,N
3 Set b1(YL) = 1 and bi(YL) = 0 for i = 2, . . . ,N
4 while stopping criteria are unsatisfied do
5 Expectation step
6 Compute fj(Yk ) using (4)
7 for j ∈ SX , k = 1, . . . ,L (in ascending order)
8 Compute bi(Yk ) using (5)
9 for i ∈ SX , k = L − 1, . . . , 0 (in descending

order)
10 Maximization step
11 Compute âij and êi(r, s) using (9),(10),(13) and (14)
12 Update âij→ aij and êi(r, s)→ ei(r, s)
13 end
14 return aij and ei(r, s) for i, j ∈ SX and r, s ∈ SY

IV. APPLICATION TO SOVEREIGN CREDIT
RATING MIGRATION
A. DATA DESCRIPTION
We apply our model to sovereign credit rating migra-
tion. The series of sovereign credit rating of 41 nations
evaluated by Standard & Poor’s during 300 months from
January 1994 through December 2018 are used. The S&P’s
original rating scheme consists of major rating categories and
additional modifiers. The major rating categories range from
AAA, AA, A, BBB, BB, B, CCC, CC, C, to D in decreasing
order of creditworthiness of an obligor, and ratings from AA

TABLE 1. Parameter estimation of the hidden economy state transition
probability of RSMC model.

to CCC are classified in more detail using plus (+) or a minus
(−) to show relative standing. In our research, we classified
22 original rating states into 14 coarser rating states: AAA,
AA+, AA, AA−, A+, A, A−, BBB+, BBB, BBB−, BB, B
(including B+, B, and B−), C (including CCC, CC, and C
grades), and Others (below C−).

B. ESTIMATION RESULTS FROM 1994 TO 2017
Based on the estimates obtained from the algorithm in
Section 3.B, we evaluate the fitting performance using a
likelihood-ratio (LR) test in (15) (see Appendix C). The null
hypothesis of LR test states that the fitting performance of
the homogeneous Markov chain is better than that of RSMC.
The chi-squared test statistic−2 ln3 in (15) with the degrees
of freedom of 38 is 125.19, and the corresponding p-value
of the LR test is below 10−10. The result suggests a strong
rejection of the null hypothesis, which eventually claims that
the process of sovereign credit rating migration should be
modeled in RSMC rather than a single regime Markov chain.

In our model, we assume two hidden states, SX = {1, 2},
where state 1 and 2 stand for the economic expansion and
contraction regimes, respectively. Table 1 shows the esti-
mated results for themonthly hidden economy state transition
probability matrix of RSMC. The result shows that each state
is likely to remain in each state after a month. The probability
of switching after a month from state 1 to state 2 is 0.31%, and
the probability from state 2 to state 1 is 4.00%. It means that
the probability from the economic contraction regime to the
economic expansion regime after a month is higher than in
the opposite case.

Table 2 summarizes the estimated results for the bench-
mark Markov chain, which is constructed based on a sin-
gle regime. The estimated results for our regime switching
Markov chain (RSMC) are shown in Table 3, where the first
and second transition probability matrices correspond to the
hidden states 1 and 2, respectively. Each state is classified
into three groups: the investment credit rating group (AAA,
AA+, AA, AA−, A+, A, A−, BBB+, BBB, BBB−), non-
investment credit rating group (BB, B, C), and default group
(Others). In the investment credit rating group, there are three
layers: the first-tier has (AAA, AA+, AA, AA−), the second
tier includes (A+, A, A−), and the bottom-tier consists of
(BBB+, BBB, BBB−).
On the whole, the diagonal elements, which are the prob-

abilities to maintain the current credit ratings, of the matrix
for hidden state 1 corresponding to the economic expansion
regime are larger than those of the matrix for hidden state 2
corresponding to the economic contraction regime. There is
still some chance for rating upgrade in the economic expan-
sion regime, while the chance is close to zero in the economic
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TABLE 2. Parameter estimation of the benchmark (homogenous) Markov chain.

TABLE 3. Parameter estimation of RSMC.

contraction regime. The tendency to maintain the current
credit rating is the highest in the first tier of investment credit
rating group (AAA, AA+, AA, AA−) in state 1, and that
is the lowest in the second tier of investment credit rating
group (A+, A, A−) in state 2. It implies that the credit
ratings in the top tier of investment credit rating group in
the economic expansion regime are most unlikely to change,
and those in the second tier of investment credit rating group
in the economic contraction regime are most likely to be
downgraded.

Notably, the downgrade of A+ rating in the economic
contraction regime is almost sure. Except for the second

tier of investment credit rating group, the probabilities to
keep incumbent credit ratings tend to be lower as ratings
become poorer in the economic contraction regime while
this trend is not observed in the economic expansion regime.
About 3% of A− credit rating cases in the economic con-
traction regime fall to non-investment credit rating grade,
B, and 1.45% of BBB+ credit rating cases descend to non-
investment credit rating grade, BB. The downgrade and
default probabilities in non-investment credit rating group
(BB, B, C) tend to increase in state 2, the economic contrac-
tion regime, compared with state 1, the economic expansion
regime.
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FIGURE 2. Examples of state filter and smoother based on the probability of state 2.

Then, the estimated transition probability matrices for
RSMC is used to compute the state filter and smoother for
the entire countries. At first, Figure 2 displays the state
filter and smoother based on the evolution of the proba-
bility of state 2 for eight countries: Thailand, Malaysia,

Korea (Asia), United States of America (Key currency),
Portugal, Ireland, Greece and Spain (Europe, PIGS). For
this case, we classify the current state as state 2 (eco-
nomic contraction) if the state smoother of state 2 is
greater or equal to that of state 1, and state 1 (economic
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FIGURE 3. Heatmap of state filter based on the probability of state 2.

expansion) otherwise. Note that the state 2 is shaded
in Figure 2.

The results of Asia show the economic contraction from
1997 to 1999, which indicates the outbreak of the Asian
currency crisis. Note that Thailand, Malaysia, and Korea are
directly involved and damaged during the crisis. The result of
the United States shows that the state smoother indicates the
economic contraction regime in 2011. As the state smoother
is dependent on the S&P credit ratings which changed the US
rating only once from AAA into AA+ in August 2011, state
smoother succeeds to capture the drop earlier. The result of
Portugal exhibits the economic contraction period for three
years, 2010 to 2012, whereas those of Ireland, Greece, and
Spain exhibit the economic contraction period from 2008 or
2009 and remain in the regime until 2011, 2011, and 2013,
respectively. Note that this indicates the European sovereign
debt crisis. Overall, the state filter and smoother well detect
the economic contraction based on the downgrades of credit
ratings, which yields a nation-wide clustering for correspond-
ing sovereign risks. Also, it seems that RSMC can detect the
contraction period promptly for the countries with volatile
credit migration than a continuously steady one. For more
details, we plot heatmaps of state filter and smoother based
on the evolution of the probability of state 2 for the entire
41 countries in Figure 3 and 4, respectively.

The order of the countries in Figure 3 and 4 is arranged
alphabetically from top to bottom in Asia, Europe, North
America, South America, and Oceania. Asia has 13 countries
from China to Turkey; Europe has 19 countries from Austria
to the United Kingdom; North America has 4 countries
including Canada,Mexico, and United States; South America
has 4 countries from Argentina to Venezuela; and Oceania
has 2 countries including Australia and New Zealand. The
heatmaps show monthly values of state filter and smoother
for state 2 from 1994 to 2017 where the color scheme
becomes brighter as its value approaches from 0 to 1. That
is, the brighter the color, the more likely the country is in the
economic contraction regime. As a result, we discover similar

FIGURE 4. Heatmap of state smoother based on the probability of state 2.

results based on the color patterns in both heatmaps. The
Asian currency crisis caused a higher probability of state 2 in
various Asian countries from 1997 to 2000, whereas the
European sovereign debt crisis caused the same phenomenon
in European countries from 2009 to 2012. The color suddenly
changes for the filter, whereas it gradually becomes bright
for smoother. It refers that the filter for state 2 defines the
economic contraction at the change of credit rating with
a value of 1 then it gradually returns to 0. It seems that
the gradual decrease of the probability of the contraction
period can be used to define the duration of sovereign
risks.

In case of smoother for state 2, the future information
of credit migration is reflected, so it displays the highest
probability at the moment of the degrading of credit rating
by gradually increasing the probability in advance. However,
since the filter only uses the present data, the value suddenly
changes when the degrading emerges. Specifically, the state
smoother is constructed based on the observations during the
whole sample period while state filter is determined using
the observations up to the current time point. Note that the
state filter and smoother for hidden state 1 are P(Xk = 1|Yk )
in (7) and P(Xk = 1|Y288) in (8) for k = 1, . . . , 288,
(L = 288), respectively. Therefore, the state smoother, which
precedes state filter for the whole sample period, shows bet-
ter performance to distinguish economic contraction regime
from economic expansion regime than state filter. However,
we conclude that the state smoother cannot play a fore-
casting role like the state filter due to its ex-post nature.
Lastly, the proportion of time spent in each state is listed
in Table 4.

The results of both state filter and smoother indicate the
dominance of state 1 (96% in filter and 97% in smoother)
against state 2 (4% in filter and 3% in smoother). Such dom-
inance retains for different continents where the proportions
of state 1 in filter (smoother) for Asia, North America, South
America, Europe, and Oceania are 97% (97%), 99% (99%),
96% (94%), 95% (93%), and 99% (100%), respectively.
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TABLE 4. Proportion of state 1 and 2 during the estimation.

C. FORECASTING RESULTS FOR 2018
Based on the state filter, we perform forecasting in
sovereign credit rating migration as described in
Frydman and Schuermann [13]. If the history of credit ratings
of a country is known for time k , its credit rating at k + 1
can be forecasted based on the conditional transition matrix
of the regime at k . In this regard, we measure the forecast
error based on the current transition matrix for next month’s

credit rating. Note that the performance of the out-of-sample
test based on the standard Markov chain is used as a
benchmark. Specifically, the Markov chain computes the
distribution of credit rating at k + 1 using a single transition
probability matrix at k . However, RSMC computes the distri-
bution of credit rating at k + 1 using a transition probability
matrix for each hidden state determined based on the value of
state filter. Note that we use the same criterion for state filter
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TABLE 5. Nation-wide forecasting performances in 2018.

as state smoother in the previous section. Since both models
are discrete, we consider the probability of the particular
credit rating is realized at k+1 as the correct answer, whereas
the sum of the other probabilities as the prediction error. For
instance, let’s suppose the credit rating of a country at k is
AA+ given that the current transition matrix yields 1%, 97%,
2% for being AAA, AA+, AA, respectively. The forecast
error is 3%(= 0.03) if the credit rating stays in AA+ at k+ 1,
whereas the forecast error is 99% if it migrates to AAA. The
experiment is conducted in all countries for 12 months from
January 2018 to December 2018. The average forecast error
for each country is summarized in Table 5.

Based on the reduced error rate in the third column, which
calculates the percentage of reduced error from the Markov
Chain to RSMC, 35 out of 41 countries show the lower
forecast errors in RSMC given that the average reduced error
rate for all countries is 17.2%. It is difficult to directly con-
vert the percent of error reduction in equivalent amount of
economic impact. However, the advantage of error reduction
can be described in the example of portfolio management for
the sovereign credit default swap products. When investing
in CDS products, it is important to forecast the country’s
credit rating to manage and hedge the corresponding risk.
It is essential to forecast the credit rating of a country, and
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TABLE 6. Monthly forecasting performances in 2018. *** indicates 0.1%
statistical significance.

if it is mistaken, it will cause huge damage in the portfolio
performance. Therefore, it is worthwhile to raise the accuracy
by even 0.1% to appropriately distribute the asset and to
hedge the risk. Therefore, we believe that the result of 17.2%
error reduction in average by the forecasting of RSMC is
encouraging result.

Hong Kong, India, Indonesia, Columbia, Hungary and
Portugal are 6 countries with the higher forecast errors in
RSMC. Although the difference of forecasting performance
between the Markov Chain and RSMC for Hong Kong is
large, that of other 5 countries are relatively small. Also,
RSMC shows lower forecast errors in all continents given
that the average reduced error rates of Asia, North Amer-
ica, South America, Europe, and Oceania are 9.5%, 23.6%,
23.8%, 21.7%, and 32.9%, respectively. Again, such low
reduction in Asia is caused by Hong Kong. The credit rat-
ing of Hong Kong is downgraded from AAA to AA+ on
September 2017. Specifically, Hong Kong has maintained
the best quality grade (AAA) for almost 7 years before the
downgrade, which is rarely observed phenomenon. In the
state filter of Hong Kong, RSMC classifies the downgrade
as State 2 (economic contraction), which then holds until
August 2018. Although the downgrade from AAA to AA+ is
a negative event, AA+ is still a second-best quality. However,
our model exhibits the limitation that a sudden downgrade
can incur the switching to State 2 regardless of the relative
quality of the credit rating, which causes the high error rate
of HongKong. In summary, the performance of RSMC can be
worse than HMM if the high-quality credit rating is suddenly
downgraded while maintaining the same rating for such a
long period. However, except for such special case, RSMC
showsmuch lower error rate than that ofMarkov chainmodel.
For more details, we analyze the results for different months
and credit ratings in Table 6 and Figure 5, respectively.

Table 6 shows the average forecast error for different
months. The results of paired t-test indicate the rejection of
the null hypothesis, which states that the forecast error of the
Markov chain is not larger than that of RSMC, at 0.1% sta-
tistical significance. Therefore, we claim that the forecasting
performance of RSMC is significantly superior to that of the
Markov chain.

FIGURE 5. Reduced forecast errors for different credit ratings in 2018.

Figure 5 illustrates the average reduced forecast errors for
different credit ratings. Note that we determine the credit
rating of a country for 2018 based on its median. Given
that the positive value indicates the improvement by RSMC,
11 out of 13 credit ratings show the lower forecast errors in
RSMC. Exceptions are AA+(Hong Kong) and BBB−(India,
Indonesia, Columbia, Hungary, and Portugal), caused by the
poor performances of six countries as in Table 5. Note that
AA+ and BBB− include 4 and 6 countries, respectively,
in 2018. Besides two exceptions, the lower the credit rating,
the more improvement in the forecasting by RSMC. There-
fore, we expect that RSMC is applicable in managing the
credit products regarding countries with higher risk of credit
rating migration.

V. CONCLUSION
Throughout this paper, we propose the RSMC, a discrete
time regime switching Markov model where the underly-
ing regime changes in the way of HMM, for modeling the
sovereign credit rating migration. We carefully define and
evaluate the mathematical models of RSMC, a version of
the EM algorithm for parameter estimation, and the fitting
performance using an LR test. Then, we perform the estima-
tion of credit rating migration in S&P sovereign credit ratings
from January 1994 to December 2017 and its utilization
for forecasting in 2018. Based on the comparison between
the performances of a single regime (homogeneous) Markov
chain and RSMC, we discover the following results.

For estimation, we detect that the sovereign credit rat-
ing migration can be classified into two regimes: economic
expansion (state 1) and contraction (state 2). Note that the
relatively high chance in state 1 and almost zero chance in
state 2 for the upgrade of credit rating ensure the credibility
of two regimes. Also, the result of the LR test provides
evidence of improvedmodeling for the dynamics of sovereign
credit rating migration via RSMC. Given that the probability
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of regime switching from economic expansion to contrac-
tion is 0.31%, whereas that from economic contraction to
expansion is 4.00%, it seems that the economic condition
tends to stay in the same state where the contraction due
to the sovereign credit risk is a rare event in the economic
cycle. Secondly, we observe that the top tier credit ratings
(AAA, AA+, AA, AA−) in the economic expansion are
most unlikely to be changed, whereas the second tier (A+,
A, A−) in the economic contraction are most likely to be
downgraded. In themeantime, the downgrade transition prob-
ability in non-investment credit rating group (BB, B, C) is
highly susceptible to the change in the economic condition
where the probabilities of downgrade and default ratings tend
to increase in the economic contraction. These findings agree
with the business cycle effect reported in empirical litera-
ture [9], [38], [39] on credit migration. Lastly, we discover
the association between the events of sovereign credit risks
and the periods of economic contraction detected by RSMC.
Based on the heatmaps of state filter and smoother, we detect
the continental clustering for the Asian currency crisis and
European sovereign debt crisis.

For forecasting, we confirm that the overall forecast error
of RSMC is lower than that of a single regime Markov chain.
Specifically, RSMC reduces the forecast error by 17.2%
where 35 out of 41 countries exhibit the improved forecast
errors. Note that the improvement is also detected for all
continents and forecastingmonths. Interestingly, the forecast-
ing for different credit ratings exhibits more improvements
in lower credit ratings where the improvements in forecast
errors in the second tier and non-investment credit ratings are
relatively higher than those of others.

In best of our knowledge, this study is the first attempt
to apply a discrete time Markov chain that consolidates the
HMM whose observed process in a given regime inherits
a Markov property for the estimation and forecasting of
sovereign credit rating migration. The economic contribution
of our model lies in its estimation and forecasting ability
to the second tier and non-investment credit ratings whose
investment should be reconsidered and rebalanced when the
sovereign credit risk arises. Note that those credit ratings are
sensitive to the changes in economic condition. Once the
forecasting is executed, the investment decision for credit
portfolio becomes possible. Hence, we believe that our model
is suitable to be implemented to manage the risk exposures
of sovereign credit risk and related financial products in both
practical and governing purposes.

Despite its discoveries, some limitations should be
addressed in future studies. In our research, we only consider
two states, economic contraction, and expansion regimes,
as hidden states. When our model is applied to the rating
migration analysis for various bonds, more than two of mul-
tiple hidden states may be needed for the sophisticated mod-
eling to reflect the unobserved condition. Also, we assume
that the latent variable for time is not related to poten-
tial exogenous variables. Thus, the study on the adequate
structure of hidden states and utilization of macro-economic

variables are left as the areas of further extension of our
research.

APPENDIX A
PROOFS
Proof of (4): Using (1) and (2),

fj(Yk ) = P(Yk ,Xk = j)

=

∑
i∈SX

P(Yk−1,Yk ,Xk−1 = i,Xk = j)

=

∑
i∈SX

P(Yk |Yk−1,Xk−1 = i,Xk = j)

×P(Xk = j|Yk−1,Xk−1 = i)P(Yk−1,Xk−1 = i)

=

∑
i∈SX

P(Yk |Yk−1,Xk−1 = i)

×P(Xk = j|Xk−1 = i)P(Yk−1,Xk−1 = i)

=

∑
i∈SX

ei(Yk−1,Yk )aijfi(Yk−1)

�
Proof of (5): From the dependency structure of our model

in Section 2, P(Yk+1
|Yk−1,Yk ,Xk−1 = j,Xk = i) =

P(Yk+1
|Yk ,Xk = i) = bi(Yk ).

Using (1) and (2),

bi(Yk ) = P(Yk+1
|Yk ,Xk = i)

=

∑
j∈SX

P(Yk+1,Yk+2,Xk+1 = j|Yk ,Xk = i)

=

∑
j∈SX

P(Yk+2
|Yk+1,Yk ,Xk+1 = j,Xk = i)

×P(Yk+1,Xk+1 = j|Yk ,Xk = i)

=

∑
j∈SX

bj(Yk+1)P(Xk+1 = j|Yk ,Yk+1,Xk = i)

×P(Yk+1|Yk ,Xk = i)

= ei(Yk ,Yk+1)
∑
j∈SX

aijbj(Yk+1).

�
Proof of (8): The posterior probability of Xk = i given YL

is computed using the definitions of fi(Yk ) and bi(Yk )

P(Xk = i|YL) = P(Yk ,Yk+1,Xk = i)/P(YL)
= P(Yk+1

|Yk ,Xk = i)P(Yk ,Xk = i)/P(YL)
= P(Yk+1

|Yk ,Xk = i)P(Yk ,Xk = i)/P(YL)
= bi(Yk )fi(Yk )/P(YL)

�
Proof of (9): By using the dependency structure in

Section 2 and the definitions of aij, ei(Yk ,Yk+1), and bi(Yk ),
we can show that

n̂ij = E
[
nij
∣∣YL]

= E

[
L−1∑
k=0

1(i,j) ((Xk ,Xk+1))
∣∣YL]
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=

L−1∑
k=0

E
[
1(i,j) ((Xk ,Xk+1))

∣∣YL]
=

L−1∑
k=0

P(Xk = i,Xk+1 = j|YL)

=

L−1∑
k=0

fi(Yk )ei(Yk ,Yk+1)aijbj(Yk+1)
P(YL)

where the last equality is shown from the following equation.
For k = 0, . . . ,L − 1,

P(Xk = i,Xk+1 = j|YL)

=
P(Xk = i,Xk+1 = j,Yk ,Yk+1)

P(YL)

=
P(Xk = i,Yk )P(Xk+1 = j,Yk+1

|Xk = i,Yk )
P(YL)

=
fi(Yk )P(Xk+1 = j,Yk+1

|Xk = i,Yk )
P(YL)

=
fi(Yk )ei(Yk ,Yk+1)aijbj(Yk+1)

P(YL)
where the fourth equality follows from the following
equation. For k = 0, . . . ,L − 1

P(Xk+1 = j,Yk+1
|Xk = i,Yk )

= P(Yk+2,Yk+1|Xk+1 = j,Xk = i,Yk )

×P(Xk+1 = j|Xk = i,Yk )

= P(Yk+2,Yk+1|Xk+1 = j,Xk = i,Yk )

×P(Xk+1 = j|Xk = i)

= P(Yk+2
|Yk+1,Xk+1 = j,Xk = i,Yk )

×P(Yk+1|Xk+1 = j,Xk = i,Yk )aij
= P(Yk+2

|Yk+1,Xk+1 = j)P(Yk+1|Xk = i,Yk )aij
= bj(Yk+1)ei(Yk ,Yk+1)aij

�
Proof of (10): The conditional expectation of ni(r, s)

given YL is evaluated by

n̂i(r, s) := E

[
L−1∑
k=0

1(r,s) ((Yk ,Yk+1)) · 1i(Xk )
∣∣YL]

=

L−1∑
k=0

E
[
1(r,s) ((Yk ,Yk+1)) · 1i(Xk )|YL

]
=

∑
k∈IY (r,s)

E[1i(Xk )|YL]

=

∑
k∈IY (r,s)

P(Xk = i|YL)

=

∑
k∈IY (r,s)

fi(Yk )bi(Yk )
P(YL)

.

where IY (r, s) := {k : (Yk ,Yk+1) = (r, s), k = 0, . . . ,L − 1}
and the last equality follows from (8). �

APPENDIX B
INITIAL PARAMETERS FOR EM ALGORITHM
We set θ (0) = {a(0)ij , e

(0)
i (r, s), a(0)0 (i), e(0)0 (r) i, j ∈ SX , r,

s ∈ SY } as follows. First, we make a(0)ij = (1 − ε)1{i=j} +
ε1{i 6=j} and use a very small positive value for ε (ε ≈ 0).
The reason why we set a(0)ii ≈ 1 and a(0)ij ≈ 0 for i 6= j is
due to the null hypothesis of our model selection criterion
(LR test) claiming that the fitting performance of the single
regime (homogeneous Markov chain) is better than that of
multiple regimes (regime switching Markov chain). Second,
we set all state transition probabilities, e(0)i (r, s), to be iden-
tical as e(0)i (r, s) = 1/|SY | for all r, s ∈ SY . Note that |SY | is
the number of elements in SY . Third, we let a0(1) = 1 and
a0(i) = 0 for i 6= 1 as we mentioned in section 2. Lastly,
the value of e(0)0 (r) is set to be the frequency of initial state r
in our observed data sets.

APPENDIX C
MODEL SELECTION CRITERION BETWEEN
MARKOV CHAIN AND RSMC MODEL
When the number of regime N = 1, the proposed RSMC
model embraces homogeneous Markov chain (benchmark
Markov chain). To compare fitting performance of multiple
regimes, we construct a likelihood ratio (LR) test where the
null hypothesis is that the observation process evolves accord-
ing to a homogeneousMarkov chain (MC) and the alternative
that the process evolves according to RSMCmodel. Using the
log likelihood function lnL(θ ) in Section 3.B, we define the
log-likelihood ratio

3 := ln
(

L(θMC )
L(θRSMC )

)
= lnL(θMC )− lnL(θRSMC )

where θMC and θRSMC are parameter sets for MC and RSMC
models respectively, and the parameter set is defined in
equation (3).

Standard theories indicate that the asymptotic distribution
of −23 is chi-squared,

−23
a
∼ χ2(df(θRSMC )− df(θMC )) (15)

where df(θ ) is the degrees of freedom of a model with
parameter set θ .
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