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ABSTRACT Failure mode and effects analysis (FMEA) is an effective reliability analysis technique and has
been used for safety and dependability analysis in a wide range of fields. In the traditional FMEA, a method
called risk priority number (RPN) has been widely used to determine the risk levels of failure modes.
However, the method is deficient in dealing with imprecise data. To overcome that shortcoming, we propose
a novel method based on fuzzy evidential reasoning rules to study the risk evaluation of failure modes in an
uncertainty evaluation environment. The main contributions of this work are twofold: First, by analyzing the
classical risk priority number method, we extract the reasoning knowledge from RPN method to construct
fuzzy evidential reasoning rules for risk evaluation based on virtue of Dempster-Shafer evidence theory and
fuzzy set theory; Second, the initial risk assessment is modeled with fuzzy form based on basic probability
assignment (BPA) and fuzzy number, which can perfectly reflect the uncertainties in practice. The approach
establishes a new reasoning model for fuzzy risk evaluation in FMEA. Finally, an example for risk evaluation
of failure modes during general anesthesia process is given to illustrate the effectiveness of the proposed
method.

INDEX TERMS Dependability, failure mode and effect analysis, Dempster-Shafer evidence theory, fuzzy
set theory, fuzzy evidential reasoning rule, risk priority number.

I. INTRODUCTION
Dependability is the most important property of safety crit-
ical systems that are used in many industries, including
the aerospace, medical, and automotive and whose failure
has the catastrophic effects on human life. The concept
of dependability is defined as ‘‘the ability of the sys-
tem to deliver services that can justifiably be trusted’’ [1].
In systems engineering field, dependability includes sev-
eral analysis tools such as Fault Tree Analysis (FTA) [2],
Preliminary hazard analysis (PHA) [3], Failure mode, effects
and criticality analysis (FMECA), hazard and operability
studies (HAZOPs) [4] and Failure mode and effect analy-
sis (FMEA) [5]. As Liuz [6] mentioned, ‘‘The interviewed
practitioners most frequently cited FMEA, FTA, and risk
assessment. However, the most mentioned approach was
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FMEA (66 percent), not FTA (33 percent)’’. There are two
reasons for this: First, it provides a documented method for
assessing potential failure mechanisms, failure modes and
their impact on system operation, resulting in a list of failure
modes ranked and selecting a design with a high probabil-
ity of successful operation and safety; Second, FMEA is a
criteria for early planning of tests and an effective method
for evaluating the effect of proposed changes to the design
and operational procedures on mission success and safety.
We take the requirements into account and assemble people
with different experience to do the risk analysis. We make the
FMEA on the requirements and try to find those that impact
the safety of the system or product [6].

Failure mode and effect analysis (FMEA), as a system-
atic dependability analysis technique, is used to identify
the components most likely to cause failures. Failure mode
refers to the form of system failure, and effect analysis
is to study the effect of component failure on the system.
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The theory of FMEAprovides a basis for designers to develop
improvements or upgrades by analyzing and identifying vari-
ous potential failure modes, failure causes, and impacts in the
system, thereby reducing post-loss losses and improving sys-
tem reliability [7]–[9]. As an ex ante approach, FMEA aims
to identify the preventive measures or improvement schemes
and improve the reliability of system by risk assessment and
ranking of possible failure modes of the system [10]–[13].

In the traditional FMEA, a method called risk priority
number (RPN) is widely used to find high-risk failure modes.
The method is simple in structure and easy to understand
and implementation. Although RPN method is an attractive
risk evaluation tool in FMEA, it still shows several weak
points when applied in actual industrial situations, for exam-
ple the possible missing of risk factors, without considering
different importance between risk factors and so on, espe-
cially when criticality analysis is conducted using risk prior-
ity number. Hence, many new risk evaluation methods have
been developed to overcome the weaknesses of conventional
RPN, such as data envelopment analysis (DEA) [14]–[16],
the technique for order of preference by similarity to
ideal solution (TOPSIS) [17]–[19], VIKOR [20]–[22], multi-
attribute failure mode analysis [23], decision making trial
and evaluation laboratory (DMETEL) [24]–[26] and hybrid
approaches [27]–[29]. Moreover, different failure analysis
models based on uncertainty theories have been proposed
in literature. Zammori and Gabbrielli [30] presented an
advanced version of the failure mode, effects and criticality
analysis (FMECA) [31], [32], which enhances the capabil-
ities of the standard FMECA by taking into account possi-
ble interactions among the principal causes of failure in the
criticality assessment. Wang et al. [33] proposed fuzzy risk
priority numbers for prioritization of failure modes to deal
with the problem that it may be inaccuracy in real applica-
tions to determine the risk priorities of failure modes using
the RPN. Chin et al. [15] presented an FMEA approach based
on the evidential reasoning approach that is useful to model
the diversity and uncertainty of the assessment information
and the evaluation of risk factors is the combination of risk
levels of RPN with their corresponding percentages.

In the risk evaluation of FMEA, domain experts’ knowl-
edge and evaluation play a very important role. The evalua-
tion is always described by crisp numbers in many methods
of FMEA, especially RPN. RPN is a simple and effective
approach. However, the crisp number is hardly given pre-
cisely by domain experts for risk evaluation in real and it loses
much uncertainty information so that the evaluation result is
less accurate. At the same time, the evaluation from human is
always subjective and imprecise. Then how to reduce negative
effectiveness of these uncertainties? Various theories have
been proposed to solve the problem, such as evidence the-
ory [34], belief entropy [35]–[37], belief function [38], [39],
fuzzy set theory [40], D-number [41], Z-number [42] and
so on [43]. In this study, we try to address the problem
from a perspective of fuzzy evaluation. The risk factors are
combined with occurrence, severity and detection like RPN.

Linguistic item expressed by fuzzy set is used to describe the
level of risk factor while the crisp number is used in RPN.
In order to study the risk evaluation under uncertain cir-
cumstances, in this paper a novel failure mode and effects
analysis method is proposed based on fuzzy evidential rea-
soning rules. The steps of the proposed method are listed as
follows: First, we construct fuzzy evidential reasoning rules
by analyzing the RPN method; Second, the risk evaluation
expressed in basic probability assignment (BPA) for every
failuremode is given by experts, thenwe can obtain reasoning
evaluation results by fuzzy evidential reasoning based on the
rules; Third, all failure modes are ranked in decreasing order
according to the value that is obtained by defuzzifying the
evaluation result. At last, the proposed method is validated
through an illustrative example.

The rest of this paper is organized as follows. In Section II,
the method’s related concepts are briefly presented.
In Section III, we introduce the main frame of proposed
method and the main steps to construct a base of fuzzy
evidential reasoning rules. In section IV, one example is
provided to illustrate the proposed model. Furthermore, some
comparisons and analysis with other methods are given to
confirm the effectiveness of the proposed method. Finally,
conclusions of this paper are presented in Section V.

II. PRELIMINARIES
A. RPN METHOD IN FMEA
FMEA is a structural and preventive reliability analysis
approach that starts with known potential failure modes at
one level, and investigates their effects on the next and higher
level of system hierarchy [44]. In FMEA, the first is to iden-
tify all possible potential failure modes of the product or sys-
tem. After that, analyze each failure mode with three risk
factors: occurrence (O), severity (S) and detection (D), where
O is the probability of the failure, S is the severity of the
failure, and D is the probability of not detecting the failure.
The analysis results can help analysts to identify and correct
the failure modes that have a detrimental effect on the system
and improve its performance during the stages of design and
production [45].

The risk priority number (RPN) approach is usually used
in FMEA to determine the prioritization of failure modes.
Assuming V is the risk level of a failure mode, it is defined
as

V = O× S × D. (1)

For obtaining the risk number of a potential failure mode,
three risk factors are evaluated using 10-point scales
described in Table 1, Table 2 and Table 3 [46]–[48]. The
higher the risk number of a failure mode, the greater the
risk is for product system reliability. With respect to the risk
numbers, failure modes can be ranked and then proper actions
will be preferentially taken on the high-risk failure modes.

It can be found that the RPN method is a simple, intu-
itive and easy to operate and implement. However, there
are some important defects or problems in this method that
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TABLE 1. Suggested ratings for the occurrence (O) of a failure mode.

TABLE 2. Suggested ratings for the severity (S) of a failure mode.

need to be further solved [49]. For example, the impact of
uncertainty on the evaluation process is not considered and
the difference of their importance between three indicators,
occurrence, severity and detection, is not considered. Many
studies have provided improved methods for the above prob-
lems. For example, the three factors, occurrence, severity,
and detection, are respectively given weights, the evaluation
level, 1-10, is converted into a fuzzy linguistic term to reflect
the uncertainty in the evaluation, and so on [49]–[53].

B. DEMPSTER-SHAFER EVIDENCE THEORY
Dempster-Shafer evidence theory (D-S evidence theory),
introduced by Dempster [34] first and expanded by
Shafer [54] later, is used to deal with the problem of uncer-
tainty [37], [55] and widely used in decision making [56].

In the evidence theory, 2 called the frame of discernment
(FOD) [57] is defined as a sample space [58]. It is composed
of N exhaustive and exclusive hypotheses as follows

2 = {H1,H2, . . . ,Hi, . . . ,HN }. (2)

The power set of 2 is the set containing all the pos-
sible subsets of 2, represented by 22. This set consists

TABLE 3. Suggested ratings for the detection (D) of a failure mode.

of 2N elements: 22 = {∅,H1,H2, . . . ,HN , {H1 ∪

H2}, . . . , {H1∪H2∪· · ·∪Hi}, . . . ,2}. For a FOD2, a basic
probability assignment (BPA) is a function m from 22 to
[0,1], formally defines as

m : 22→ [0, 1]. (3)

The function m is also called a mass function. It must satisfy
the following condition:∑

A∈22

m(A) = 1,

m(∅) = 0. (4)

The mass m(A) represents how strongly the evidence
supports A [59]. For each subset A ⊆ 2, it is called a focal
element of m if m(A) > 0. To deal with the uncertain data
effectively, some aspects of D-S evidence theory have been
developed well, including combination rule [60], [61] and
conflict management [62].

In order to make decision in terms of BPA, an approach,
called pignistic probability transformation (PPT), is proposed
by Smets and Kennes [63] to derive a probability distribution
fromBPA. Letm be amass function or BPA on FOD2, a PPT
function BetPm : 2→ [0, 1] associated to m is defined by

BetPm(x) =
∑

x∈A,A⊆2

1
|A|

m(A)
1− m(∅)

, (5)
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where m(∅) 6= 1 and |A| is the cardinality of
proposition A.

Considering two pieces of evidence indicated by m1
andm2, Dempster’s combination rule can be used to combine
them and is defined as follows:

m(A) =


1

1− K

∑
B∩C=A

m1(B)m2(C), A 6= ∅;

0, A = ∅.
(6)

where K =
∑

B
⋂
C=∅

m1(B)m2(C) (7)

Assuming there are two BPAs m1 and m2 defined on
2 = {a, b}:

m1 : m1({a}) = 0.6, m1({b}) = 0, m1({a, b}) = 0.4

m2 : m2({a}) = 0.7, m2({b}) = 0.2, m2({a, b}) = 0.1

According to Dempster’s combination rule, the combined
BPA m could be obtained as follows:

K = m1({a})× m2({b})+ m1({b})× m2({a})

= 0.6× 0.2+ 0 = 0.12

m({a}) =
1

1− K
× {m1({a})× m2({a})

+m1({a})× m2({a, b})+ m1({a, b})× m2({a})}

=
0.6× 0.7+ 0.6× 0.1+ 0.4× 0.7

1− 0.12
= 0.86

m({b}) =
1

1− K
× {m1({b})× m2({b})

+m1({b})× m2({a, b})+ m1({a, b})× m2({b})}

=
0+ 0+ 0.4× 0.2

1− 0.12
= 0.09

m({a, b}) =
m1({a, b})× m2({a, b})

1− K

=
0.4× 0.1
1− 0.12

= 0.05.

C. FUZZY SET THEORY
Fuzzy set theory was first introduced by Zadeh [40] in 1965 to
deal with the uncertainty information [64]. It provides an
efficiently simple way to express the vagueness or imprecise
information for the situation in which subjective concepts are
too complex or too ill-defined to be reasonably described in
conventional quantitative expressions [65].
Definition 1: Let X be the universe of discourse, a fuzzy

set A is characterized by a membership functionµA satisfying

µA : X → [0, 1]

where µA(x) is called the membership degree of x ∈ X
belonging to fuzzy set A.
Fuzzy number is defined in different forms depending on

the characteristics of the problem. Triangular and trapezoidal
fuzzy numbers are two of most widely used fuzzy numbers.

While x, a1, a2, a3 ∈ R, a triangular fuzzy number is
usually denoted as A = (a1, a2, a3) shown in Figure 1, which

FIGURE 1. The membership function of triangular fuzzy number A.

could be defined by a membership function µA as follows:

µA(x) =


x − a1
a2 − a1

, a1 < x < a2
a3 − x
a3 − a2

, a2 ≤ x < a3

0, otherwise

(8)

In a triangular fuzzy number A = (a1, a2, a3), the
element a2 gives the maximal degree of membership,
i.e. µA( a2 ) = 1, meaning that a2 is the value with the highest
degree of membership. At the same time, a1 and a3 are the
lower and upper bound of the evaluation data, respectively.

III. PROPOSED METHOD
In the traditional RPN method, the risk factors were assessed
with crisp numbers. However, because of the increasing com-
plexity of system and the lack of knowledge, they may be not
easy to be precisely evaluated in the real situation. Therefore
in the paper, combining D-S evidence theory, fuzzy set theory
and reasoning rules for the risk assessment of failure modes,
a novel method is presented based on fuzzy evidential rea-
soning rules. The main steps are as follows shown in Figure 2
which contains four phases, including constructing rules,
evaluation, process and rank.

A. TRANSFORM EACH RPN RECORD TO A FUZZY
EVIDENTIAL REASONING RECORD
In this step, the knowledge suggested in RPN approach will
be transformed to fuzzy evidential reasoning rules. A fuzzy
evidential reasoning record is an IF-THEN rule whose com-
ponents are BPAs defined on FOD consisting of fuzzy lin-
guistic items. In the RPN, every risk factor is evaluated by a
crisp number. The evaluation result, V , is obtained according
to V = O × S × D. The four numbers construct a RPN
record, which include three risk factor evaluation values and
the corresponding result’s value. Because of the uncertainty
in the process of evaluation, fuzzy linguistic term, which is
represented by triangular fuzzy number, is used to describe
the damage degree of all factors in RPN to reduce uncertainty
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FIGURE 2. Flowchart of the proposed method for fuzzy risk evaluation.

effect. Then a RPN record is transformed to a fuzzy evidential
reasoning record. The following are the main steps.
Step 1: define fuzzy linguistic terms to represent expert’s

evaluation on O, S, D and V
The three risk factors O, S and D are in the same range of

values, so in this paper the same sample space is set for them
and their three fuzzy linguistic terms are defined: Very Low
(VL), Low (L), Middle Low (ML), Middle (M), Middle High
(MH), High (H) and Very High (VH). For V , there are seven
fuzzy linguistic terms: Very Good (VG), Good (G), Middle
Good (MG), Fair (F), Middle Bad (MB), Bad (B) and Very
Bad (VB). They can be expressed with FOD as follows:

2O = 2S = 2D = {VL,L,ML,M ,MH ,H ,VH}
2V = {VG,G,MG,F,MB,B,VB}

In this paper, every fuzzy linguistic term is represented by a
triangular fuzzy number given in Table 4 and Table 5. Then
the membership function [66] ofO, S,D is shown in Figure 3
and that of V is in Figure 4.
Step 2: list RPN records according to V = O × S × D.

O, S andD range from 1 to 10. According to V = O×S×D,
we get V ∈ [1, 1000]. So there are 1000 pieces of RPN record
listed in Table 6.

TABLE 4. Linguistic item for evaluation of O, S, D.

TABLE 5. Linguistic item for evaluation of V .

Step 3: transform the values of O, S, D and V to BPAs for
each RPN record.
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FIGURE 3. The membership function of risk factor (O, S or D).

FIGURE 4. The membership function of V .

TABLE 6. RPN records.

According to defined membership functions of fuzzy lin-
guistic terms for O, S, D and V , one number x always
corresponds to two levels Ã1 and Ã2. Assume h1 + h2 = 1,
µÃ1 (x) = h1 and µÃ2 (x) = h2, then a mass function could be
constructed as follows:

m(Ã1) = h1, m(Ã1, Ã2) = h2, while h1 ≥ h2 (9)

m(Ã2) = h2, m(Ã1, Ã2) = h1, while h1 < h2 (10)

For example in Figure 5,µVL(2.0) = 0.333,µL(2.0) = 0.667
while x = 2.0. The BPA is obtained as m({L}) =
0.667,m({VL,L}) = 0.333.

In this way, the values of each RPN record are trans-
formed to the corresponding record of BPAs(mo, ms,
md , mv). Through the above steps, for example, RPN record
‘‘IF O = 1, S = 2,D = 10 THEN V = 20’’ is transformed

FIGURE 5. The example of transforming a crisp number to BPAs.

to the fuzzy evidential reasoning record:

IF mo({VL}) = 1.0

∧ms({L}) = 0.667, ms({VL,L}) = 0.333

∧md ({VH}) = 1.0

THEN mv({VG}) = 0.886, mv({VG,G}) = 0.114. (11)

B. CONSTRUCT A BASE OF FUZZY EVIDENTIAL
REASONING RULES
In the above steps, original knowledge in RPN method has
been transformed to fuzzy evidential reasoning records. The
record is still uncertain knowledge. In this section, we will
transform uncertain fuzzy evidential reasoning records to
certain fuzzy evidential reasoning rules, and for every record
transform its uncertain property to corresponding rule’s
weight. A fuzzy evidential reasoning rule is an IF-THEN rule.
Aggregate rules with the same antecedent, then construct a
base of fuzzy evidential reasoning rules.
Step 1: decompose fuzzy evidential reasoning records to

weighted fuzzy evidential reasoning rules
In a weighted fuzzy evidential reasoning rule, take a focal

element from every BPA which is risk factor’s evaluation
result in the order of O, S, D. Then three focal elements are
combined as antecedent of a rule and their product is taken as
the rule’s weight. For example, the fuzzy evidential reasoning
record in (11) is transformed to the following weighted fuzzy
evidential reasoning rules:

Rule 1:

IF (O = VL) ∧ (S = L) ∧ (D = VH ),

THEN mv1 ({VG}) = 0.886, mv1 ({VG,G}) = 0.114

with a weight 1.0× 0.667× 1.0 = 0.667;

Rule 2:

IF (O = VL) ∧ (S = {VL,L}) ∧ (D = VH ),

THEN mv2 ({VG}) = 0.886, mv2 ({VG,G}) = 0.114

with a weight 1.0× 0.333× 1.0 = 0.333.

Step 2: aggregate weighted fuzzy evidential reasoning
rules
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TABLE 7. A assumed weighted fuzzy evidential reasoning rules’ base.

In this step, the weighted rules with the same antecedent
will be aggregated to a fuzzy evidential reasoning rule. First,
for a antecedent, gather all rules with that antecedent and
normalize their weights to obtain new weights. Next weight
every rule’s consequent using its new weight. Then aggre-
gate those weighted consequents with same focal element by
summing them up to obtain the focal element’s corresponding
mass. Finally, we get a new BPA that also is the consequent
of a rule. By the above steps, we aggregate original weighted
rules and obtain new fuzzy evidential reasoning rules. These
rules could be constructed a conditional mass table.

For example, assume the weighted rules listed in the
Table 7 is constructed a complete weighted fuzzy evidential
reasoning rules’ base. The rules are combined with two rules
of the above example and the following:

RPN record 2:

IF O = 1, S = 3,D = 10 THEN V = 30

Transformer:

corresponding fuzzy evidential reasoning record:

IF mo({VL}) = 1.0

∧ms({L}) = 0.667, ms({ML,L}) = 0.333

∧md ({VH}) = 1.0

THEN mv({VG}) = 0.826, mv({VG,G}) = 0.174.

Transformer:

corresponding fuzzy evidential reasoning rules:

Rule 3:

IF (O = VL) ∧ (S = L) ∧ (D = VH ),

THEN mV3 ({VG}) = 0.826,mV3 ({VG,G}) = 0.174

with a weight 0.667;

Rule 4:

IF (O = VL) ∧ (S = {ML,L}) ∧ (D = VH ),

THEN mv4 ({VG}) = 0.826,mv4 ({VG,G}) = 0.174

with a weight 0.333.

RPN record 3:

IF O = 1, S = 4, D = 10 THEN V = 40

Transformer:

corresponding fuzzy evidential reasoning record:

IF mo({VL}) = 1.0

∧ms({ML}) = 1.0

∧md ({VH}) = 1.0

THEN mv({VG}) = 0.766, mv({VG,G}) = 0.234.

Transformer:

corresponding fuzzy evidential reasoning rules:

Rule 5:

IF (O = VL) ∧ (S = ML) ∧ (D = VH ),

THEN mv5 ({VG}) = 0.766, mv5 ({VG,G}) = 0.234

with a weight 1.0;

Assume N rules has the same antecedent and their
consequents are made up of a weighted BPA set
{mvi with a weight wi, i = 1, . . . ,N }. These rules would
be aggregated a new rule. The new rule’s antecedent is
that antecedent. Its consequent m′v in (13) can be calcu-
lated by weighted average method with the new weight w′i]
in (12).

w′i =
wi∑N
j=1 wj

(12)

m′v(l) =
N∑
i=1

mvi (l)× w
′
i, l ∈ 22V (13)

Of them, Rule 1 and 3 with same antecedent (O = VL)∧(S =
L) ∧ (D = VH ) would be aggregated to obtain a new fuzzy
evidential reasoning rule. The antecedent of the new rule is
(O = VL) ∧ (S = L) ∧ (D = VH ), and its consequent is
expressedwith amass functionm′v1 according to (12) and (13)
as follows:

w′1 =
w1

w1 + w3
= 0.5

w′3 =
w3

w1 + w3
= 0.5

m′v1 ({VG}) = mv1 ({VG})× w
′

1 + mv3 ({VG})× w
′

3

= 0.856

m′v1 ({VG,G}) = mv1 ({VG,G})× w
′

1

+mv3 ({VG,G})× w
′

3 = 0.144

So we get a fuzzy evidential reasoning rule expressed as
follows:

IF(O = VL) ∧ (S = L) ∧ (D = VH ),

THEN m′v1 ({VG}) = 0.856,m′v1 ({VG,G}) = 0.144.

like the above steps, all new rules are obtained as follows.
They could be constructed a conditional mass table which is
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TABLE 8. Crisp numbers of V ’s fuzzy linguistic terms.

based on the assumed rules’ base.

Rule1 :

IF (O = VL) ∧ (S = L) ∧ (D = VH ),

THEN m′v1 ({VG}) = 0.856,m′v1 ({VG,G}) = 0.144.

Rule2 :

IF (O = VL) ∧ (S = {VL,L}) ∧ (D = VH ),

THEN m′v2 ({VG}) = 0.886,m′v2 ({VG,G}) = 0.114.

Rule3 :

IF (O = VL) ∧ (S = {ML,L}) ∧ (D = VH ),

THEN m′v3 ({VG}) = 0.826,m′v3 ({VG,G}) = 0.174.

Rule4 :

IF (O = VL) ∧ (S = ML) ∧ (D = VH ),

THEN m′v4 ({VG}) = 0.766,m′v4 ({VG,G}) = 0.234.

C. EVALUATE THE FAILURE MODE IN TERMS OF THE
FUZZY EVIDENTIAL REASONING RULES
Through the above steps, the conditional mass table for risk
evaluation in FMEA has been established. Therefore if we
collected the evaluation of risk factors O, S, D for a failure
mode, its risk can be calculated, indicated by a BPA, via
standard network reasoning process. Assume a failure mode
is donated by {mo(i) = ai, i ∈ 22O}, {ms(j) = bj, j ∈ 22S }

and {md (k) = ck , k ∈ 22D}. For a combination {i, j, k}, it is
taken as a antecedent (O = i) ∧ (S = j) ∧ (D = k), then
look up the conditional mass table to get its corresponding
consequent {mvi,j,k (l) = el, l ∈ 22V } and calculate its
weight wi,j,k with (14) at the same time. Finally, aggregate
the consequents and corresponding weights and get a mass
function mv according to (15).

wi,j,k = mo(i)× ms(j)× md (k) (14)

w′i,j,k =
wi,j,k∑

i
∑

j
∑

k wi,j,k

mv(l) =
∑
i

∑
j

∑
k

mvi,j,k (l)× w
′
i,j,k (15)

D. RANK THE FAILURE RULES BY DEFUZZIFYING THE
BPA OF EACH FAILURE MODE
In the above section, all failure modes’ evaluations are
obtained that are described with BPAs. To rank failure modes
easily, a RPN is usually required. What we need to do is to
reveal the values that linguistic terms take. At first, trans-
form each evaluation result, which is represented by a BPA,
to a probability distribution Prob using PPT for each failure
mode. Next, defuzzify each fuzzy linguistic term to crisp
number in order to rank all failure modes. While A is a trian-
gular fuzzy number indicated by (a1, a2, a3), the defuzzified

value αA is obtained using the following formula:

αA = (a1 + a2 + a3)/3. (16)

For the triangular fuzzy numbers defined for V , their corre-
sponding crisp numbers are shown in Table 8.

As a result, the new risk priority number (Y ) can be
obtained using weighted mean method:

Y =
∑
A∈2

ProbA × αA. (17)

By decreasing order of their results Y , the priority of all
failure modes can be determined. More attention is necessary
for the bigger.

IV. ILLUSTRATIVE EXAMPLE
A. IMPLEMENTATION
In the section, the proposed method is used to illustrate its
effectiveness for fuzzy risk evaluation in FMEA on a case of
ranking the most serious failure modes during general anes-
thesia process [21]. Six potential failure modes are identified
that are donated as FM 1, FM 2, FM 3, FM 4, FM 5, FM 6
and their evaluations from five decision makers are given
in Table 9. High risky failure modes should be corrected with
top priorities in the result. In this paper, we will solve the
problem by using our proposed model and compare our result
with that of literature [21].
Step 1: experts give the evaluation for each failure mode.

By analyzing the data in Table 9, we can transform them to
BPAs that are fuzzy evidential reasoning records presented
in Table 10.
Step 2: According to (14) and (15), the reasoning eval-

uation results listed in Table 11 could be obtained. Next,
transform the evaluation results expressed with BPAs to prob-
abilities using PPT. For example, the value of ProbG in FM 1,
it is 0.735 = 0.573+ 0.316÷ 2+ 0.008÷ 2. The results of
all failure modes are shown in Table 12.
Step 3: determine the ranking order of all failure modes

according to the decreasing order of Y . Transform proba-
bility distribution of each failure mode to a crisp number.
According to (17), the evaluation result is calculated and
shown in Table 13. As we can see, failure mode 3 would be
at the top of the priority list of attention, followed by failure
modes 2, 6, 5, 1 and 4.

B. RESULT DISCUSSION
The above steps have clearly shown the process of using
the proposed method to do the risk evaluation under fuzzy
environment. Next we will compare the above result with
another risk evaluation result shown in Table 14which is from
literature [21] with an extended VIKOR method.
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TABLE 9. Judgments on six failure modes by FMEA team members under risk factors [21].

TABLE 10. The evaluation for failure modes.

TABLE 11. Reasoning evaluation results of all failure modes.

TABLE 12. Aggregation results of all failure modes.

TABLE 13. Risk ranking of failure modes by Y in decreasing order.

In literature [21], failure modes are ranked by the value of
O, S and Q in decreasing order. By S index, the risk ranking
of all failure modes from high to low is FM 3 > FM 2 > FM

TABLE 14. Risk ranking of failure modes by using the extended VIKOR
method [21].

6 > FM 1 > FM 5 > FM 4. Compared with the ranking
obtained by the proposed approach, the result is same in
failure modes 2, 3, 4 and 6. Although the rank of failure
mode 1 and 5 is different, their evaluation values 139.82 and
140.81 of Y are close. By R index, the failure mode with
the highest risk is failure mode 6, and others are followed
by failure mode 3, 2, 5, 1 and 4. Comparing the result
with that of this article, there are 3 failure modes with
the same order: FM 1, FM 4 and FM 5. By Q index,
the failure modes with the highest risk and the lowest risk
is respectively FM 3 and FM 4. The ranking is basically
same with that of the proposed value Y . In addition, fail-
ure mode 4 is the lowest risk in the four sorted methods
and FM 3 is the highest risk in the rankings obtained by
R index, Q index and the proposed value Y respectively.
In the view of the group, the failure modes can be classi-
fied two groups: the higher risk group composed by failure
mode 2, 3 and 6 and the lower risk group composed by failure
mode 1, 4 and 5. We can also obtain the same classification
result by evaluating with the proposed model. Through the
above analysis and comparison, it shows the proposedmethod
is an effective way for risk evaluation in FMEA.
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V. CONCLUSION
In this paper, a novel method based on fuzzy evidential
reasoning rules is proposed for the fuzzy risk evaluation
in FMEA. This approach can overcome the shortcoming of
the traditional FMEA, whose evaluation is too simple to
reflect the uncertainty property perfectly. This study provides
a new solution for the fuzzy risk evaluation in an uncertainty
evaluation environment. In the proposed method, the initial
assessment of failure mode would be described with BPAs to
retain more uncertain information and obtain more precise
result in the risk evaluation. In addition, by analyzing the
classical risk priority number method, the fuzzy evidential
reasoning rules are constructed for risk evaluation based on
virtue of Dempster-Shafer evidence theory and fuzzy set the-
ory. The effectiveness of the proposed method is verified by
an example of ranking the most serious failure modes during
general anesthesia process. It is especially useful in situations
where it is almost impossible to make a crisp evaluation.
Additionally, to verify its effectiveness further, applying the
proposed FMEA should be considered in further research for
risk management decision making in other fields of quality
and reliability engineering.
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