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ABSTRACT The surgical scheduling problem that incorporates the surgical duration, the setup time,
the turnover time and the due time is studied in this paper. The actual surgical duration is affected by
the normal duration, the surgical sequence, the accumulated experience of surgical teams and a control-
ling parameter. Besides, the surgical duration, the setup time and the turnover time are affected by the
deteriorating effect, which means when the start time, the setup time or the turnover time of a surgery
is postponed, the actual duration, the actual setup time or the actual turnover time will be prolonged.
A schedule problem is formulated to minimize the maximum surgical tardiness. By building and analyzing
the surgical scheduling model, each surgical team should operate surgeries according to a non-decreasing
order of patients’ normal surgical duration. Furthermore, a branch-and-bound algorithm is provided to solve
the surgical teams scheduling problem. Our experimental results show the effectiveness and stability of our
proposed algorithm.

INDEX TERMS Deteriorating effect, surgical scheduling, truncated learning effect, various due times.

I. INTRODUCTION
In surgical scheduling, when the actual completion time of
a surgery exceeds a given due time, a surgical tardiness
occurs and brings harm to the postoperative recovery of
the corresponding patient. Besides, it also downgrades the
patient’s evaluation to the corresponding hospital. Therefore,
surgical tardiness is an important criterion for a surgical
schedule. An optimal schedule should ensure surgeries be
completed on time to limit the tardiness as short as possible.
In general, some departments, such as urology, orthopaedics
or phthalmology, only own one fixed operating room for
elective patients [18]. The department head needs to deter-
mine surgical or surgical groups sequence of the operating
room each day according to the operation time. In this case,
a single operating room sequencing problem is studied. The
objective is to find an optimal surgical schedule minimizing
the maximum surgical tardiness.

The associate editor coordinating the review of this article and approving
it for publication was Shih-Wei Lin.

There are many factors affecting the surgical tardiness,
such as the surgical duration, the setup time, the turnover
time and the due time. The surgical duration is not fixed,
which depends on the normal duration, the surgical sequence,
the accumulated experience of surgical teams, a controlling
parameter and its start time. In real schedules, the actual
surgical duration decreases with the accumulation of the
experience of a surgical team. This is called the learning
effect. Ziaee et al. [1] found that as the completed num-
ber of surgeries increases, the average surgical duration
reduces gradually. It is 95.4 minutes for the first 15 surgeries,
84 minutes for the next 15 ones and 78.3 minutes for the last
15 ones. Specifically, for Laparoscopic Roux-en-Y Gastric
Bypass (LRYGBP), among 393 surgeries operated by a same
surgeon, the surgical duration decreases significantly as the
number of surgeries increases [2].

However, the actual surgical duration won’t keep decreas-
ing. There exists a critical state. As enough experience is
accumulated, the actual surgical duration becomes stable.
This is called the truncated learning effect. The critical
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state of different types of surgeries is different. In the
Robotic-Assisted Laparoscopic Colorectal Surgery, after
15 to 25 surgeries, the actual duration would not decrease any
more [3], while the number of LRYGBP surgeries is 400 for
reaching its critical state [2].

Besides, surgeons’ accumulated experience also affects the
duration of the following surgeries. Grantcharov et al. [4] cat-
egories the surgeons of the Laparoscopic Surgery into three
groups, i.e., masters, intermediates and beginners respec-
tively. They pointed out that the order of the surgical duration
stopping decreasing is masters, intermediates and beginners.

On the other hand, the deterioration of patients prolongs
the actual surgical duration. This is called the deteriorating
effect. When investigating the computed tomography of hep-
atic portal venous gas, Chan et al. [5] concluded that the
deferral of surgeries would make patients’ condition worse
and bring difficulties to surgeons. In order to depict this
phenomenon, Wu et al. [6] and Zhang et al. [7] regarded
the actual surgical duration as a linear combination of the
normal surgical duration and the start time, where the normal
surgical duration refers to the durationwhen patients are oper-
ated without deferral. When a surgery is deferred, the actual
surgical duration increases.

Similarly, the setup time and the turnover time are also
affected by the deteriorating effect. The setup time is the time
interval between two consecutive surgeries, which is the time
of cleaning operating tables and anaesthetizing patients. The
turnover time is the time interval between two surgical teams,
which is the time of switching medical equipment. The actual
setup time or the actual turnover time can be prolonged when
the start time of the setup or the turnover is deferred. In order
to describe this phenomenon, Wang and Liu [8] regarded the
two kinds of time as a linear combination of their normal
duration and their start time.

Different from the surgical duration, the setup time and
the turnover time, the due time is usually fixed. Because
of the constraint of the due time, surgical teams should try
to complete surgeries earlier. Otherwise, patients have to
continue to receive surgeries without food and water, and to
endure both the physical and mental pressure [9].

Therefore, it is more realistic to take the surgical duration,
the setup time, the turnover time and the due time into account
when formulating a surgical scheduling. However, similar
attempts are limited. If regarding surgeries, patients and
operating rooms as workers, jobs and machines respectively,
the surgical scheduling problem can be formulated as a sin-
gle machine flow shop scheduling model with variable task
durations. In recent years, this type of scheduling problem
has been widely studied and provide theoretical basis to our
study [10]–[17].

However, the truncated learning effect and the deteriorat-
ing effect are usually considered separately in the above flow
shop scheduling literature. Besides, the setup time or the
turnover time is not taken into consideration. Therefore, this
paper is the first to consider the surgical duration, the setup
time, the turnover time and the due time simultaneously in

the flow shop problem. Specifically, the surgical duration is
affected by both the truncated learning effect and the deteri-
orating effect.

The remainder of this paper is organized as follows.
A brief review of surgical scheduling is provided in Section 2.
In Section 3, an optimal surgical schedule problem that
minimizes the maximum surgical tardiness is formulated.
In Section 4, an optimal scheduling model is built, and the
sequence for surgeries and surgical teams are given respec-
tively in Section 5. After that, computational experiments
are presented to show the process of formulating a surgical
schedule in Section 6. Finally, the conclusions of the paper
and the topics for future research are provided in Section 7.

II. LITERATURE REVIEW
There is a large body of literature on the management prob-
lem of operating rooms. Cardoen et al. (2010) [19] and
Demeulemeester et al. (2013) [20] provided a comprehensive
review on the planning and scheduling problem. As pointed
out by Cardoen et al. [19], surgical scheduling requires the
execution of two main steps: advanced scheduling and allo-
cation scheduling. Advanced scheduling assigns patients to
different operating rooms, and then allocation scheduling
determines the surgical sequence in each operating room.
This work is motivated by the allocation scheduling problem
to determine the sequence of operations on daily basies.

For a fixed surgical duration, Abdeljaouad et al. [21] used
a two-dimensional strip packing model to order different
groups of operations with aim to minimize the completion
time. A simulation model was proposed by Liang et al. [22]
to sequence operations with multi-objectives. Several stud-
ies integrated advance and allocation scheduling problems.
In order to maximize the scheduled surgical cases, Castro
and Marques [23] proposed a new two-level decomposition
algorithm for the mixed-integer linear programming model
considering surgery priorities. Roshanaei et al. [24] extended
the problem from a unique hospital to hospitals’ network,
and developed a novel logic-based Benders’ decomposition
approach to solve the proposed mixed-integer programming
model.

For the surgical duration uncertainty, some researches
considered stochastic surgical durations. Lee and Yih [25]
incorporated fuzzy time duration in the flow shop model
with restraint of beds in the unit Post-Anesthesia Care Unit.
A genetic algorithm was proposed to solve the model. Van
Essen et al. [26] considered emergency surgeries which will
be performed immediately after ongoing surgery was com-
pleted and surgery duration was assumed to be stochastic.
Latorre et al. [27] further integrated emergency surgeries and
restraint of beds together. They developed a metaheuristic
based on a genetic algorithm to solve the proposed integer
linear programming model. Kroer et al. [28] further consid-
ered emergency patients with stochastic arrivals and surgi-
cal durations to minimize overtime and proposed heuristics
to solve the stochastic mixed-integer programming model.
Several researchers considered the uncertainty of surgical
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duration due to some facts. Molina et al. [29] believed
that surgical duration is affected by surgeon’s experiences
and modeled surgical durations based on experience levels.
An approximate algorithm was proposed to the parallel flow
shop model. Wang et al. [18] investigated surgical scheduling
with patients’ priorities and linear deteriorating effect on
surgical duration. A meta-heuristic algorithm was proposed
to solve the flow shop model. Similar to Wang et al. [18], this
paper examined the single day surgical scheduling for single
operating room. Moreover, surgeons’ experiences were taken
into account and the sequencing problem for surgical groups
aims to minimize the maximum tardiness.

III. PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
In one working day, a single operating room scheduling
problem is studied. The operating room can be used to operate
various types of surgeries. The setup time exists between
consecutive surgeries, while the turnover time is between
different surgical teams. They both have the deteriorating
effect. The actual surgical duration is affected by the trun-
cated learning effect and the deteriorating effect. For each
surgical team, there is a due time. The surgical tardiness
occurs when the completion time of a surgical team exceeds
the given due time. For hospitals, it is necessary to limit the
surgical tardiness as short as possible. The objective is to find
an optimal surgical schedule that minimizes the maximum
surgical tardiness. This schedule consists of the sequence for
surgeries and the sequence for surgical teams entering the
operating room.

B. ASSUMPTIONS AND NOTATIONS
1) ASSUMPTIONS
There are three basic hypotheses in this paper.
Assumption 1: Patients and surgery types are known in

advance. No cancellation is allowed.
Assumption 2: The surgical teams enter the operating room

taking turns. Thatmeans onlywhen a surgical team completes
all the surgeries, the next team can enter the operating room.
Assumption 3: A certain environment. Stochastic factors

resulting from complex surgical processes are not taken into
account.

Assumption 1 assures the certain number of patients
and their surgical types. Therefore, surgical teams involv-
ing in surgical schedules are also known. The patients dis-
patched to each surgical team are determined in advance.
Assumption 2 is provided because Luo et al. [31] indicated
that it can improve efficiency when scheduling the same type
of surgeries consecutively.

2) NOTATIONS
The following notations will be used throughout the whole
paper.
N: Number of patients.
M: Number of surgical teams.

Gi: Surgical team i, i = 1, 2, . . . ,M .
ni: Number of patients operated by surgical team Gi,

i = 1, 2, . . . ,M , n1 + n2 + · · · + nM = N .
n[i]: Number of patients operated by the ith surgical team

entering the operating room, i = 1, 2, . . . ,M .
Jij: The patient whose serial number is j and operated by

surgical team Gi, i = 1, 2, . . . ,M , j = 1, 2, . . . , ni.
αij: The normal surgical duration of patient Jij. It can be

acquired in advance from historical data, i = 1, 2, . . . ,M ,
j = 1, 2, . . . , ni.
αi[q]: The normal surgical duration of the qth patient oper-

ated by surgical team Gi, i = 1, 2, . . . ,M , q = 1, 2, . . . , ni.
Ei: The accumulation of the normal surgical duration of

surgical team Gi, reflecting surgical team Gi’s experience,
i = 1, 2, . . . ,M .
ki: The learning effect parameter of surgical team Gi,

ki ≥ 0, i = 1, 2, . . . ,M .
βi: The controlling parameter of surgical team Gi,

0 < βi < 1, i = 1, 2, . . . ,M .
ai: The deteriorating effect parameter of surgical team Gi,

ai ≥ 0, i = 1, 2, . . . ,M .
pij: The actual surgical duration of patient Jij satisfies pij =

αijmax{(1+E i+
r−1∑
a=1

αi[q])−ki , βi}+ait , where r means that Jij

is the r th patient operated by surgical teamGi and t is the start
time of patient Jij’s surgery, i = 1, 2, . . . ,M , j = 1, 2, . . . , ni
p[i][j]: The actual surgical duration of the patient who is

the jth to be operated by the ith surgical team entering the
operating room, i = 1, 2, . . . ,M , j = 1, 2, . . . , n[i].
mi: The normal setup time of the surgeries operated by

surgical team Gi, i = 1, 2, . . . ,M .
bi: The deteriorating effect parameter of the setup time

of the surgeries operated by surgical team Gi, bi ≥ 0, i =
1, 2, . . . ,M .
sij: The actual setup time of patient Jij satisfies sij =

mi + bit , where t is the start time of patient Jij’s setup,
i = 1, 2, . . . ,M , j = 1, 2, . . . , ni.
s[i][j]: The actual setup time of the patient who is the jth to

be operated by the ith surgical team entering the operating
room, i = 1, 2, . . . ,M , j = 1, 2, . . . , n[i].
γi: The normal turnover time of surgical team Gi, i =

1, 2, . . . ,M .
ci: The deteriorating effect parameter of the turnover time

of surgical team Gi, ci ≥ 0, i = 1, 2, . . . ,M .
δi: The actual turnover time of surgical team Gi satisfies

δi = γi + cit , where t represents the start time of surgical
team Gi’s turnover, i = 1, 2, . . . ,M .
δ[i]: The turnover time of the ith surgical team entering the

operating room, i = 1, 2, . . . ,M .
di: The due time of surgical team Gi, i = 1, 2, . . . ,M .
d[i]: The due time of the ith surgical team entering the

operating room, i = 1, 2, . . . ,M .
Ti: The surgical tardiness of surgical team Gi, i =

1, 2, . . . ,M .
T[i]: The surgical tardiness of the ith surgical team entering

the operating room, i = 1, 2, . . . ,M .
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π : A given surgical sequence.
Cij(π ): The surgical completion time of patient Jij in

sequence π , i = 1, 2, . . . ,M , j = 1, 2, . . . , ni.
C[i][j](π ): The surgical completion time of the jth patient

operated by the ith surgical team entering the operating room,
i = 1, 2, . . . ,M , j = 1, 2, . . . , n[i].

xijr =

{
1, patient Jij is the rht to be operated
0, otherwise,

i = 1, 2, . . . ,M , j, r = 1, 2, . . . , ni

yih =

{
1, Gi is the hth to entering operating room
0, otherwise,

for i, h = 1, 2, . . . ,M
The binary variables xijr and yih determine the sequence

for surgeries and the sequence for surgical teams entering the
operating room. They are the decision variables in this paper.

IV. SCHEDULING MODEL AND ANALYSIS
A. SCHEDULING MODEL
When taking various surgical due times into account, it is
likely to encounter the surgical tardiness. Gocgun and
Puterman [32] pointed out that it is necessary to provide a
schedule so that the possible surgical tardiness as short as
possible; otherwise it may generate extra cost. Therefore,
the minimization of the maximum surgical tardiness is set as
the objective of the schedule model as follows.

min Tmax = max
1≤h≤M

{T[h]} (1)

s.t.
M∑
i=1

yih = 1 ∀h = 1, 2, · · · ,M (1-1)

M∑
h=1

yih = 1 ∀h = 1, 2, · · · ,M (1-2)

ni∑
j=1

xijr = 1 ∀i = 1, 2, · · · ,M;

∀r = 1, 2, · · · , ni (1-3)
ni∑
r=1

xijr = 1 ∀i = 1, 2, · · · ,M;

∀j = 1, 2, · · · , ni (1-4)

αi[q] =

ni∑
j=1

αijxijq ∀i = 1, 2, · · · ,M (1-5)

δ[1] =

M∑
i=1

yi1γi (1-6)

s[1][1] =
M∑
i=1

yi1(mi + biγi) (1-7)

p[1][1] =
M∑
i=1

yi1[
ni∑
j=1

xij1αijmax{(1+ Ei)−ki ,

βi} + ai(δ[1] + s[1][1])] (1-8)

C[1][1] = δ[1] + s[1][1] + p[1][1] (1-9)

s[1][l] =
M∑
i=1

yi1(mi + biC[1][l−1])

∀l = 2, 3, · · · , ni (1-10)

p[1][l] =
M∑
i=1

yi1[
ni∑
j=1

xijlαijmax{(1+ Ei

+

l−1∑
q=1

αi[q])−ki , βi} + ai(C[1][l−1] + s[1][l])]

∀l = 2, 3, · · · , ni (1-11)

C[1][l] = C[1][l−1] + s[1][l] + p[1][l]
∀l = 2, 3, · · · , ni (1-12)

δ[h] =

M∑
i=1

yi1(γi + ciC[h−1][n[h−1]])

∀h = 1, 2, · · · ,M (1-13)

s[h][1] =
M∑
i=1

yih[mi + bi(C[h−1][n[h−1]] + δ[h])]

∀h = 1, 2, · · · ,M (1-14)

p[h][1] =
M∑
i=1

yih[
ni∑
j=1

xij1αijmax{(1+ Ei)−ki ,

βi} + ai(δ[1] + s[1][1] + C[h−1][n[h−1]])]

∀h = 1, 2, · · · ,M (1-15)

C[h][1] = C[h−1][n[h−1]] + δ[h] + s[h][1] + p[h][1]
∀h = 1, 2, · · · ,M (1-16)

s[h][l] =
M∑
i=1

yih(mi + biC[h][l−1])

∀l = 2, 3, · · · , ni ∀h = 1, 2, · · · ,M (1-17)

p[h][l] =
M∑
i=1

yih[
ni∑
j=1

xijlαijmax{(1+ Ei

+

l−1∑
q=1

αi[q])−ki , βi} + ai(C[h][l−1] + s[h][l])]

∀l = 2, 3, · · · , ni ∀h = 1, 2, · · · ,M (1-18)

C[h][l] = C[h][l−1] + s[h][l] + p[h][l]

∀l = 2, 3, · · · , ni ∀h = 1, 2, · · · ,M (1-19)

d[h] =
M∑
i=1

yihdi ∀h = 1, 2, · · · ,M (1-20)

T[h] = max{C[h][n[h]] − d[h], 0}

∀h = 1, 2, · · · ,M (1-21)

Expression (1) indicates that the objective is to minimize
the maximum surgical tardiness. Expression (1-1) and (1-2)
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restrict that each surgical team can only enter the operating
room once and the operating room can only allow one surgical
team for surgery at a time. Expression (1-3) and (1-4) show
that each patient can only be operated once and a surgical
team can only operate one surgery at a time. Expressions
(1-5) to (1-19) calculate the completion time of each surgery.
Expression (1-20) is the surgical due time of the hth sur-
gical team entering the operating room. Expression (1-21)
represents the surgical tardiness of the hth surgical team
entering the operating room. Referring to Graham et al. [33],
the surgical scheduling model can be simplified as
follows.

1

∣∣∣∣∣∣∣∣
δi = γi + cit, sij = mi + bit,

pij = αijmax{(1+ Ei +
r−1∑
q=1

αi[q])−ki , βi} + ait, di

∣∣∣∣∣∣∣∣Tmax

(2)

In expression (2), ‘‘1’’ denotes a single operating room;
δi, sij, pij calculate the turnover time, the setup time and the
surgical duration surgical respectively. di represents due time
of surgical team Gi. Tmax indicates that the objective is to
minimize the maximum surgical tardiness.

B. SEQUENCE FOR EACH SURGERY TEAM
To solve the model (1), a theorem is proposed to determine
the sequence for surgeries. Before the theorem, a lemma is
presented.
Lemma 1: If a, b, k, x ≥ 0,y, λ ≥ 1, then:

λ[(1+ a)(1+ b)y−k − (y+ x)−k ]

− [(1+ a)(1+ b)y−k − (y+ λx)−k ] ≥ 0

Through derivation, Lemma 1 can easily be proved.
For a given surgical team Gi, its surgical tardiness can be

expressed as follows.

Ti = max{Ci,ni − di, 0} (3)

Ci,ni is the time when Gi completes all the surgeries
and setups. From expression (3), it is apparent that for
each surgical team, the optimal sequence minimizing the
maximum surgical tardiness equals to the one minimizing
makespan.
Theorem 1: In each surgical team, it is optimal to schedule

surgeries according to the non-decreasing order of patients’
normal surgical duration.
Proof:
Case (1): surgical team Gi only needs to operate one

surgery. In this case, Theorem 1 holds.
Case (2): surgical team Gi needs to operate at least two

surgeries. Assume that there exists an optimal sequence π1 =
(S1, Jiu, Jiv, S2) satisfying αiu ≤ αiv. S1 and S2 may either
contain some patients or not. Patient Jiu is the r th patient to
be operated and arrival time is t . Another sequence π ′1 =
(S1, Jiv, Jiu, S2) can be generated by exchanging the position

of patient Jiu and Jiv. The proof of Theorem 1 equals to the
proof of Civ(π1) ≤ Ciu(π ′1).
From expression (1-5) to (1-19), the difference between the

completion time of patient Jiu in sequence π ′1 and the one of
patient Jiv in sequence π1 can be acquired as follows.

Ciu(π ′1)− Civ(π1)

= αiv[(1+ ai)(1+ bi) max{(1+ Ei +
r−1∑
q=1

αi[q])−ki , βi}

− max{(1+ Ei +
r−1∑
q=1

αi[q] + αiu)−ki , βi}]

−αiu[(1+ ai)(1+ bi) max{(1+ Ei +
r−1∑
q=1

αi[q])−ki , βi}

− max{(1+ Ei +
r−1∑
q=1

αi[q] + αiv)−ki , βi}] (4)

When 0 < βi < (1 + Ei +
r−1∑
q=1

αi[q] + αiv)−ki , expression

(4) equals to

Ciu(π ′1)− Civ(π1)

= αiv[(1+ ai)(1+ bi)(1+ Ei +
r−1∑
q=1

αi[q])−ki

− (1+ Ei +
r−1∑
q=1

αi[q] + αiu)−ki ]

−αiu[(1+ ai)(1+ bi)(1+ Ei +
r−1∑
q=1

αi[q])−ki

− (1+ Ei +
r−1∑
q=1

αi[q] + αiv)−ki ] (5)

From Lemma 1, it is obvious that Civ(π1) ≤ Ciu(π ′1). When

(1+Ei+
r−1∑
q=1

αi[q]+αiv)−ki<βi< (1+Ei+
r−1∑
q=1

αi[q]+αiu)−ki ,

expression (4) equals to

Ciu(π ′1)− Civ(π1)

= αiv[(1+ ai)(1+ bi)(1+ Ei +
r−1∑
q=1

αi[q])−ki

− (1+ Ei +
r−1∑
q=1

αi[q] + αiu)−ki ]

−αiu[(1+ ai)(1+ bi)(1+ Ei +
r−1∑
q=1

αi[q])−ki − βi]
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≥ αiv[(1+ ai)(1+ bi)(1+ Ei +
r−1∑
q=1

αi[q])−ki

− (1+ Ei +
r−1∑
q=1

αi[q] + αiu)−ki ]

−αiu[(1+ ai)(1+ bi)(1+ Ei +
r−1∑
q=1

αi[q])−ki

− (1+ Ei +
r−1∑
q=1

αi[q] + αiv)−ki ] (6)

From Lemma 1, it is apparent that Civ(π1) ≤ Ciu(π ′1).

When (1 + Ei +
r−1∑
q=1

αi[q] + αiu)−ki < βi < (1 + Ei +

r−1∑
q=1

αi[q])−ki , expression (4) equals to

Ciu(π ′1)− Civ(π1)

= (αiv − αiu)[(1+ ai)(1+ bi)(1+ Ei +
r−1∑
q=1

αi[q])−ki − βi]

≥ 0 (7)

When (1 + Ei +
r−1∑
q=1

αi[q])−ki < βi < 1, expression (4)

equals to

Ciu(π ′1)−Civ(π1)= (αiv−αiu)[(1+ai)(1+bi)βi−βi]≥0

(8)

As βi changes, it always holds that Civ(π1) ≤ Ciu(π ′1). From
the analysis of case (1) and case (2), the proof of Theorem 1 is
completed.

C. SEQUENCE FOR SURGICAL TEAMS
In the previous subsection, Theorem 1 determines the
sequence for surgeries. In this subsection, Theorem 2 pro-
vides a lower bound of sequence with maximum surgical
tardiness to speed up the sequencing procedure.
Lemma 2: If a2 ≥ a1 > 0, b2 ≥ b1 > 0, then the following

inequality always holds:

max{a2 − b2, a1 − b1, 0} ≤ max{a1 − b2, a2 − b1, 0}

Lemma 2 can be proved easily.
Assuming that at time t ,Gi completes its turnover, then the

time surgical team Gi completing surgeries and setups can be
denoted by pGi . The expression of pGi is

pGi = Ai + Bit (9)

Relating parameters are as follows.

Ai =
ni∑
l=1

{mi[(1+ ai)l(1+ bi)l−1]

+ [(1+ ai)(1+ bi)]ni−lαi[l]

× max{(1+ Ei +
l−1∑
q=1

αi[q])−ki , βi}}

Bi = [(1+ ai)(1+ bi)]ni − 1.

Afterwards, the problem determining the sequence for sur-
gical teams entering the operating room can be converted into
the following single machine scheduling problem.

1 |pi = Ai + Bit, δi = γi + cit, di|Tmax (10)

A branch-and-bound algorithm is designed to determine
the sequence for surgical teams entering the operating room.
For surgical teams, the non-decreasing order of their

parameters Ai, Bi, ci, γi, di are A(1) ≤ . . . ≤ A(M ), B(1) ≤
. . . ≤ B(M ), c(1) ≤ . . . ≤ c(M ), γ(1) ≤ . . . ≤ γ(M ) and
d(1) ≤ . . . ≤ d(M ) respectively. Define such a sequence PS,
in which the first k (1 ≤ k ≤ M ) surgical teams are unknown
while the last (M − k) surgical teams are determined.

A lower bound of the sequence ’s maximum surgical tar-
diness is provided to improves the sequencing procedure in
theorem 2.
Theorem 2: For each sequence PS, a lower bound of its

maximum surgical tardiness is

LB(PS)=max{max
1≤i≤k
{C[i] − d(i), 0}, max

k+1≤i≤M
{C[i] − d[i], 0}}.

for 1 ≤ i ≤ k ,

C[i] =

i∑
l=1

{[γ(l)(1+ B(l))+ A(l)]
i−l
5
h=1

[(1+ B(h))(1+ c(h))]},

and for k + 1 ≤ i ≤ M ,

C[i] = C[k]
i
5

l=k+1
[(1+ C[l])(1+ B[l])]

+

i∑
l=k+1

{A[l]
i
5

h=l+1
[(1+ B[h])(1+ C[h])]}

+

i∑
l=k+1

γ[l][
i
5
h=l

(1+ B[h])
i
5

h=l+1
(1+ C[h])]

Proof: Let C[i] denote the completion time of the ith surgi-
cal team entering the operating room.

When 1 ≤ i ≤ k , C[i] satisfies

C[i] =

i∑
l=1

{[γ[l](1+B[l])+A[l]]
i
5

h=l+1
[(1+ B[h])(1+ c[h])]}

≥

i∑
l=1

{[γ(l)(1+ B(l))+ A(l)]
i−l
5
h=1

[(1+ B(h))(1+ c(h))]}

(11)
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The right part of inequality (11) denotes the lower bound
of C[i]. It can be marked as C[i].

When k + 1 ≤ i ≤ M , the sequence for surgical teams
from k + 1 toM is determined. In this case, the lower bound
of C[i] satisfies

C[i] = C[k]
i
5

l=k+1
[(1+ C[l])(1+ B[l])]

+

i∑
l=k+1

{A[l]
i
5

h=l+1
[(1+ B[h])(1+ C[h])]}

+

i∑
l=k+1

γ[l][
i
5
h=l

(1+ B[h])
i
5

h=l+1
(1+ C[h])] (12)

The maximum tardiness of the sequence PS satisfies

Tmax(PS)

= max{max
1≤j≤k
{C[j] − d[j], 0}, max

k+1≤j≤M
{C[j] − d[j], 0}}

≥ max{max
1≤j≤k
{C[j]−d[j], 0}, max

k+1≤j≤M
{C[j]−d[j], 0}} (13)

From Lemma 2, the lower bound of sequence PS’s maxi-
mum surgical tardiness is

LB(PS)= max{max
1≤j≤k
{C[j]−d(j), 0}, max

k+1≤j≤M
{C[j]−d[j], 0}}

(14)

Therefore, the proof of Theorem 2 is completed.

V. SEQUENCING ALGORITHM
Based on the analysis of the scheduling model, a branch-and-
bound algorithm is provided to determine the order for all
surgeries in the operating room. Detail steps of the algorithm
is as follows.
Step 1: Use theorem 1 to determine the order for surg-

eries in each surgery team and calculate the corresponding
parameters Ai and Bi;
Step 2: Set an initial sequence PS = (G[1],G[2], . . . ,

G[M ]). Where G[1], G[2], . . . ,G[M ] are unknown. Let S =
{G1,G2, . . . ,GM } is the set of unscheduled surgical teams.
The dimension of it is K . Set K equals to M initially;
Step 3: Calculate the lower bound of PS’s maximum sur-

gical tardiness when G[K ] equals to each surgical team in set
S respectively. Among all the surgical teams, choose the one
with the minimum lower bound to be Gl ;
Step 4: Let G[K ] = Gl , K = K − 1, S = S\{Gl};
Step 5: If K = 0, then turn to step 6; otherwise, turn to

step 2;
Step 6: Output the sequence PS = (G[1],G[2], . . . ,G[M ]).
The sequence PS derived from the algorithm is the optimal

sequence.

VI. COMPUTATIONAL EXPERIMENTS
In this section, computational experiments are conducted to
verify the performance of our sequencing algorithm. The
algorithm is coded in matlab using version R2015b and
performed the experiments on a personal computer with

a 2.67 GHz Intel Core i5 CPU and 4 GB RAM under
Windows XP.

Most parameters are set from a survey in the orthopaedics
department at a large Class-3 Level-A hospital in Jiangsu
Province, China. Eight operations are performed in one oper-
ation room per day. The number of surgery groups is less
than 4, the number of operations for each group is randomly
set and the total number of operations N is less than 8. The
normal processing time αij is set according to the operation
time of fracture patients, and generated from a uniform distri-
bution U[0.5,3], and the time unit is hour. Normal set up and
turnover time are both generated from a uniform distribution
U[0.05,0.2]. The deteriorating rate is different from surgeries
and varies from zero to 0.003. That is, deteriorating rates
are set randomly from U[0,0.03]. Each member in a surgeon
team has a different schedule. For example, some surgeons’
schedule is half-day operation and half-day outpatient. How-
ever, anesthesiologists need to participate in another team’s
surgery. The workhour of staff in a hospital is eight hours
per day. In this case, the due date for each surgical group are
uniform generated using a uniform distribution U[2,8]. The
parameters in the learning effect are obtained from the data
in Bjorgul et al. [30].
First, we consider 8 operations with 2-4 surgical groups

which is close to the reality in the orthopaedics department.
The running time is compared between full enumeration for
the programming model and our algorithm in Table 1.

TABLE 1. Comparison between full enumeration and proposed algorithm.

TABLE 2. Comparison for A large scale environment.

Table 1 shows that our algorithm performs well in the
real orthopaedics department. However, in other depart-
ments, the number of operations will be greater than in
the orthopaedics department. And it is necessary to check
whether the proposed algorithm is efficiency in a large scale
environment. Therefore, a test on the performance between
full enumeration and our algorithm with 100 operations is
conducted in Table 2.

The results in Table 2 indicate the stability and efficiency of
the proposed algorithm. Especially for more surgical groups,
the proposed algorithm is better.
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VII. CONCLUSIONS AND DISCUSSIONS
This paper mainly studied the surgical scheduling problem
which incorporates the surgical duration, the setup time,
the turnover time and the due time. The surgical duration is
affected by both the truncated learning effect and the deterio-
rating effect. Its actual value depends on the normal duration,
the surgical sequence, the accumulated experience of a surgi-
cal team, a controlling parameter and the start time. Besides,
both the setup time and the turnover time are affected by the
deteriorating effect. As the start time postpones, the actual
setup time or the turnover time prolongs. Furthermore, there
are various due time constraints, corresponding to each sur-
gical team respectively. When the actual completion time
of a surgical team exceeds the given due time, the surgical
tardiness occurs, bringing negative evaluation to the hospital
and harm to patients’ postoperative recovery. For this reason,
the maximum surgical tardiness minimization is selected as
the objective.

By building and analyzing the surgical scheduling model,
an optimal schedule is presented to achieve the objective.
The study indicates that in each surgical team, it is optimal
to schedule surgeries according to the non-decreasing order
of patients’ normal surgical duration. Further, a branch-and-
bound algorithm is provided to determine the sequence of
all surgeries. Finally, a set of numerical simulations are pre-
sented to show the process of formulating a surgical schedule
in reality.

The defect of this paper is that the medical system
only consists of a single operating room without any other
resources in upstream and downstream. However, real-world
surgical scheduling is complicated, due to multiple factors
such as surgical nurses, post-surgery activity scheduling and
multiple operating room scheduling. Thus, further work will
focus on these problems. More complex medical systems will
be the direction in the future.
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