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ABSTRACT Aluminummelting process is a semi-continuous process with high-energy consumption. In this
paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is
employed to improve energy consumption of aluminummelting furnaces without changing the hardware. For
numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating
points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio
of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important
manipulated variables. For control scheme, a two-layer model predictive control which consists of steady
state target calculation and dynamic optimization is developed to track the optimal operating conditions.
In steady state target calculation layer, a priority strategy is proposed based on the different importance
of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer,
a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled
variables and manipulated variables. The method is successfully carried out in F1 aluminummelting furnace
of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and
the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.

INDEX TERMS Melting processing, predictive control, control engineering, steady-state target calculation.

I. INTRODUCTION
Aluminum and aluminum alloy products, which have good
mechanical property and superb cast ability, are widely
used in automobile, construction, communication and other
fields [1]. Aluminum melting alone contributes more than
50% of a plant’s total energy consumption, along with mas-
sive CO2 emissions and other waste production [1], [2].
In view of huge energy-cost and increasingly stringent emis-
sions regulations, much attention has been paid to research
and applications on energy conservation and emissions reduc-
tion for melting furnace [3]. There are two main melting
furnace types: electric and fuel-fired. The energy conser-
vation technology for melting furnaces can be classified
into hardware-based strategy and software-based strategy.

The associate editor coordinating the review of this article and approving
it for publication was Nishant Unnikrishnan.

This paper is focused on software-based strategy for fuel-
fired aluminum melting furnaces.

Subject to existing hardware, the software-based strate-
gies of reducing energy consumption have been reviewed
in the literature [4]–[7]. There are many studies focusing on
numerical simulation, e.g., [2], [8], [9]. In the literature [9],
CFD technique combining with Taguchi method and cross-
table-based analysis of variance was developed to optimize
the parameter of melting process of an aluminum melting
furnace. The optimal conditions of horizontal angle between
burners, air preheated temperature, natural gas mass flow and
air-fuel ratio were determined. However, the results of these
numerical simulations are usually used to guide the operation
offline for the high computation complexity.

Additionally, several control schemes have been devel-
oped. Classical Proportional-Integral-Derivative (PID) is
the most common industrial controller [10]. To maintain
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the furnace temperature of a melting process with large
time delay at a setpoint, smith predictor and other
advanced algorithms combining with smith predictor which
are used to compensate large time delay were pro-
posed [11], [12]. To maintain the effective product exit
temperature, Beschi et al. [13] presented a PI controller
with model-based feedforward considering process input
constraints. The optimal feedforward control law is addressed
by employing an input-output inversion of the system.

Rule-based controllers which operate on a set of
rules defined prior to actual operation are frequently
used [14]. Martín et al. [15] proposed a fuzzy system of
Takagi–Sugeno–Kang. The system was used to obtain the
IF–THEN rules where the THEN parts are linear combi-
nations of input variables. Based on these IF–THEN rules,
the control actions are evaluated, and carried out to maintain
the product exit temperature at a set point. To minimize the
electricity consumption of a magnesium furnaces, a class
of stable control rules with respect to the current values
were proposed to heat the product up to an appropriate
temperature zone [16]. However, for the rules based on
massive expert knowledge and the complexity of the melting
process, the rule-based controllers are expensive to install,
commission and tune.

Model predictive control (MPC), which can easily and
effectively deal with of multivariable systems with inter-
actions and constraints, has been widely adopted in indus-
try [17], [18]. In order to track the optimal air factor,
Grancharova et al. [19] proposed an explicit reference track-
ing NMPC controller for a combustion plant. The NMPC
controller which is based on a Gaussian process model takes
the economic and the environment into account simulta-
neously, and simulation showed that the optimal operation
of the combustion plant is achieved. However, considering
the operation safety of the combustion plant and the dis-
allowed interrupts in plant operation, the explicit stochas-
tic NMPC has not be implemented in practical application.
Zhang et al. presented an enhanced MPC based on a first-
order plus dead time (FOPDT) model to control the furnace
temperature of a heating furnace [20]. Ganesh et al. devel-
oped a two-layer hierarchical structure which consists of a
regulatory controller and a MPC controller to control the
product exit temperature for an austenitization furnace [21].
Banerjee et al. [22] presented a model-based control method
to simultaneously reduce the energy consumption and min-
imize the deviations of the product exit temperature from
prescribed values. For combustion optimization, an advanced
combustion controller based on model-based predictive con-
trol technology [23] was proposed to keep the pressure under
limit with simultaneous air-fuel ratio optimization, and is
deployed in this paper.

From the above we can see that there are many studies
in the literature focusing on the software-based strategy of
fuel-fired melting furnaces from the view of numerical sim-
ulation and control scheme. To achieve higher performance,

it is important that numerical simulation and control scheme
are designed together. However, there are few researches
treating both aspects in fuel-fired melting furnaces. In this
paper, a software-based strategy which considers numerical
simulation and control scheme simultaneously is employed
to improve energy consumption. To overcome the problem of
high computational cost of numerical simulation, a nonlin-
ear steady-state model of the melting furnace is adopted to
obtain the optimal operating conditions offline. Extensively,
the optimal operating conditions include not only product
exit temperature, but also ratio of combustion air flow and
natural gas flow, furnace temperature, flue gas temperature
and some important manipulated variables. A two-layerMPC
which consists of steady state target calculation (SSTC)
and dynamic optimization (DO), different form that in [21],
is developed to track the optimal operating conditions. Owing
to the different importance of controlled variables, a priority
strategy is considered in SSTC layer to make the steady state
targets more suitable. The steady state targets calculated by
SSTC are tracked inDO layer. To settle the problem of serious
interactions and large disturbances, a partially decentralized
model is adopted in DO to improve robustness. An appli-
cation of this method on F1 aluminum melting furnace in
Tianjin, China is successfully carried out.

The paper is organized as follows. Firstly, a fuel-fired
aluminum melting furnace with two chambers is described,
next the energy conservation oriented multivariable two-layer
MPC method is illustrated in detail, and then an offline
numerical simulation and controller design of F1 aluminum
melting furnace is introduced, and the performance before
and after the application of the controller is contrasted and
analyzed, the research is summarized in the last.

II. FUEL-FIRED ALUMINUM MELTING FURNACE
A representative schematic of fuel-fired aluminum melting
furnace used widely is presented in Figure 1. The furnace
has two molten pools, a main molten pool and an auxiliary
molten pool. Liquid aluminum in the two molten pools is
circulated through a circulating pump. The primary heat
for smelting aluminum in the main molten pool is gained
from burned natural gas, and in the auxiliary molten pool
is gained from circulating liquid aluminum and flue gas.
There are three feeding methods: 1) large-block aluminums
are charged intermittently through the main/auxiliary furnace
door; 2) aluminum debris are feed continuously through 1#
rotary kiln; 3) aluminum scraps are add continuously through
2# rotary kiln. When the level and quality of liquid aluminum
meet requirements after drossing and sample analysis, part of
liquid aluminum is transferred to next production sections as
required.

The flue gas partially passes through 1# and 2# rotary kiln
to heat up the raw material of solid aluminum for improving
the residual heat utilization, then though a bag-type dust
remover and an induced draft fan, and finally is discharged
though a chimney.
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FIGURE 1. Diagram of fuel-fired aluminum melting furnace.

FIGURE 2. Structure of energy conservation oriented two-layer MPC.

III. ENERGY CONSERVATION ORIENTED TWO-LAYER
MPC FOR MELTING PROCESS
Even though the aluminum melting process described in
Figure 1 is a semi-continuous process, for the convenience
of calculation, we assume that the melting process is a con-
tinuous process and the intermittent charging is a disturbance.
Using the experience of hierarchical control architectures in
continuous process industry for reference, an energy conser-
vation oriented multi-variable two-layer MPC for aluminum
melting furnace focusing on the multi-target optimization is
presented. The structure is shown in Figure 2.Where u ∈ Rnu

is the vector of manipulated variables including the openness
of the natural gas valve, the frequency of the combustion air
fan and the frequency of the induced draft fan; y ∈ Rny is the
vector of controlled variables including the furnace chamber
temperature, the liquid aluminum temperature, the flue gas
temperature, the aluminum scraps temperature, the oxygen
content in the flue gas and the furnace pressure. An offline
nonlinear steady-state optimization executed at the begin-
ning of design instead of the real-time optimization (RTO)

for convenience. The optimal operating points (u∗, y∗) are
calculated by offline optimization are transmitted to SSTC,
the upper layer of two-layer MPC. The lower layer DO
receive the optimal steady-state targets (uSS, ySS) from SSTC
as the set-points for the MPC for implementation.

A. OFFLINE OPTIMIZATION OF OPERATING CONDITONS
BY NUMERICAL SIMULATION
A comprehensive energy consumption for unit output
of product is defined as energy conservation evaluation
index.

ep =
E
P

(1)

where ep is the comprehensive energy consumption for unit
output of product; E is comprehensive energy consumption,
including the heat energy released by fuel combustion and
the electrical energy consumed by fans; P is the total output
of acceptable liquid aluminum.

From (1), the reduction of the total amount of consumed
energy and decreasing the burn loss are effective measures of
energy conservation. Considering the following direct mea-
sures and indirect measures comprehensively:

1) Maintaining the optimal ratio of combustion air flow
and natural gas flow to minimize excess oxygen.

2) Minimizing the flue gas temperature.
3) Maintaining the furnace temperature at an optimal

value.
4) Minimizing the effective product exit temperature.
5) Minimizing burning loss of material.
An offline nonlinear steady-state optimization is per-

formed to provide the optimal operating points to two-layer
MPC. The major cost for melting process is fuel, electricity
and burning loss. Therefore, the optimization problem can be
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described below:

min
u,y

C1FNG + C2FCA + C3FIA + C4FBL

s.t. f (u, y) = 0

g (u, y) ≤ 0, (2)

where FNG, FCA, FIA and FBL denote natural gas flow,
power consumption of combustion air fan, power consump-
tion of induced draft fan and burning loss flow respectively;
C1,C2,C3 andC4 are their cost coefficients; f is the first prin-
ciple model of melting process; g is the process constraints,
such as production safety and product quality limits. Then the
optimal operating points (u∗, y∗) are obtained by solving the
nonlinear optimization problem offline.

B. ENERGY CONSERVATION ORIENTED TWO-LAYER MPC
Due to the presence of unmeasured disturbances and operat-
ing conditions change, the optimal operating points (u∗, y∗)
obtained from the nonlinear model may not be fixed all the
time. On the other hand, the nonlinear steady-state model
used in nonlinear steady-state optimization may not be con-
sistent with the linear model used in MPC, which implies that
MPC may not be guaranteed to drive the process variables
(u, y) to their optimal operating points (u∗, y∗). Therefore,
a two-layer MPC consisting of SSTC in the upper layer and
DO in the lower layer is introduced [17].

1) MULTIPRIORITY-BASED STEADY-STATE
TARGET CALCULATION
The SSTC objective function for aluminum melting process
are mathematically formulated as

`e(k) , WT
e uSS (k) (3a)

`t (k) ,
[
y∗ − ySS (k)

]T Wt [y∗ − ySS (k)] (3b)

`1(k) , 1uTSS (k)W11uSS (k) (3c)

`s (k) , εTSS (k)WsεSS (k) (3d)

where uSS (k) and ySS (k) are the steady-state inputs and out-
puts at time k respectively; `e ∈ R≥0 denotes the economic
cost of aluminum melting process operation, such as cost of
fuel (natural gas) and cost of electricity (induced draft fan and
combustion air fan). The cost `t ∈ R≥0 penalizes steady-state
output deviations from the optimal operating condition y∗, for
instance, the nearer air-fuel ratio approximates to its optimal
value calculated by nonlinear optimization, the better com-
bustion efficiency is. The cost `1(k) ∈ R≥0 penalizes the
steady-state input variations 1uSS (k) = uSS (k) − u(k−1)
to gain a smooth operation and extending components life.
`s(k) represents the penalization of constraint violations, and
εSS (k) is slack variable to guarantee the feasibility of the
optimization problem.We is a vector which is determined by
the comprehensive benefit or cost of steady-state inputs and
outputs variable on a same measurement scale; Wt , W1 and
Ws are diagonal positive definitive matrices of appropriate
dimensions.Wt andWs yield more control efforts to achieve
tighter control of more important controlled outputs, andW1

directs amore robust controller but at the cost of the controller
being more sluggish.
According to the objectives in (3), the SSTC optimization

problem of aluminum melting process can be formulated as

min
uSS,ySS,ε

`e (k)+ `t (k)+ `1 (k)+ `s(k) (4a)

s.t. ySS(k + 1) = G01uSS(k)+ ỹ (k + N |k) (4b)

yLL − εSS(k) ≤ ySS(k + 1) ≤ yHL + εSS(k) (4c)

uLL ≤ uSS(k) ≤ uHL (4d)

− εSS(k) ≤ 0 (4e)

where (4b) is the steady-state model of process; G0 is the
steady-state gain matrix. ỹ (k + N |k) is the open loop predic-
tion of controlled variables at time k+N computed at time k ,
and N is the settling time of aluminum melting process.
yLL and yHL are minimum and maximum bounds of the con-
trolled variables, uLL and uHL are the bounds of the manip-
ulated variables. The optimal steady-state targets (u∗SS, y

∗

SS)
will be obtained using quadratic programming, (5) describes
the standard quadratic program (QP) form of (4).

min
Z

ZTWZ+HTZ

s.t. θZ ≤ b (5)

where,

Z =
[

1uSS(k)
εSS(k)

]
,

W =
[
GT0WtG0 +W1 0

0 Ws

]
,

H =
[
We − 2(y∗ − ỹ (k + N |k))WtG0

0

]
,

θ =


G0 −I
−G0 −I
I 0
−I 0
0 −I

, b =


yHL − ỹ (k + N |k)
−yLL + ỹ (k + N |k)
uHL − u(k − 1)
−uLL + u (k − 1)

0

.

In SSTC, the importance of constraints of different vari-
ables varies, and it is unreasonable to relax constraints
irregularly in order to obtain feasible solutions. To settle
this problem, this paper presents a multipriority-based SSTC
method which sorts the priority order of controlled variables
according to importance, such as production safety, product
quality and economic benefit, then constraints are relaxed.

a: FEASIBILITY JUDGMENT
Here the feasibility is obtained by minimizing a positive
definite quadratic cost function

min
Z
J = εTSS (k)Wf εSS (k) (6)

Constrains are the same as (5), and not repeated here.Wf is
a diagonal positive definitive matrix. For the optimization
solution J∗ of (6), one may in general discern the following
two cases.
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J∗ = 0: it means that the constraint set of (5) is not null
in the absence of relaxation conditions, and there is a feasible
solution which can be directly calculated by (5).
J∗ 6= 0: it means that the constraint set of (5) is null in

the absence of relaxation conditions. Therefore, constraints
relaxation is required for SSTC.

b: CONSTRAINTS RELAXATION BASED ON PRIORITY
Suppose that the controlled variables have p different prior-
ities, which are denoted as P1,P2, · · · ,Pp from low to high
respectively, where the lower the numerical value, the higher
the priority.

We first relax the controlled variable constraints with
the highest priority (P1), considering the optimization prob-
lem where only the controlled variables with P1 priority is
considered.

min
Z1

J1 = Z1TW1
f Z

1

s.t. θ1Z1 ≤ b1 (7)

where,

Z1 =
[

1uSS(k)
ε1SS(k)

]
(nu+n1)×1

,

θ1 =


G1
0 −I1

−G1
0 −I1

I 01

−I 01

0 −I1


(3n1+2nu)×(nu+n1)

,

and

b1 =


y1HL − ỹ

1 (k + N |k)
−y1LL + ỹ

1 (k + N |k)
uHL − u(k − 1)
−uLL + u (k − 1)

0


(3n1+2nu)×1

.

The superscript number refers to priority. ε1SS(k) indicates the
slack variable with P1 priority, and so on. n1 is the number
of controlled variables with P1 priority. W1

f is a weighting
matrix. The optimal solution for ε1SS(k) is denoted as ε

1∗
SS(k).

The constraint relaxation of P1 priority is determined at this
point, then we move to the next priority (P2) optimization
problem.

min
Z2

J2 = Z2TW2
f Z

2

s.t. θ2Z2 ≤ b2 (8)

where

Z2 =
[

1uSS(k)
ε2SS(k)

]
(nu+n2)×1

,

θ2 =



G1
0 01

G2
0 −I2

−G1
0 01

−G2
0 −I2

I 02

−I 02

0 −I2


(2n1+3n2+2nu)×(nu+n2)

,

and

b2 =



y1HL − ỹ
1 (k + N |k)+ ε1∗SS(k)

y2HL − ỹ
2 (k + N |k)

−y1LL + ỹ
1 (k + N |k)+ ε1∗SS(k)

−y2LL + ỹ
2 (k + N |k)

uHL − u(k − 1)

−uLL + u (k − 1)

0


(2n1+3n2+2nu)×1

.

It is important to note that the slack variable ε1SS(k) is deter-
mined in the optimization of constraints relaxation with last
priority, therefore the solution ε1∗SS(k) is treated as a known
value instead of a decision variable. According to the opti-
mization problem (8), the optimal relaxation ε2∗SS(k) can be
obtained. In the same way, we can generalize other optimal
relaxations ε3∗SS(k), · · · , ε

p∗
SS(k).

Finally, the optimal steady-state inputs u∗SS (k) and outputs
y∗SS (k) can be obtained by substituting ε∗SS(k) into (5). Here

ε∗SS (k) =
[
ε1∗TSS (k) · · · εp∗TSS (k)

]T
.

2) DYNAMIC OPTIMIZATION
The lower layer DO implements MPC to regulate the inputs
and outputs to their optimal steady-state targets from the
upper layer SSTC.

Here, a step response model obtained easily in industry
for MPC is used to describe the melting process. Suppose
that the step responses coefficient of output variable yi for
input variable uj is gij =

[
gij (1) , · · · , gij (N )

]T , where i =
1, · · · , ny, j = 1, · · · , nu. N is the model length. Define
vectors as follows:

ỹP0 (k) = [ỹ0 (k+1|k) , · · · , ỹ0 (k + P|k)]

ỹPM (k) = [ỹ (k + 1|k) , · · · , ỹ (k + P|k)]

1uM (k) = [1u (k) , · · · , 1u(k +M − 1)]

Gij =



gij (1) · · · 0
...

. . .
...

gij (M) · · · gij (1)
...

...
...

gij (P) · · · gij (P−M + 1)



G =


G11 G12 · · · G1nu
G21 G22 · · · G2nu
...

...
...

Gny1 Gny2 · · · Gnynu


VOLUME 7, 2019 114663



N. Guo et al.: Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces

where P and M denote prediction horizon and control hori-
zon, respectively; ỹP0 (k) is the initial output prediction value
of the melting process at time k; ỹPM (k) is the future output
prediction value over the prediction horizon P at time k after
addingM control movements1uM (k);G is the dynamic gain
matrix. it notes that the inputs are assumed to be constant after
time k +M , i.e. 1u (k +M + i) = 0, for i = 1, · · · ,P− 1.
Hence, the step response model with multi-step prediction for
the melting process can be written as:

ỹ (k + 1) = ỹ0 (k + 1)+ G1uM (k) (9)

A standard MPC is described as minimizing the follow-
ing dynamic objective function to drive outputs to their
setpoints ySP.

min
1u(k),··· ,1u(k+M−1)

ε(k),··· ,ε(k)

P∑
i=1

∥∥ySP (k)− ỹ (k + i)
∥∥2
Qi

(10a)

+

M∑
i=1

‖1u (k + i)‖2Ri

+

P∑
i=1

‖ε (k + i)‖2Si

s.t. ỹ (k + 1) = ỹ0 (k + 1)+ G1uM (k) (10b)

yLL − ε (k + i) ≤ ỹ (k + i) ≤ yHL + ε (k + i)

i = 1, · · · ,P (10c)

uLL ≤ u(k + i) ≤ uHL i = 0, · · · ,M − 1

(10d)

1uLL≤1u(k+i)≤1uHL i = 0, · · · ,M−1

(10e)

− ε(k + i) ≤ 0 i = 1, · · · ,P (10f)

Here, to drive the process variables to their optimal steady-
state targets calculated by SSTC, the dynamic objective
function is modified as

min
1u(k),··· ,1u(k+M−1)

ε(k),··· ,ε(k)

P∑
i=1

∥∥y∗SS (k)− ỹ (k + i)
∥∥2
Qi

+

M∑
i=1

∥∥u∗SS (k)− u (k + i)
∥∥2
Vi

+

M∑
i=1

‖1u (k+i)‖2Ri+
P∑
i=1

‖ε (k+i)‖2Si

(11a)

s.t. ỹPM (k + 1) = ỹP0 (k + 1)+ A1uM (k) (11b)

yLL−ε (k + i)≤ ỹ (k+i|k) ≤ yHL+ε (k+i)

i = 1, · · · ,P (11c)

uLL ≤ u(k + i) ≤ uHL i = 0, · · · ,M − 1

(11d)

1uLL ≤ 1u(k+i)≤1uHL i=0, · · · ,M−1

(11e)

− ε(k + i) ≤ 0 i = 1, · · · ,P (11f)

where the objective function in (11a) involves four penalty
terms: future output deviations from the optimal steady-
state output y∗SS, future input deviations from the optimal
steady-state input u∗SS, control movements 1u and output
constraint violations; Equation (11b) is the melting pro-
cess model constraint; and four inequality constraints: input
constraints (11c), output constraints (11d), control move-
ment constraints (11e) and output constraint slack variable
constraints (11f) are considered.

IV. INDUSTRIAL APPLICATION
The application of the proposed algorithm is based on F1 fur-
nace with 90 ton/batch in Tianjin, China. Maintaining the
original hardware equipment, a host computer named ‘‘APC
Server’’ which communicates with Siemens PLC via TCP/IP
is installed. The main components are illustrated in Figure 1.
The architecture of F1 furnace control system is shown in
Figure 3.

FIGURE 3. Architecture of F1 furnace control system.

A. SIMULATION OF ALUMINUM MELTING
PROCESS FOR F1 FURNACE
Next, a simulation of the aluminum melting process analyzes
the main factors. Since the aluminum melting is a complex
reaction process withmultiphase andmulticomponent, Aspen
Plus process simulation software is used to reduce the work-
load of process simulation, and the following assumptions are
made:

1) Assume that the melting process was a continuous pro-
cess, and the feeding speed the same as the discharging
speed which was 6 ton/h.

2) Neglect the radiative heat transfer of inner surface of
furnace.

3) The heat loss of furnace wall relies mainly on convec-
tive heat transfer.

4) One step fast non-reversible chemical reaction is
adopted in combustion.

5) Alloy elements are surrounded completely by liquid
aluminum.

6) Ignore the flow of liquid aluminum caused by
temperature difference.
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FIGURE 4. Diagram of a melting process simulation for F1 furnace in Aspen Plus.

TABLE 1. Operating points for F1 furnace.

In terms of the structure of F1 furnace, the following sub-
processes are considered to simulate the smelting process:

1) Waste heat recovery sub-process: heat storage medium
and solid aluminum material are preheated by flue gas
in this sub-process.

2) Combustion sub-process: the combustion reaction of
natural gas is thought to be a simple and fast chemical
reaction, that is, the combustion reaction is always in
equilibrium. The degree and rate of combustion reac-
tion will be determined based on the Gibbs principle of
minimum free energy.

3) Fusion sub-process: the total heat required for melting
one mole of aluminum is calculated by the following
formula:

Q = 1Hs+1HM+1Hl (12)

where Q is the total theoretical heat, J/mol; 1Hs and
1Hl are the solid and liquid aluminum enthalpy respec-
tively, J/mol; 1HM is the latent heat of fusion of
aluminum, J/mol;

4) Burning loss of liquid aluminum sub-process: the burn-
ing loss of liquid aluminum is mainly caused by
volatilization and chemical reaction.

5) Liquid aluminum cycle sub-process: the liquid alu-
minum in the main molten pool and the auxiliary
molten pool is circulated through a circulating pump.

6) Heat loss sub-process: the radiating heat loss of furnace
wall in melting process is mainly considered.

7) Feeding sub-process: large-block aluminums, alu-
minum debris and aluminum scraps are included.

The simulation of melting process is established through
Aspen Plus as shown in Figure 4. Considering the processing
capacity of the F1 furnace with the objective function of
minimizing energy and material consumption, the optimal
operating points are calculated as shown in Table 1.

Note that the reduction of total Al2O3 output indicates that
the burning loss of liquid aluminum is down and the produc-
tion of liquid aluminum is up. The increase of power con-
sumption of induced draft fan illustrates that the utilization of
waste heat is improved. The increase of power consumption
of combustion air fan and the reduction of consumption of
natural gas mean the combustion of natural gas more com-
pletely. Taking Chinese standard GB/T 2589-2008 [24] as
a reference, lower heating value (LHV) of natural gas and
electricity are 35500 kJ/ m3 and 3600 kJ/(kW·h) respectively.
Comparing to on-off controller, the integration of numeri-
cal simulation and control scheme proposed in this paper
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reduces the comprehensive energy consumption E 12.46%,
and the comprehensive energy consumption for unit output of
product ep 13.56%.

B. TWO-LAYER MPC
Even with the MPC using a centralized model, which has
a better performance than decentralized control, this advan-
tage is based on a sufficient accurate model. In addition,
designing, tuning and maintaining a centralized controller
are extremely difficult [18], [25]. On the other hand, ignoring
the interactions in controller design can lead to poor control
performance or even instability. Here, another solution with
a partially decentralized model is adopted to simplify the
implementation of MPC for F1 furnace. Although the control
movements calculated by MPC with a partially decentral-
ized model structure is not optimal, the implementation of
MPC is simplified and the robustness of the control system
is improved. Pairing manipulated variables and controlled
variables for structuring a partially decentralized model
is important for minimizing interactions. Here, a criterion
based on relative normalized gain array (RNGA) [26]–[28]
is introduced to determine the partially decentralized model
structure of MPC for F1 furnace. The lists of manipulated
variables, controlled variables and disturbance variables in
the two-layer MPC are shown in Table 2-4, and the priorities
of the controlled variable constraints classified into three
types: safety constraints, quality constraints and economic
constraints ordered from high to low are shown in Table 5.

TABLE 2. Manipulated variables.

TABLE 3. Controlled variables.

The partially decentralized model structure for MPC is
shown as Figure 5, where the open-loop transfer function
of each sub-model is described as a first-order plus dead
time (FOPDT) form.

As can be seen from the decentralized model structure and
control objective mentioned above, the control scheme of
F1 furnace includes:

TABLE 4. Disturbance variables.

TABLE 5. Priorities of the controlled variable constraints.

FIGURE 5. Partially decentralized model structure of F1 furnace.

1) SUSTAINED PRODUCTION SAFETY
The furnace press is controlled by using the running fre-
quency of the induced draft fan as a manipulated variable and
combustion air flow as a disturbance variable. This control
loop compensates the furnace press fluctuation caused by
combustion air flow, which ensures the furnace pressure is
safe.

The temperature of flue gas is controlled by using the
running frequency of the induced draft fan as a manipulated
variable. This control loop aims to drive the temperature
of flue gas to its optimal steady-state obtained from SSTC,
which is helpful to improve energy utilization and ensure the
safety of F1 furnace for that high temperature of flue gas will
melt aluminum debris and aluminum scraps fed from rotary
kilns and low temperature will corrode the chimney.

2) PROVISIONING ON-DEMAND
To minimize the usage amount of natural gas, the optimal
steady-state of openness of the natural gas valve, temperature
of furnace chamber, temperature of liquid aluminum and
temperature of aluminum scraps are calculated by SSTC.
In DO, these variables are controlled by openness of the
natural gas valve as a manipulated variable. Due to predictive
ability of MPC, when the temperature of liquid aluminum is
close to its optimal steady-state, openness of the natural gas
valve will be reduced in advance to avoid the temperature of
liquid aluminum overshoot. Burning loss of liquid aluminum
is avoided and provisioning on-demand of natural gas is
achieved.
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3) COMBUSTION EFFICIENCY OPTIMIZATION
Oxygen content in flue gas is an important index to
detect combustion efficiency. Due to the hysteresis of phys-
ical instrument detection, Air-fuel ratio (combustion air
flow/natural gas flow) is introduced as the auxiliary con-
trolled variable. The oxygen content in fuel gas and the air-
fuel ratio is controlled by using the running frequency of the
combustion air fan as a manipulated variable. This control
loop is used to ensure the optimum ratio of fuel and air in
the melting process of F1 furnace and achieve combustion
efficiency optimization.

C. APPLICATION RESULTS AND DISCUSSION
An on-off controller was adopted for F1 furnace previously.
The manipulated variables were openness of the natural
gas valve, running frequency of the combustion air fan and
running frequency of the induced draft fan. Each of these
manipulated variables had two constant states, high fire state
and low fire state. There were two control modes for oper-
ators to choose by the switch button on the touch panel,
the furnace chamber temperature control mode and the liquid
aluminum temperature control mode. The controlled variable
was furnace chamber temperature for the furnace chamber
temperature control mode, and liquid aluminum temperature
for the liquid aluminum temperature control mode.

In order to reduce the fluctuations of controlled variables
caused by large time delays, the setting of thresholds was
added for the two control modes as shown in Figure 6.

FIGURE 6. The operation interface of parameters setting for on-off
controller.

For the furnace chamber temperature control mode, trends
of the process variables under the on-off controller are
depicted in Figure 7.

It can be seen in Figure 7 that at the sampling time
61 and 273, the furnace chamber temperature is greater than
the upper limit, then openness of the natural gas valve (0%),
running frequency of the combustion air fan (0Hz) and run-
ning frequency of the induced draft fan (0Hz) are switched to
low fire states. at the sampling time 137 and 289, the furnace
chamber temperature exceeds the lower limit, then openness
of the natural gas valve (45%), running frequency of the
combustion air fan (45Hz) and running frequency of the

FIGURE 7. Control effect of F1 furnace with on-off control.

FIGURE 8. Control effect of F1 furnace with energy conservation oriented
two-layer MPC.

induced draft fan (40Hz) are switched to high fire states.
As a result of the switch action, the controlled variables will
be constantly fluctuating with large amplitudes, some vari-
ables such as temperature of furnace chamber, temperature
of flue gas and temperature of aluminum scraps even beyond
their safety limits, which brings risks to safety production.
In addition, the mean value of oxygen content in flue gas has
been maintained at a high level about 11%.

The curves after the application of energy conservation
oriented two-layer MPC are shown as Figure 8, in which
from the sampling time 370 to 430, the furnace door is
opened for adding large-block solid aluminums. As shown
in Figure 8, the mean values of manipulated variables are
reduced compared to these in the original control system used
an on-off controller. particularly, the reduction of the natural
gas valve openness is the most obvious. Before adding large-
block solid aluminums, the temperature of liquid aluminum
is kept around 720 ◦C, which is about 20 ◦C less than that
in Figure 8. The lower temperature of liquid aluminum can
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not only help to reduce the consumption of natural gas, but
also to increase production of products by reducing burning
loss. After adding large-block solid aluminums, the temper-
ature of furnace chamber is maintained at its upper limit to
heat aluminum material quickly and ensure liquid aluminum
without burning loss. However, due to the characteristics of
aluminum, the temperature of liquid aluminum liquid rises
slowly. The fluctuating of the aluminum scraps temperature
is significantly reduced, and the mean value is about 170 ◦C
which is increased by 30 ◦C comparing with the original sys-
tem. The temperature of flue gas is always in the safety zone,
and the men value is about 134 ◦C, which reduces the heat
loss in the case of safety. Due to adopting multipriority-based
SSTC for constraints relaxation, the economic goals with
low priority can be achieved. As can be seen from Figure 8,
the oxygen content in flue gas, the key factor to represent
the combustion efficiency, always is maintained around 8%
improved by 3%. Due to reasons such as flue air leakage and
model mismatch, there is still a certain gap with the optimal
steady-state. Taking GB/T 2589-2008 [24] as a reference in
the same way, the comprehensive energy consumption EMPC
and the comprehensive energy consumption for unit output of
product ep,MPC are 9046327.83 kJ/h and 1535.66 kJ/(kg · h)
respectively, which decrease 5.99% and 6.56%.

According to the above analysis, it can be concluded
that, after the application of energy conservation oriented
two-layer MPC for F1 furnace, the combustion efficiency
is improved effectively, and the energy consumption of the
melting process is reduced.

V. CONCLUSION
In this paper, it has been proposed an energy conservation ori-
ented two-layer MPC, in which direct measures and indirect
measures are taken into consideration simultaneously. Multi-
priority constraints relaxation based on safety, quality and
energy efficiency is adopted to make steady-state target of
SSTC feasible and reasonable, and a partially decentralized
model structure is introduced to improve the robustness of
the system. Through the simulation of F1 furnace, some
operational recommendations are proposed. An energy con-
servation oriented two-layer MPC controller for F1 furnace
is set up to achieve control objectives, including sustained
production safety, provisioning on-demand and combustion
efficiency optimization. By compared with the original on-off
controller, application results demonstrate that the operation
of F1 furnace is smoothly and the average of variables rep-
resenting energy consumption, such as the openness of the
natural gas valve, temperature of flue gas and oxygen content
in flue gas, are significantly reduced. The comprehensive
energy consumption and the comprehensive energy consump-
tion for unit output of product respectively decrease 5.99%
and 6.56% compared to operation under the previous on-off
controller.

Future works include the study of online nonlinear steady-
state optimization and a linear parameter varying model to
improve the accuracy of F1 furnace model.

REFERENCES
[1] Z. Yang, S. Shao, L. Yang, and J. Liu, ‘‘Differentiated effects of diversified

technological sources on energy-saving technological progress: Empirical
evidence from China’s industrial sectors,’’ Renew. Sustain. Energy Rev.,
vol. 72, pp. 1379–1388, May 2017.

[2] L. Acevedo, S. Usón, and J. Uche, ‘‘Exergy transfer analysis of an alu-
minum holding furnace,’’ Energy Convers. Manage., vol. 89, pp. 484–496,
Jan. 2015.

[3] P. Royo, V. J. Ferreira, A. M. López-Sabirón, T. García-Armingol, and
G. Ferreira, ‘‘Retrofitting strategies for improving the energy and environ-
mental efficiency in industrial furnaces: A case study in the aluminium
sector,’’ Renew. Sustain. Energy Rev., vol. 82, pp. 1813–1822, Feb. 2018.

[4] C. Belt, ‘‘Current state of aluminum melting and holding furnaces in
industry,’’ Proc. JOM, vol. 67, no. 11, pp. 2690–2695, Nov. 2015.

[5] K. He and L.Wang, ‘‘A review of energy use and energy-efficient technolo-
gies for the iron and steel industry,’’ Renew. Sustain. Energy Rev., vol. 70,
pp. 1022–1039, Apr. 2017.

[6] A. Jakovics, I. Madzhulis, V. Frishfelds, and B. Nacke, ‘‘Influence of melt
flow and temperature on erosion of refractory and deposit formation in
aluminium melting furnaces,’’ Energy Convers. Manage., vol. 43, no. 3,
pp. 345–352, Feb. 2002.

[7] F. Dal Magro, A. Meneghetti, G. Nardin, and S. Savino, ‘‘Enhancing
energy recovery in the steel industry:Matching continuous charge with off-
gas variability smoothing,’’ Energy Convers. Manage., vol. 104, pp. 78–89,
Nov. 2015.

[8] A. O. Nieckele, M. F. Naccache, and M. S. P. Gomes, ‘‘Combustion per-
formance of an aluminum melting furnace operating with natural gas and
liquid fuel,’’ Appl. Thermal Eng., vol. 31, no. 5, pp. 841–851, Apr. 2011.

[9] J.-M. Wang, H.-J. Yan, J.-M. Zhou, S.-X. Li, and G.-C. Gui, ‘‘Optimiza-
tion of parameters for an aluminum melting furnace using the Taguchi
approach,’’ Appl. Thermal Eng., vols. 33–34, pp. 33–34, Feb. 2012.

[10] K. J. Åström and P. R. Kumar, ‘‘Control: A perspective,’’ Automatica,
vol. 50, no. 1, pp. 3–43, 2014.

[11] Z. Palmor, ‘‘Stability properties of Smith dead-time compensator con-
trollers,’’ Int. J. Control, vol. 32, no. 6, pp. 937–949, May 1980.

[12] R. Sanz, P. P. García, and P. Albertos, ‘‘A generalized smith predictor
for unstable time-delay SISO systems,’’ ISA Trans., vol. 72, pp. 197–204,
Jan. 2018.

[13] M. Beschi, A. Visioli, M. Berenguel, and L. J. Yebra, ‘‘Constrained tem-
perature control of a solar furnace,’’ IEEE Trans. Control Syst. Technol.,
vol. 20, no. 5, pp. 1263–1274, Sep. 2012.

[14] J. Peng, H. He, and R. Xiong, ‘‘Rule based energy management strategy
for a series–parallel plug-in hybrid electric bus optimized by dynamic
programming,’’ Appl. Energy, vol. 185, pp. 1633–1643, Jan. 2017.

[15] R. D. Martín, F. Obeso, J. Mochón, R. Barea, and J. Jiménez, ‘‘Hot metal
temperature prediction in blast furnace using advanced model based on
fuzzy logic tools,’’ Ironmaking Steelmaking, vol. 34, no. 3, pp. 241–247,
Jul. 2013.

[16] Z. Wu, T. Liu, Z.-P. Jiang, T. Chai, and L. Zhang, ‘‘Nonlinear control tools
for fused magnesium furnaces: Design and implementation,’’ IEEE Trans.
Ind. Electron., vol. 65, no. 9, pp. 7248–7257, Sep. 2108.

[17] S. J. Qin and T. A. Badgwell, ‘‘A survey of industrial model predictive
control technology,’’Control Eng. Pract., vol. 11, no. 7, pp. 733–764, 2003.

[18] D. Q. Mayne, ‘‘Model predictive control: Recent developments and future
promise,’’ Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[19] A. Grancharova, J. Kocijan, and T. A. Johansen, ‘‘Explicit stochastic pre-
dictive control of combustion plants based on Gaussian process models,’’
Automatica, vol. 44, no. 6, pp. 1621–1631, 2008.

[20] R. Zhang, Q. Zou, Z. Cao, and F. Gao, ‘‘Design of fractional order mod-
eling based extended non-minimal state space MPC for temperature in an
industrial electric heating furnace,’’ J. Process Control, vol. 56, pp. 13–22,
Aug. 2017.

[21] H. S. Ganesh, T. F. Edgar, and M. Baldea, ‘‘Model predictive control of
the exit part temperature for an austenitization furnace,’’ Processes, vol. 4,
no. 4, pp. 53–66, Dec. 2016.

[22] S. Banerjee, D. Sanyal, S. Sen, and I. K. Puri, ‘‘A methodology to con-
trol direct-fired furnaces,’’ Int. J. Heat Mass Transf., vol. 47, no. 24,
pp. 5247–5256, Nov. 2004.

[23] V. Havlena and J. Findejs, ‘‘Application of model predictive control
to advanced combustion control,’’ Control Eng. Pract., vol. 13, no. 6,
pp. 671–680, Jun. 2005.

[24] General Principles for Calculation of the Comprehensive Energy Con-
sumption, document GB/T2589-2008, 2008.

114668 VOLUME 7, 2019



N. Guo et al.: Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces

[25] R. Scattolini, ‘‘Architectures for distributed and hierarchical model predic-
tive control—A review,’’ J. Process Control, vol. 19, no. 5, pp. 723–731,
May 2009.

[26] S. Skogestad, ‘‘Plantwide control: The search for the self-optimizing con-
trol structure,’’ J. Process Control, vol. 10, no. 5, pp. 487–507, Oct. 2000.

[27] S. Skogestad, ‘‘Control structure design for complete chemical plants,’’
Comput. Chem. Eng., vol. 28, nos. 1–2, pp. 219–234, Jan. 2004.

[28] D. Jolevski, O. Bego, and P. Sarajcev, ‘‘Control structure design and
dynamics modelling of the organic Rankine cycle system,’’ Energy,
vol. 121, pp. 193–204, Feb. 2017.

NA GUO was born in Dingzhou, Hebei, China,
in 1983. She received the Ph.D. degree in mecha-
tronic engineering from the Shenyang Institute of
Automation (SIA), Chinese Academy of Sciences,
Shenyang, China, in 2015. Since 2015, she has
been a Teacher with the College of Engineering,
Shenyang Agricultural University. Her research
interests include advanced process control and
agricultural intelligent control.

HONGYU ZHENG received the B.S. degree in
automation and the M.S. degree in control the-
ory and control engineering from the Shenyang
University of Chemical Technology, Shenyang,
China, in 2008 and 2011, respectively, and the
Ph.D. degree in detection technology and auto-
matic equipment from Northeastern University,
Shenyang, in 2019. SinceMarch 2019, he has been
a Teacher with the School of Intelligent Manufac-
turing, Huanghuai University. His research inter-

ests include advanced process control and optimization.

TAO ZOU was born in Dashiqiao, Liaoning,
China, in 1975. He received the Ph.D. degree
in control theory and control engineering from
Shanghai Jiao Tong University, Shanghai, China,
in 2005. Since 2017, he has been a Researcher
with the Shenyang Institute of Automation (SIA),
Chinese Academy of Sciences. His research inter-
ests include industrial process modeling and simu-
lation, model predictive control, advanced process
control, and real-time optimization technology
research and application.

YANG JIA was born in Dashiqiao, Liaoning,
China, in 1984. He received the B.S. degree
in chemical engineering and the M.S. degree in
chemical engineering from the Dalian University
of Technology, Dalian, China, in 2008 and 2011,
respectively. Since 2013, he has been an Asso-
ciate Researcher with the Shenyang Institute of
Automation (SIA), Chinese Academy of Sciences.
His research interests include industrial process
modeling and simulation, operation optimization,

and energy utilization.

VOLUME 7, 2019 114669


	INTRODUCTION
	FUEL-FIRED ALUMINUM MELTING FURNACE
	ENERGY CONSERVATION ORIENTED TWO-LAYER MPC FOR MELTING PROCESS
	OFFLINE OPTIMIZATION OF OPERATING CONDITONS BY NUMERICAL SIMULATION
	ENERGY CONSERVATION ORIENTED TWO-LAYER MPC
	MULTIPRIORITY-BASED STEADY-STATE TARGET CALCULATION
	DYNAMIC OPTIMIZATION


	INDUSTRIAL APPLICATION
	SIMULATION OF ALUMINUM MELTING PROCESS FOR F1 FURNACE
	TWO-LAYER MPC
	SUSTAINED PRODUCTION SAFETY
	PROVISIONING ON-DEMAND
	COMBUSTION EFFICIENCY OPTIMIZATION

	APPLICATION RESULTS AND DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	NA GUO
	HONGYU ZHENG
	TAO ZOU
	YANG JIA


