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ABSTRACT With the development of technology and the decreasing of manufacturing costs, unmanned
aerial vehicle (UAV) is considered to be one of the most effective relay to expand the communication
coverage and improve the performance of cellular networks. However, the communication system of UAV
is very susceptible to Global Positioning System (GPS) spoofing, causing it to deviate from the original
trajectory and perform abnormal behavior. To address this issue, the abnormal behavior detection scheme of
UAV using Recurrent Neural Networks (RNNs) is proposed in this paper. Specifically, the reliable normal
behavior models for two different scenarios are established by applying RNN s to avoid the confusion of slight
offset and abnormal behavior, so as to improve the accuracy of proposed detection scheme of UAV. Besides,
in order to ensure the accuracy of training samples of RNNs, Direction of Arrival (DOA) estimation algorithm
is used to obtain a large number of current 2D arrival angle of UAV. Moreover, an appropriate threshold is
selected through amounts of experiments to measure the Normalized Root Mean Square Error (NRMSE)
between the real position and the position provided by normal behavior models, thus detecting the abnormal
behavior of UAV. Experimental results reveal that the proposed abnormal behavior detection scheme is of

high accuracy.

INDEX TERMS UAV, abnormal behavior detection scheme, RNNs, GPS spoofing.

I. INTRODUCTION
Facing with the rapidly growing demand for high trans-
mission rate and high communication coverage for wire-
less communication services, unmanned aerial vehicle (UAV)
communication has recently become an active research
area [1]. Since UAV can be deployed quickly in the air
because of the specific maneuverability, it can not only
provide the wireless service for some hotspots, but also
offer signals to regional users instead of base station (BS)
when terrestrial BS fails [2]. In addition, the flexible loca-
tion of UAV can supply additional performance compared
with fixed infrastructure based communications. Therefore,
UAV is widely used as a communication relay to extend the
communication range, thereby improving the performance of
cellular network and satellite communication system [3].
However, these advantages of UAV also suffer from some
challenges. UAV needs a reliable navigation system during
the air communication, and the most common method to
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ensure the navigation is to build a state estimator around
the sensor core, which is consisting of an inertial measure-
ment unit (IMU) and a Global Positioning System (GPS)
receiver. But the GPS receiver relies on weak satellite signals
from about 20,000 kilometers from space, making the com-
munication system very susceptible to the signal spoofing,
which phenomenon is called GPS spoofing [4]. GPS spoofing
is the behavior of producing the false GPS signal. Specifi-
cally, the purpose of controlling and guiding the location of
UAV can be achieved by sending false location information
to the GPS receiver [5]. When UAV is attacked by GPS
spoofing, it will deviate from original trajectory and cause
abnormal behavior.

Recently, solutions to GPS spoofing have also been
extensively studied. References [6] and [7] proposed an archi-
tecture that can efficiently combined the visual feature infor-
mation from a monocular camera with measurements from
inertial sensors. Besides, the inertial measurements were used
to predict frame-to-frame transition of online selected feature
locations, and the difference between predicted and observed
feature locations was used to account for initial misalignment
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errors. However, the visual aided navigation required the
preparation of maps in advance and it was limited by the
environment, such as in the dark or misty.

Considering these defects, [8] proposed a non-
cryptographic Global Navigation Satellite Systems (GNSS)
anti-spoofing technique that “sandwiches” a spoofer
between a correlation function distortion monitor and a total
in-band power monitor. Reference [9] considered the con-
sistency within GPS signals, and explored the relationship
between the mean carrier to noise ratio value and the angular
position of corresponding satellite. Specifically, the authors
mentioned that this kind of relationship was quite stable for
fixed receiver, and formed a spatial pattern. The uniqueness
and complexity of this pattern qualified itself as an ade-
quate fingerprint of the authentic signal, therefore it had
the potential for discriminating spoofing signal. Besides,
a method based on artificial neural network was proposed,
which could detect the abnormity in this spatial pattern.
However, the calculation process of these two methods is too
cumbersome, the predecessor began to make some tests on
the antenna software and compared multipath signatures to
detect spoofing attack.

Since the GNSS were vulnerable to different sources
of interference, especially affected by GPS spoofing,
a Chisquare Goodness of Fit (GoF) based spoofing detection
method was proposed in [10], and the Chi-square GoF test
was applied at the correlators output of a software receiver
with the purpose of detecting the presence of a spoofing
attack; [11] compared the multipath signature of received
signal, and the delay and gain ratio between multiple paths of
wireless channels that cannot be masked by spoofing signals
were exploited, so that the ratios of authentic satellite signals
that experience independent channels would be independent
of each other, GPS spoofing can therefore be detected.

Although the methods we mentioned above can achieve
the detection of abnormal behavior, the “difference calcula-
tion” and “‘relationship calculation” in [6]-[9] is relatively
complicated, and [10], [11] consume time to make tests on
antenna software and make comparisons to multipath signa-
tures. Therefore, it is necessary to propose a new scheme to
realize real-time detection of anomalous behavior with high
accuracy.

In recent years, deep learning has been widely used in
many fields to train data models to achieve the acquisition
and prediction of data with time sequence through the use of
models. Reference [12] proposed a deep-learning based
framework for reconstructing the missing data to facilitate
analysis with remote sensing time series. Besides, this idea
was to train the available data from both earlier and subse-
quent times-tamps, thus realizing the data prediction using
the earlier part of the sequence. Reference [13] developed
a novel integrated machine learning and coordinated beam-
forming solution to enable highly-mobile mmWave applica-
tions. Specifically, the developed solution leveraged a deep
learning model to learn how to use the signatures of received
signals, thus realizing the prediction of beamforming vectors
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at the BSs. Reference [14] considered to use deep learn-
ing network to predict the displacement between neighbor-
ing frames for each pedestrian, thus achieving the trajec-
tory prediction of pedestrians. Inspired by above references,
an abnormal behavior detection scheme of UAV using deep
learning algorithm is considered, and a neural network with
good memory is necessary to be applied to adapt to the
characteristics of the angle data in UAV, so Recurrent Neural
Networks (RNNs) are chosen here.

In this paper, the abnormal behavior detection scheme of
UAV using RNNs is proposed. Since UAV is easily affected
by wind and airflow during the air communication, a slight
offset will occur on the original trajectory. In order to avoid
the confusion of this slight offset and its abnormal behavior
to improve the accuracy of the proposed abnormal behavior
detection scheme, a reliable normal behavior model of UAV
is needed. First, RNNs are applied to train and build the
normal behavior model of UAV. In particular, Direction of
Arrival (DOA) estimation algorithm is used to obtain a large
number of current two-dimensional (2D) arrival angle of UAV
as the training data of RNNs, thereby ensuring the accuracy
of the position angle. Next, an appropriate threshold (which
will be discussed in detail later) is selected through amounts
of experiments. When Normalized Root Mean Square Error
(NRMSE) between the real position and the position of
trained normal behavior model of UAV is greater than the
chosen threshold, it is detected that the UAV has abnormal
behavior, thus achieving the purpose of abnormal behav-
ior detection of UAV. The contributions are summarized as
below.

(1) In order to avoid the confusion of UAV’s slight offset
and its abnormal behavior to improve the accuracy of the
proposed abnormal behavior detection scheme, RNNs are
applied to train and establish a reliable normal behavior
model of UAV;

(2) In order to demonstrate the applicability of the normal
behavior model trained in this paper, it is applied to two
scenarios, which are smart city and highway respectively.
Besides, the optimal parameters of the model in two scenarios
are obtained by experiments.

(3) Experimental results reveal that the accuracy of pro-
posed detection scheme in these two scenarios is about 98%
in average and the real-time detection of abnormal behavior
is realized by applying the trained ready normal behavior
model. Therefore, the security of the entire communication
system can be improved.

The remainder of this paper is organized as follows.
The detailed problem description is provided in Section II.
In Section III, we thoroughly describe the establishment
process of RNNs-based normal behavior model. Extensive
experimental results and analysis are presented in Section I'V.
Finally, Section V concludes the paper.

Il. PROBLEM DESCRIPTION
Since UAV is easy to operate and deploy, and it can effectively
improve the coverage area of entire communication system,

VOLUME 7, 2019



K. Xiao et al.: Abnormal Behavior Detection Scheme of UAV Using RNNs

IEEE Access

T B
|- |

_. — — = Threat Model - — —

- N

FIGURE 1. Communication scenario of UAV attacked by GPS spoofing.

it is widely used as a communication relay in various com-
munication scenario. However, the UAV is vulnerable to GPS
spoofing and deviates from original trajectory in the process
of air communication, and the specific communication sce-
nario of UAV attacked by GPS spoofing is shown in Figure 1.

As can be seen from the figure, UAV is flying as a com-
munication relay above the scene to provide reliable signal
transmission for all users. In order to improve the signal
coverage, the cylindrical antenna array is applied to achieve
360-degree beamforming, and the angles at which UAV floats
up and down, left and right are called elevation angle 6 and
horizontal angle ¢, respectively. Besides, GNSS are needed
to continuously guide the location during the flight of UAV.
When UAV is attacked by GPS spoofing, it will perform
abnormal behavior and deviate from the position of normal
behavior model “B”* to the abnormal position “C”’, and the
model composed of this attack method can be called the
“threat model” in the figure.

It is well known that GPS positioning adopts the principle
of Three-sphere positioning principle. That is, after the GPS
signal propagation delay f is obtained by the time difference
measurement, the pseudo-distance ry between the satellite
and the receiver (rg = Cf, C is the propagation speed of the
light) can be calculated. As long as the pseudo-distance of
the positioning receiver to three satellites is measured, three
spherically connected equations in space can be obtained,
and the (x, y, 7) coordinates of the receiver can be obtained
by calculation. But in fact, there is always a clock differ-
ence between the receiver and the satellites’ standard clock.
Therefore, the pseudo-distance of the fourth satellite must
be measured, and the equations of the first three spherical
equations are connected to calculate the timing error [15].

Let the position “A” of the known UAV be (x4, y4, z4),
and the pseudo-distances corresponding to the four satellites
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forwarded are (di, d2, d3, ds), and the timing error of the
UAV is fu, then the positional equation of point “A” is,

1

di = [(xa —x1)* + (4 —yD)* + (24 — 21)*12 + Cfa,
dy = [(xa — x2)% + (oa — 32 + (2 — 2117 + Cfy, 0
dy = [(6a — x3)2 + (o4 — ¥3)* + (24 — 20217 + Cfa,
dy = [(xa — x4)> + (4 — y4)> + (za — 24)2]% + Cfa,

where the coordinates of the four satellites are (x1, y1, z1),
(x2, 2, 22), (x3, 3, 23) and (x4, y4, 24), respectively, fy is the
specific GPS signal propagation delay of the known UAV that
can be obtained by time difference measurement.

After the attacker locks the attacked object (GPS receiver),
the attacker can generally perform spoofing attacks in two
ways(as can be seen in threat model of the figure): one is
to calculate the pseudo-distance d by using GPS ranging,
and the high-fidelity processing is performed on the received
satellite signals by a jammer, and then delayed and forwarded,
misleading the GPS receiver to calculate the wrong pseudo-
distance (larger than the real value), which is called a for-
ward GPS spoofing attack. We can take the first satellite for
example, when it is interfered, d; in the equation will be
the wrong value, so the de-positioning equation necessarily
obtains the wrong positioning information of the receiver,
thereby achieving the purpose of disturbing and deceiving,
and the wrong position information (x4, y4, z4) of UAV will
be obtained. The other is that the attacker will directly forges
GPS interference signal according to the characteristics of
the satellite signals that can be received in the area. Besides,
the forged signal is broadcasted as a satellite signal to the
signal receiving area where the attacked object is located, and
the attacked GPS receiver is induced to lock the interference
signal source to obtain the wrong pseudo-distance d and
positioning coordinates (x4, y4, z4) of UAV.

Both GPS spoofing methods we mentioned above have
the same purpose of obtaining an erroneous pseudo-distance,
so that the target receiver can generate a positioning error,
deviate from the original trajectory and perform abnormal
behavior. Therefore, an abnormal behavior detection scheme
of UAV using RNNS is proposed to detect abnormal behavior
in time. Specifically, a novel normal behavior model of UAV
is trained through the current 2D arrival angle obtained by
DOA estimation algorithm. According to the trained normal
behavior model, the abnormal behavior of UAV can be mea-
sured and detected based on the NRMSE between abnormal
position “C” and the position point “B”’ of normal behavior
model(gray curve in Figure 1). When NRMSE is larger than
the chosen threshold &(through experiments), the behavior
can be detected as abnormal; but when NRMSE is less than
8, the behavior will be considered to be a normal behavior of
a slight offset by factors such as wind and airflow.

IIl. RNNS-BASED NORMAL BEHAVIOR MODEL OF UAVY

Since whether the established normal behavior model of
UAV is reliable or not will directly affect the perfor-
mance of proposed abnormal behavior detection scheme, the
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FIGURE 2. Establishment process of RNNs-based normal behavior model(Black points represent normal angle data, and red points represent

abnormal angle data).

specific establishment process of RNNs-based normal behav-
ior model is introduced in detail in this section, which can be
seen in Figure 2.

First, the 2D arrival angle (elevation angle 6 and horizon-
tal angle ¢) of UAV is obtained based on the DOA esti-
mation algorithm of cylindrical antenna array. In particular,
we integrate the elevation and horizontal angles into a one-
dimensional (1D) angle to improve the convergence speed of
program fitting during preprocessing of data. In our program,
the step size is designed as 20, so the raw data is consist
of 20 angle data, and the label is the 21th data, both of which
can form the training dataset, and serve as an input to train the
model. Next, we input processed training dataset into three
different network models including Simple RNN, Long Short
Term Memory based RNN (LSTM-RNN) and Gated Recur-
rent Unit based RNN (GRU-RNN) for learning. By compar-
ing the reliability of three behavior models, the best RNNs-
based normal behavior model is chosen, which is called
final model in the figure. In addition, it is worth mentioning
that the cross-validation can be realized while the model is
being trained to evaluate the reliability of the model. Finally,
the sample dataset acquired from a given trajectory will be
input into the trained final model to obtain the evaluated
position, thereby realizing the use of final model. And then,
the NRMSE between obtained evaluated position and real
position is calculated. If the NRMSE between them is greater
than threshold &8, the behavior of the UAV is considered
abnormal at that moment. Therefore, the abnormal behavior
detection of UAV can be achieved.

A. ACQUISITION OF 2D ARRIVAL ANGLE
OF DOA ESTIMATION
The current 2D arrival angle (elevation angle 8 and horizontal
angle ¢ in Figure 1) can be calculated by using DOA estima-
tion algorithm of cylindrical antenna array, so it is necessary
to investigate the DOA estimation algorithm formula for
cylindrical antenna array.

Suppose that there are M array elements uniformly dis-
tributed on the circumference, and if the center of the circle is
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the coordinate origin, the coordinates of the mth array element
are (r, ¢p,), where r is the radius of cylinder and ¢,, is the hor-
izontal angle of the array element, ¢,, = 2(m— 1)r/M, (n =
1,2,...,M)[16].Ifitis assumed that k(k < M) uncorrelated
intra-frequency narrow-band signals are incident on the array
from the far-field 6;(i = 1, 2, . . ., k) direction, and the signals
are in the same plane as the array, the data received by the
array at time ¢ can be expressed as [17],

X(@) =F - AS(#) + N(1) 2)

where X(¢) = [x1(2), x2(2), . .., xp ()] is the received sig-
nal vector. F = [f(6), £(62), ..., f(6;)]” is the radiation plot
matrix of array elements, and f(6) = [f(6 — ¢1),f(6 —
), .... 80 — ¢a)1T, £(0 — ¢ppr) is the radiation plot of a
single element. When f(6 — ¢3/) = 1, it means that the
array elements are omnidirectional elements [18]. S(z) =

[s1(2), 2(0), . . ., sp()]F is the complex amplitude vector of
each signal, and N(r) = [ni(¢), n(?), ..., nM(t)]T is the
white noise vector. A = [a(0}), a(6y), . .., a(f;)] is the array

manifold matrix, where a(6;) is the director of ith signal, and
a(0;) = [ cosO=91) % rcosOi=¢2)  iFEcosO—guT
A is the wavelength of the signal.

Different from the general circular array, cylindrical
antenna array is composed of the mental cylinder, which
is also the reason of ‘““shadow effect” phenomenon. That
is, only some of the array elements of cylindrical antenna
can receive the signal that incident in a certain direction.
Take a 16-element array as an example, when a signal
is incident on the array from the # = 7, only the ele-
ments 1-9 can receive the signal [19]. The steering matrix
a(%) of this signal at this moment can be represented as
[1, e FeosG=5) JSreosG=0)  JfFesG-m o o
where “0”’ means the obscured elements of the array, which
will cause the performance of the algorithm to deteriorate
dramatically.

In order to eliminate the incomplete signal steering vector
caused by the “shadow effect” of mental cylinder, a method
to divide the entire array elements into several sub-arrays
is needed. The principle of division is that for an incident

s
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signal, at least one sub-array should be guaranteed, and all
the elements of the sub-array can receive the signal. For
cylindrical antenna array, it should be ensured that the span
of each sub-array < 7. Taking the 16-clement array as an
example, the array can be divided into 8 sub-arrays: array
elements 1-5 are the first sub-array, and array elements 3-7
are the second sub-array, and so on. By using this method,
a sub-array can always be found for any incident signal,
and all its elements of the sub-array can receive the signal.
Therefore, the steering vector of the signal on the sub-array
is “complete”. The specific steps are as follows [20]-[22],

o Step 1: Use Formula (2) to get the data vector of the

whole array,
X(1) = [x1(0), x2(0), . ... xp ()] 3)
« Step 2: Extract the data vector of each sub-array from the
first step Xc(7) = [Xc1(2), X2(1), . . ., Xes(t)]T, where ¢

represents the cth sub-array, and s stands for the number
of array elements in the sub-array.

o Step 3: Constructing a spatial spectrum calculation for-
mula for the cth sub-array using the MUSIC algorithm.

1

- fpeo 4
alf (0)U U a 0) < ¥

c
where a.(0) represents the steering vector of the signal on the
cth sub-array. U, is the s X (s — ps) dimensional matrix, whose
column vector consists of the feature vector of the sub-array’s
noise sub-space. ps(ps < s) is the number of signals incident
on the sub-array c, and 6. is the search range of the cth
sub-array.

Assume that there is a 3 x 8 cylindrical antenna array,
and the radius » = 0.6A and the height H = 2. Besides,
the distance between adjacent array elements is defined as
about 0.5A. According to the three-step principle of sub-array
division, a total of 9 array elements per three columns are
divided into one sub-array, and the entire array is divided
into 8 sub-arrays. From the symmetry, 8 array elements in
each layer have the same ¢ angle and different 6 angels of
three elements in each column, but the top and bottom array
elements are symmetrical. Suppose that one source signal is
incident on the array from (¢, 8) = (60, 50) direction, and
the SNR is 10dB, the number of samples is 100. According to
the calculation formula (4) of spatial spectrum, the simulation
result of the DOA estimation algorithm can be obtained,
which is shown in Figure. 3. According to the highest peak,
the elevation angle 6 and horizontal angle ¢ can be estimated
accurately.

B. DATA PREPROCESSING OF RNNS-BASED

NORMAL BEHAVIOR MODELS

In order to improve the quality and training efficiency of
RNNs-based normal behavior models, a series of complex
data preprocessing is required for the acquired raw data [23],
and the specific process of data preprocessing is shown
in Figure. 4.
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FIGURE 4. Specific process of data preprocessing.

First of all, data cleaning is needed for acquired angle
data. Data cleaning can effectively detect and correct identi-
fiable errors in data files, including checking the consistency
of data, processing invalid values and missing values, etc.,
thus completing the data verification, and obtaining “‘cleaned
data”. In this paper, data cleaning is focused on clearing the
data that performs empty in the collected data, and filling the
null data by using the sliding window to take the mean value.

Besides, if two 1D arrival angles (elevation angle 6 and
horizontal angle ¢) are input into RNNs model separately,
the training process will be too cumbersome and the results
will not be accurate. Therefore, data integration is performed
next. Specifically, the elevation angle is supposed as x-axis,
horizontal angle as y-axis, and the unit length is set to 0.1 to
reduce the error during the integration process. In the estab-
lished coordinate system, each point is a set of 2D coordinates
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at a certain moment, and when the coordinates are not on the
axis of the unit length, we do decimals to round up and round
down the coordinates. As shown in Figure. 4, all points in the
blue area will be regarded as the red point (6, ¢’), and then,
this coordinate point can be transferred into a unique value z
according to a function z = f(#’, ¢'), thereby achieving the
data integration.

In addition, in order to adapt to the activation function
of RNNs, the integrated angle data will be mapped to the
0-1 range, thus speeding up the convergence speed of the
program.

Finally, the discrete data that collected by time node will be
reconstructed into the input data with a time step size of 20 to
improve the memory of the RNNs model, thus improving
the accuracy of the normal behavior model of UAV. Finally,
the data is saved to the local disk for future use.

C. ESTABLISHMENT AND APPLICATION OF RNNS-BASED
NORMAL BEHAVIOR MIODELS

Since the trained 2D arrival angle obtained by DOA estima-
tion is in the form of time sequence, RNNs are used to train
the normal behavior model of UAV.

As a basic model of deep learning, Simple RNN solves the
problem of memorylessness in traditional neural networks.
Suppose that i,_; and &, represent the hidden state of time
step#—1 and #, x; and O; are the states of input data and output
data at time step t. W, and b, stand for the weight vectors
and bias vectors, respectively [24]. Therefore, the relation-
ship between an input sequence to an output sequence is a
mapping function, which can be specified by,

hy = tanh(Wp[x;, hy—1] + by) )
O, = Woh; + bo (6)

Specifically, tanh function in equation (5) is a hyperbolic
tangent function and the output is limited between —1 and 1.
When the function independent variable tends to be positive
infinity or negative infinity, the function approaches a smooth
state, and it is mainly used in cell state C, hidden state &
and the candidate state ﬁ,. Since these states are the states
information after screening, which are beneficial to the input
and processing for the next moment, the use of fanh in the
loop process can continuously expand the feature effect and
deepen the influence of current moment on the next moment,
thereby make the transmission of information have a better
effect.

Besides, LSTM-RNN can store the information for longer
period of time with the help of Keep Gate or Forget Gate,
and “Gate” controls the cell state of LSTM and decides to
remove or add the information to the neural network [25].
The relationship between an input to an output sequence can
be specified by,

ir = o(Wilxs, hy—11 + b)) @)
Jo = o (Wrlxe, he—1] + by) 3
or = o(Wolxy, he—1] + bo) )
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Cr = fiCiq + itanh(Welx;, hy—1] + be) (10)
hl = Oltanh(C,) (11)

where i, f, o and c are respectively the input gate, forget
gate, output gate and cell state, o represents the logistic
sigmoid function. It is worth mentioning that the sigmoid
function is typically used for hidden layer neuron output,
which maps a real number to the interval of (0,1). At the
same time, when the function independent variable tends to
positive infinity or negative infinity, the function approaches
the smooth state. When the independent variable tends to
positive infinity, the output is infinitely close to 1, and when
the independent variable tends to be infinite, the output is
infinitely close to 0. Therefore, the sigmoid function is mainly
applied to the output of the gate structure such as LSTM-RNN
and GRU-RNN, and the output result is divided into 0 and 1,
so that the state information is set in the process of training
iteration (setting the state information unfavorable to the next
moment to 0, setting the state information that is beneficial
to the next moment to 1) to ensure that each iteration can
filter the useless state information and deliver useful state
information.

While GRU-RNN retains LSTM-RNN’s resistance to
the vanishing problem, but its internal structure is sim-
pler [26]. Therefore, GRU-RNN is easier to train since
fewer calculations are needed to update its hidden state,
and the forward propagation process of GRU-RNN can be
expressed as [27],

re = oWy [h—1,x]) (12)
z = oW [h—1, x1) (13)
hy = tanh(Wy, - [ry % hy—1, x¢]) (14)
he=(1—z)%h_1+z %h (15)

where r; and z; represent the reset gate and update state,
respectively, i, denotes the candidate state.

Assume that RNNs are applied to the field of natural
language processing, each data sample can be considered to
be a time series, and there is a certain correlation between
each data sample and data of previous and next moment.
Therefore, analyzing the relationship between the data sam-
ples requires the hidden layer unit (%;) in the RNNs. The
hidden neurons are used as the output of the data samples
at the previous moment and the input of the data samples at
next moment, ensuring the continuity and sequence of the
statements. As mentioned above, there is only a single use
of hidden layer neurons (%;) in Simple RNN, but gradient
explosions and gradients are prone to occur when sentences
are too long; and the gated structure proposed by LSTM-RNN
(forgotten gate, input gate and output gate) solves the above
two problems, thereby ensuring that the vocabulary infor-
mation in the longer sentences can be passed to the back
to improve the semantic relevance; GRU-RNN combines the
forget gate and input gate of LSTM-RNN into a single update
gate, and integrates the cell state and hidden state of the data
sample, so it can not only learn the long-term dependence
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of the text, but also has a shorter processing time than
LSTM-GRU.

Similarly, this paper applies RNNs to train UAV angle data
with time series, which can also achieve the same effect.
Besides, although GRU-RNN has the best performance in the
training process, the memory capacity of the required neural
network training model is diverse for different kinds of train-
ing data, which means that GRU-RNN with the best memory
capacity does not necessarily make the final model have the
best performance. Therefore, the reliability of three RNNs-
based normal behavior models needs to be experimented and
compared to obtain the best final model. After comparing
the reliability of three models, the structures of best normal
behavior models that adapted to the UAV communication
scenario of this paper are selected to realize the acquisition
and establishment of the normal behavior models of UAV.

Specifically, in the process of using normal behavior
model, some abnormal behavior data of UAV is interspersed
with other normal behavior data. In addition, the same data
preprocessing method is applied to reconstruct the 2D arrival
angle of abnormal behavior of UAV to adapt to the structures
of established normal behavior models. By inputting the
angle data (including normal behavior and abnormal behav-
ior) into the normal behavior models for training, the data
under the normal behavior models can be obtained. Next,
the NRMSE between the trained position (which can be
obtained from 2D arrival angle) and real position can be cal-
culated. If NRMSE is greater than the threshold §, which can
be obtained through amounts of experiments, the coordinate
point is recorded as abnormal data, otherwise it is recorded
as normal data. Therefore, the abnormal behavior of UAV
can be detected by comparing the abnormal labels of the
training dataset with the abnormal points detected by the
normal behavior models.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section,the experimental results of proposed RNNs-
based normal behavior models are presented and analyzed
through Python, including Simple RNN, LSTM-RNN and
GRU-RNN respectively to establish the most reliable normal
behavior models of UAV. Besides, a Python-based sequence
processing tool Tensorflow is applied to build the deep learn-
ing models and obtain the parameters of the optimal model.
Besides, it is hard to obtain the angle data of UAV while
it is flying in the air because of the limitations of existing
experimental conditions. Therefore, this paper establishes a
stable simulation platform by analyzing the real trajectory of
Dajiang mavic Pro UAV and combining the national stan-
dards provided in the ITU-TY.IoT-UAS-Reqts (Use cases,
requirements and capabilities of unmanned aircraft systems
for Internet of Things) recommendations, which is supported
by International Telecommunication Union (ITU). Specifi-
cally, it is worth mentioning that in the process of setting up
the simulation platform, the volatility and instability of the
wind are considered, and proper signal-to-noise ratio (SNR)
is added to x, y and z axis directions of the UAV’s position
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information, respectively. Besides, some strong winds with
higher SNRs are randomly interspersed, which is more in line
with the wind’s volatility. The SNR values of gentle wind in
x, y and z axis are 50, 50 and 25, and the values of strong
wind are 100, 100 and 50 respectively. Therefore, the x(¢)
in formula (2) is reliable, thus acquiring the accurate 2D
arrival angle by using DOA estimation algorithm. In addition,
the training epoch of RNNs is defined as 500 to ensure the
convergence of accuracy curves.

In addition, the proposed normal behavior model is applied
to two communication scenarios to prove the applicability.
Since the signal transmission provided by BS cannot cover
every user in smart city, UAV is introduced as a communica-
tion relay to expand the coverage area. Moreover, when the
highway is located in the blind spot area of communication
between two BSs, UAV can also provide the signal trans-
mission for vehicles and pedestrians. Therefore, the normal
behavior model proposed in this paper is applied to above
two typical UAV communication scenarios, respectively.
Specifically, the optimal parameters of normal behavior
model can be selected by implementing the experimental
results, so as to obtain the optimal normal behavior model
in these two scenarios.

In order to make sure the convergence speed of pro-
gram running and the accuracy of proposed normal behavior
model, the cross-validation is applied in the process of build-
ing normal behavior model. Specifically, the total number
of data samples is 30,000, the first 20,000 data samples are
used as the train set to train the RNNs-based models, and the
remaining 10,000 data samples are applied as the test set to
ensure the accuracy of the model training, and the step size of
each sample is designed as 20. Next, the experimental results
of three RNNs-based normal behavior models in two different
scenarios will be presented and analyzed, respectively.

A. TRAINING OF NORMAL BEHAVIORAL

MODELS FOR TWO SCENARIOS

1) NORMAL BEHAVIOR MODELS OF UAV

IN SMART CITY SCENARIO

The experimental results of three different neural networks
(including Simple RNN, LSTM-RNN and GRU-RNN) in
smart city scenario are first presented in this part to obtain
the most reliable final model of smart city scenario.

a: SIMPLE RNN

In order to select the optimal parameters of Simple RNN,
a series of experiments are done by changing the number
of layers and the number of neurons, and the experimental
results of different network structures of Simple RNN in
terms of Mean Square Error (MSE) are shown in Table 1.
It can be seen from the table that when the number of neurons
is less than 32, MSEs of all network structures including
NETI-NET6 are relatively small and stable, resulting in a
higher reliable probability of the normal behavior model of
UAV. Besides, when the number of neurons is 16 and 32,
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TABLE 1. MSE of different Simple RNN structures of smart city scenario.

Test Set (Average MSE)
Name | Structure
8 16 32 64 96 128

NET1 1-layer 0.0128 | 0.0107 | 0.0101 | 0.0095 | 0.0109 | 0.0106
NET2 2-layer 0.0082 | 0.0083 | 0.0100 | 0.0108 | 0.0116 | 0.0115
NET3 3-layer 0.0121 | 0.0066 | 0.0084 | 0.0429 | 0.0116 | 0.0119
NET4 4-layer 0.0067 | 0.0080 | 0.0102 | 0.0118 | 0.0136 | 0.0126
NET5 5-layer 0.0079 | 0.0075 | 0.0102 | 0.0552 | 0.0130 | 0.1100
NET6 6-layer 0.0074 | 0.0100 | 0.0101 | 0.0118 | 0.0140 | 0.0132

the value of MSE is the smallest and the fluctuation is the
smoothest. Therefore, the number of neurons is designed as
16 to ensure the convergence speed of the program (more
neurons, slower the program converges).

However, it is difficult to directly determine the opti-
mal layers of Simple RNN according to the average MSE
in Table 1, so the MSE data with 16 neurons in Table 1 is
further converted into the reliable probability (which is called
accuracy in the Figure) curve to more intuitively select the
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optimal layers, and the experimental results are shown in
Figure 5(a), where the horizontal coordinate is training epoch
and the vertical coordinate is accuracy, and the results show
that 3-layer Simple RNN is the best choice to achieve the
highest accuracy. Besides, Figure 5(b) presents the experi-
mental results of different network structures with different
learning rates (LRs) in terms of accuracy when the neurons
and layers of all curves are defined as 16 and 3. As can
be seen from Figure 6(b), Simple RNN always has the best
performance when LR is equal to 0.0005. Therefore, when
LR of the 3-layer Simple RNN with 16 neurons is equal
to 0.0005, Simple RNN can achieve the best performance.

b: LSTM-RNN

Table 2 illustrates the MSE of different LSTM-RNN network
structure by changing the number of network neurons and
layers. It can be seen from the table that when the number
of neurons is less than 32, the experimental results of MSE
are relatively volatile as the number of layers changes, and
MSE value is also relatively high. Besides, if the number
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TABLE 2. MSE of different LSTM-RNN structures of smart city scenario.

TABLE 3. MSE of different GRU-RNN structures of smart city scenario.

Test Set (Average MSE) Test Set (Average MSE)
Name Structure Name Structure
8 16 32 64 96 128 8 16 32 64 96 128

NET1 1-layer 0.0086 0.0081 0.0089 0.0098 0.0099 0.0100 NET1 1-layer 0.0078 0.0077 0.0088 0.0090 0.0098 0.0104
NET2 2-layer 0.0074 0.0084 0.0088 0.0097 0.0098 0.0099 NET2 2-layer 0.0084 0.0083 0.0090 0.0092 0.0097 0.0100
NET3 3-layer 0.0093 0.0091 0.0095 0.0101 0.0103 0.0105 NET3 3-layer 0.0091 0.0095 0.0092 0.0097 0.0101 0.0106
NET4 4-layer 0.0104 0.0096 0.0097 0.0104 0.0107 0.0110 NET4 4-layer 0.0080 0.0091 0.0097 0.0105 0.0103 0.0107
NETS5 5-layer 0.0102 0.0100 0.0102 0.0104 0.0113 0.0112 NETS5 5-layer 0.0100 0.0098 0.0099 0.0103 0.0105 0.0111
NET6 6-layer 0.0111 0.0106 0.0104 0.0110 0.0116 0.0117 NET6 6-layer 0.0100 0.0098 0.0102 0.0108 0.0107 0.0115

of neurons is too high, the training of the program will be
too complicated, which will affect the convergence speed.
Therefore, 32 neurons is used for LSTM-RNN model.

In order to better determine the optimal layers of
LSTM-RNN model, the column with 32 neurons is converted
into six accuracy curves, which is shown in Figure 6(a). It can
be seen intuitively from the figure that 4-layer LSTM-RNN
can achieve the highest average accuracy, and the perfor-
mance of 4-layer LSTM-RNN is significantly more stable
than that of other layers. In addition, Figure 6(b) shows
the experimental results of 4-layer LSTM-RNN model with
32 neurons under different LRs. It can be seen from the
figure that the accuracy results of 0.001 and 0.005 are rela-
tively unstable, and when LR is 0.0005, the average accuracy
result is higher than the most stable orange curve. Therefore,
when LR of 4-layer LSTM-RNN with 32 neurons is 0.0005,
the average highest accuracy 98.7% can be achieved to ensure
the accuracy of the normal behavior model.

¢: GRU-RNN

Table 3 shows the experimental results of MSE under dif-
ferent GRU-RNN network structures, when the number of
neurons is not less than 32, a relatively low MSE value
can be achieved, so 32 neurons is tend to be chosen to
make sure the convergence speed. Besides, as the number of
network layers changes, the MSE value changes smoothly.
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Therefore, the network model with 32 neurons is considered
to have the lowest MSE.

Figure 7(a) illustrates the accuracy results of behavior
model with 32 neurons in terms of different layers, which
can more accurately show the performance of the model
under different layers. As can be seen from the figure,
4-layer GRU-RNN model performs best in terms of accuracy,
which is about 98.5%. Besides, Figure 7(b) shows the accu-
racy of 4-layer GRU-RNN with 32 neurons under different
LRs. As can be seen from the figure, the curve of 0.005 LR
is always in an unconverged state. And when LR is 0.0005,
the average accuracy is better than other two curves, which
is around 98%. Therefore, the conclusion can be made that
when LR of 4-layer GRU-RNN with 32 neurons is 0.0005,
the best accuracy can be achieved.

In order to accurately obtain the optimal normal behavior
model of UAV under smart city scenario we discussed before,
the accuracy of these three RNNs is concluded and compared,
and the comparison results are shown in Figure 8.

As shown in Figure 8, the accuracy of normal behavior
models under three different RNNs is compared in smart city
scenario. It can be seen that all three accuracy curves remain
rising, and when the number of training epoch is less than
150, the rising speed of LSTM-RNN is relatively fast, while
the rising speed of LSTM-RNN and GRU-RNN is relatively
slow. However, when the number of epoch reaches 450,
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the accuracy curves of Simple RNN and LSTM-RNN have
exceeded that of GRU-RNN (which can be clearly seen from
the enlarged view), and the average accuracy curve of LSTM-
RNN is higher than that of Simple RNN, so LSTM-RNN is
applied as the optimal normal behavior model of smart city
scenario.

2) NORMAL BEHAVIOR MODELS OF UAV

IN HIGHWAY SCENARIO

In the highway scenario, the same idea as smart city scenario
is used to select the optimal normal behavior model in terms
of Simple RNN, LSTM-RNN and GRU-RNN. Through a
series of experimental tests and comparisons, the Simple
RNN model is chosed as the optimal normal behavior model
of highway scenario with following experimental results.

TABLE 4. MSE of different Simple RNN structures of highway scenario.

Test Set (Average MSE)
Name Structure
8 16 32 64 96 128

NET1 1-layer 0.0056 | 0.0036 | 0.0040 | 0.0036 | 0.0038 | 0.0035
NET2 2-layer 0.0065 | 0.0041 | 0.0034 | 0.0038 | 0.0037 | 0.0038
NET3 3-layer 0.0065 | 0.0036 | 0.0037 | 0.0047 | 0.0045 | 0.0052
NET4 4-layer 0.0063 | 0.0031 | 0.0043 | 0.0049 | 0.0058 | 0.0067
NET5 5-layer 0.0121 | 0.0038 | 0.0051 | 0.0059 | 0.0070 | 0.0093
NET6 6-layer 0.0066 | 0.0051 | 0.0054 | 0.0063 | 0.0075 | 0.0097

Table 4 shows the MSE values under different layers and
different neurons of Simple RNN in highway scenario. As can
be seen from the table, the lowest MSE can be achieved when
Simple RNN is with 16 neurons, which will not be affected
by the number of network layers. Therefore, the conclusion
can be made from the table that Simple RNN with 16 neurons
performs best in terms of MSE value. Besides, the accuracy of
Simple RNN with 16 neurons under different layers is shown
in Figure 9(a), which is helpful to further obtain the optimal
layers of Simple RNN model.

For a clearer display, only the accuracy results of training
epochs from 350 to 500 are shown in Figure 9(a). As can be
seen from the figure, although the accuracy of 2-layer and
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1-layer is relatively stable, the average accuracy is still lower
than 4-layer model. Therefore, 4-layer model is considered to
be the optimal layers of Simple RNN model with an average
accuracy of 97.5%. Figure 9(b) illustrates the accuracy of
4-layer Simple RNN with 16 neurons under different LRs,
from which we can see that the accuracy curve for LR
of 0.005 is always in an unconvergent state. In addition, it is
easy to find that when LR is 0.001, the accuracy curve of
the model gradually converges with the increasing of training
epoch, and finally achieve the highest accuracy, which is
about 98%. Therefore, considering the above experimental
results, when LR of 4-layer Simple RNN with 16 neurons is
0.001, the best performance of the model can be achieved.

B. DETECTION RESULTS OF ABNORMAL
BEHAVIOR FOR UAV
It is worth mentioning that the normal behavior models
applied in this paper are the ready models trained based on
DOA estimated angle data. Therefore, the NRMSE between
the current moment position of UAV and the position infor-
mation provided by normal behavior models can be obtained
in real time, thus achieving real-time detection. Specifically,
the specific calculation process of NRMSE is as follows:

« Step 1: Complete the normalized calculation of the angle

data,

X — X.min) - — mi
X, — ( min) (max. min) + min (16)
(X.max — X .min)

where X represents all samples of the angle data, X.min
and X.max represent the minimum and maximum of
each column. Since the normalized maximum value is
1 and minimum value is 0. Therefore, max = 1 and
min = 0.

o Step 2: Complete the calculation of RMSE,

m

1 A
— E [Xs () — X5 ()] a7
m

i=1

RMSE(X,) =

where m is the total number angle data columns, which is
equal to 2 in this paper (elevation angle 6 and horizontal
angle ¢), )A(S(i) is the data obtained from trained normal
behavioral models.

Besides, in order to ensure the accuracy of the abnor-
mal behavior detection scheme for UAV, this paper adopts
the singular value detection method. Specifically, when the
threshold is too large, it means that there is a greater tolerance
for the deviation of UAV from the normal behavior model,
which will cause some abnormal behaviors of UAV to be
undetected normally, thus reducing the accuracy of the detec-
tion scheme; When the threshold is too small, it means that the
tolerance range of UAV’s deviation from the normal behavior
model is too small, and the detection scheme will incorrectly
detect the situation that UAV is offset by the external air
pressure to be abnormal, which will affect the performance
of the detection scheme. Therefore, this paper needs a lot
of experiments to choose the most appropriate threshold,
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and multiple samples and different thresholds are used for
testing. In addition, in order to make the display of the image
clearer, two samples of proposed models (LSTM-RNN model
in smart city and Simple RNN model in highway) are ran-
domly selected to conduct the experiments, and also compare
the performance with Support Vector Machine (SVM) and
Multi-Layer Perception (MLP) to prove the reliability of the
proposed method [28], the experimental results are shown
in Figure 10 (a) and (b), respectively.

Figure 10(a) shows the detection accuracy under different
thresholds in smart city scenario. It can be seen from the
figure that as the threshold increases, all accuracy curves
show a gradual upward trend. In order to ensure the accuracy
of abnormal behavior detection, é is defined as 0.5, which
can tolerate the slight deviation of UAV when it is affected by
the air pressure, and accurately detect the abnormal behavior.
Besides, when the § is set to 0.5, the detection accuracy is
about 98%. For SVM and MLP algorithm, two samples are
also randomly selected for comparison. It can be seen from
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the figure that when the accuracy of SVM curves reaches
98%, the corresponding threshold is about 0.62, and when
the accuracy of MLP curves reaches 98%, the corresponding
threshold is about 0.58, both of which are larger than 0.5 of
proposed scheme. Therefore, under the condition of ensuring
the same accuracy, the abnormal behavior detection scheme
proposed in this paper is more sensitive with a lower false
positive rate of detection in smart city scenario. Figure 10(b)
illustrates the detection accuracy under different thresholds
in highway scenario, and the § is defined as 0.6 to achieve
the high detection accuracy. Besides, the detection accuracy
of 0.6 is also about 98%, when the accuracy of SVM curves
reaches 98%, the corresponding threshold is about 0.64, and
when the accuracy of MLP curves reaches 98%, the cor-
responding threshold is about 0.63, both of which are also
larger than 0.6 of proposed scheme. Therefore, the abnormal
behavior detection scheme in highway scenario is also more
sensitive with a lower false positive rate of detection com-
pared with SVM method.
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In addition, it is necessary to provide the computation
time of proposed method, SVM and MLP algorithms in
test stage and run stage to further prove the feasibility
of proposed abnormal behavior detection scheme. Specifi-
cally, the computation time in test stage refers to the time
taken to test the model using test sets after the model is
built, which also includes the loading of model, reading
of the data and the abnormal judgment. And the computa-
tion time in test stage of proposed method, SVM and MLP
algorithms is 129.85s, 130.59s and 132.97s, respectively.
Besides, as the most important basis, the computation time
in run stage (which is the time required to complete the
abnormal detection) of proposed method, SVM and MLP is
0.034s, 0.035s and 0.033s, respectively. Therefore, the abnor-
mal behavior detection scheme proposed in this paper can
not only achieve more accurate detection results, but also
need to spend almost the same or even shorter detection
time.

V. SUMMARY AND FUTURE WORK

This paper proposes an abnormal behavior detection scheme
to address the problem of GPS spoofing. From the works of
predecessors, it is clear that deep learning performs well in
prediction by applying trained model. Inspired by this point,
an abnormal behavior detection scheme of UAV using RNNs
is proposed in this paper. To avoid the confusion of slight
offset and abnormal behavior of UAYV, the reliable normal
behavior models for two different scenarios including smart
city and highway are established by applying RNNs, and
DOA estimation algorithm is used to collect current angle
data of UAV thereby ensuring the accuracy of input datasets.
According to the experimental results, the optimal normal
behavior models under smart city and highway scenarios
are LSTM-RNN and Simple RNN with highest accuracy.
Moreover, an appropriate threshold is selected through
amounts of experiments to measure NRMSE between the
real position and the position provided by normal behavior
models, so as to achieve the purpose of detecting abnor-
mal behavior. Experimental results justify that the proposed
abnormal behavior scheme is of high detection accuracy,
then the abnormal behavior of UAV can be detected in time,
which provides the possibility for people to take remedial
measures, thus ensuring the security of the communication
system. In the future, the work can be extended to optimize
the simulation system of experiments and make it more in line
with the real unstable environment of UAV, and the proposed
normal behavior model can also be upgraded to deal with very
large scale angle datasets.
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