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ABSTRACT The k-means clustering algorithm is the oldest and most known method in cluster analysis.
It has been widely studied with various extensions and applied in a variety of substantive areas. Since
internet, social network, and big data grow rapidly, multi-view data become more important. For analyzing
multi-view data, various multi-view k-means clustering algorithms have been studied. However, most of
multi-view k-means clustering algorithms in the literature cannot give feature reduction during clustering
procedures. In general, there often exist irrelevant feature components in multi-view data sets that may cause
bad performance for these clustering algorithms. There also exists high feature dimension in multi-view data
sets so it is necessary to consider reducing its dimension for clustering algorithms. In this paper, a learning
mechanism for the multi-view k-means algorithm to automatically compute individual feature weight is
constructed. It can reduce these irrelevant feature components in each view. A new multi-view k-means
objective function is firstly proposed for constructing the learning mechanism for feature weights in multi-
view clustering. A schema for eliminating irrelevant feature(s) with small weight(s) is then considered
for feature reduction. Therefore, a new type of multi-view k-means, called a feature-reduction multi-view
k-means (FRMVK), is proposed. The computational complexity of FRMVK is also analyzed. Numerical
and real data sets are used to compare FRMVKwith other feature-weighted multi-view k-means algorithms.
Experimental results and comparisons actually demonstrate the effectiveness and usefulness of the proposed
FRMVK clustering algorithm.

INDEX TERMS Clustering, k-means, multi-view k-means, feature-reduction learning, feature-reduction
multi-view k-means (FRMVK).

I. INTRODUCTION
Clustering is a useful tool for data analysis. It is a method for
clustering a data set into groups with the most similarity in
the same cluster and the most dissimilarity between different
clusters [1], [2]. According to the statistical point of view,
clustering methods may be divided as a probability model-
based approach and a nonparametric approach. In nonpara-
metric approaches, partitional methods are the most used.
Partitional clustering methods suppose that the data set can be
represented by finite cluster prototypes with their partitioning
memberships. In partitional methods, the k-means algorithm
is the oldest and most known method [3]–[6]. The k-means
algorithm is generally used for (1-view) data. Co-clustering
was first proposed by Dhillon [7] in 2001. However,
co-clustering is used for only 2-view data. Afterward,
Bickel and Scheffer [8] proposed multi-view clustering
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for handling multi-view data that are more than 2-views.
Recently, internet, social network, and big data grow with
high speeding and there are more and more multi-view
data [9], [10]. In multi-view data, different views give dif-
ferent representations. For example, the same news can be
told from different news sources. Web pages can be grouped
based on both content and anchor text leading to hyperlinks.
One image can be represented with different properties and
different feature spaces, and one document may be translated
into different languages. However, (one-view) data clustering
(even, co-clustering) algorithms cannot handle these multi-
view data. Extensions of clustering algorithms to multi-view
clustering algorithms become important, especially for multi-
view k-means clustering [11]–[15].

Multi-view learning can be divided into supervised,
semisupervised and unsupervised learning approaches. For
example, a supervised approach based on support vec-
tor machine was proposed in [16], and a semisupervised
approach with both labeled and unlabeled training data to
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learn a discriminative feature representation was proposed
in [17]. In this paper, we focus on the unsupervised learning
approach for multi-view data analysis. However, most of
multiview clustering algorithms consider all feature compo-
nents of data in each view to be equally important [18], [19].
In most cases, there exist some irrelevant features that always
affect clustering results and may produce incorrect clustering
results. In this case, embedding feature reduction behavior
in multi-view k-means for multi-view data can take advan-
tage to improve the clustering performance. It is known that
feature weights in one view are in the interval [0,1], so the
more influence a feature is, the greater its weight should be.
Feature-weighted techniques had been used for multi-view
k-means clustering algorithms, such as simultaneous weight-
ing on views and features (SWVF) [12] and weighted
multi-view clustering with feature selection (WMCFS) [14].
Although these feature-weighted clustering algorithms may
improve the performance of k-means for multi-view data,
they do not consider feature reduction. In general, if there
exist irrelevant features during clustering processes, the clus-
tering algorithm must take more computational time and
even yields incorrect clustering results, especially for multi-
view data. Thus, a feature-reduction schema for multi-view
k-means clustering algorithms becomes important.

In this paper we propose a novel feature reduction
mechanism for multi-view k-means using the idea of
Yang and Yessica [20]. In [20], they considered the fuzzy
c-means (FCM) algorithm with a feature reduction for
(1-view) data. Therefore, we propose the feature-reduction
multi-view k-means (FRMVK) clustering algorithm that can
automatically compute different feature weights and detects
these unimportant (irrelevant) features in each view. Based on
the feature-reduction mechanism in each view, the proposed
FRMVK algorithm can solve the weakness in most multi-
view k-means algorithms for multi-view data. The remainder
of this paper is organized as follows. In Section II, we first
review some related works with feature-weighted k-means
for (1-view) data and then review these related multi-view
k-means clustering algorithms. In Section III, we propose
the FRMVK clustering algorithm with the learning schema
for estimating the parameter values in the FRMVK objective
function. To evaluate the performance of FRMVK, we use
numerical and real data sets to compare FRMVKwith the two
leading algorithms: SWVF and WMCFS. These experiments
and comparisons are made in Section IV. Finally, conclusions
are stated in Section V.

II. RELATED WORKS
In this section, we introduce some notations and briefly
review single-view and multi-view k-means clustering algo-
rithms in the literature that use feature weights. Let
X = {x1, . . . , xn} be a data set in a d-dimensional Euclidean
space Rd with xi = {xij}, i = 1, · · · , n, j = 1, · · · , d
being the j-th feature component in the i-th data point. Let
U = [µik ]n×c, where µik is a binary variable (i.e. µik ∈
{0, 1}) indicating if the data point xi belongs to k-th cluster,

k = 1, · · · , c. Let A = {a1, . . . , ac} be the c cluster centers
where ak = {akj}, k = 1, · · · , c, j = 1, · · · , d being the
j-th feature component of the k-th cluster center. Thus, the
k-means objective function is as follows:

J (U ,A) =
n∑
i=1

c∑
k=1

d∑
j=1

µik (xij − akj)2

where ‖xi − ak‖ is the Euclidean distance between the data
point xi and the cluster center ak .
In Huang et al. [21], they first considered an extension of

k-means by adding feature (variable) weights for data points,
called the weighted k-means (WKM). Let W = [wkj]c×d ,
where wkj is the j-th feature weight in the k-th cluster center.
The WKM objective function in Huang et al. [21] is as

JWKM (U ,A,W ) =
c∑

k=1

n∑
i=1

d∑
j=1

µik (wkj)β (xij − akj)2

where β < 0 or β > 0 is a power parameter for feature
weights. They also considered to remove important variables
by choosing variables with small weights for heart disease
and Australian credit card data sets to obtain better results.
The WKM algorithm improves the performance of the
k-means algorithm with one additional step to compute
feature weights during iterations. As indicated by the
WKM objective function, it does depend on the exponent
parameter β of feature weights. Different parameter settings
will affect the WKM clustering results. On the other hand,
weight discrimination ability for representing irrelevant fea-
tures is not apparent in the WKM algorithm. Furthermore,
Jing et al. [22] considered subspace clustering that is espe-
cially useful for high dimensional sparse data by using a
feature-weighting approach. In Jing et al. [22], they proposed
entropy-weighted k-means (EWKM) by adding weighted
entropy term such that it can simultaneously minimize the
within cluster dispersion andmaximize the negative weighted
entropy. Since feature weights represent the probability of a
dimensional contributing to clustering results, it is used to
determine subsets of important dimensions in each cluster.
The EWKM objective function [22] is

JEWKM (U ,A,W ) =
c∑

k=1

n∑
i=1

d∑
j=1

µikwkj(xij − akj)2

+ γ

c∑
k=1

d∑
j=1

wkj logwkj

where γ ≥ 0 is a parameter. The parameter γ can control
the size of feature weights in each cluster with the strength of
feature weight entropy, but it needs to be estimated by users.
If it does not have a good setting, the EWKM algorithm
cannot get good clustering results. Jing et al. [22] carried out
clustering on selected subspace instead of full data space by
directly assigning zero weights to features with less informa-
tion. They applied EWKM to high dimensional sparse data,
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such as text clustering and business transaction data, where
many features have zero-dimension.

We know that co-clustering was first proposed
by Dhillon [7] in 2001 for 2-view data sets.
Bickel and Scheffer [8] in 2004 proposed multi-view cluster-
ing for handling multi-view data. Afterward, several multi-
view k-means clustering algorithms had been proposed in the
literature [10], [18], [23]. We next review some related works
about multi-view k-means clustering. For a multi-view data
setX = {x1, . . . , xn} in a d-dimensional Euclidean spaceRd ,
let xi =

{
xhi
}s
h=1 be the h-th view of the i-th data point with

xhi ∈ Rdh , and let xhi =
{
xhij
}dh
j=1

be the j-th feature component

of the h-th view in the i-th data point with
∑s

h=1 dh = d .
Let U = [µik ]n×c, where µik is a binary variable indicating
if the data point xi belongs to k-th cluster, k = 1, · · · , c.
Let A = {a1, . . . , ac} be the c cluster centers where ak =
{akj}, j = 1, · · · , d is the j-th feature component of the

k-th cluster center. LetW = [wj]1×d , where wj =
{
whj
}s
h=1

is

the j-th feature weight in the h-th view. Let V = [vh]1×s,
where vh is a weight for the h-th view. Thus, the k-means
objective function for the multi-view data X = {x1, . . . , xn}
becomes

J (U ,A) =
s∑

h=1

n∑
i=1

c∑
k=1

d∑
j=1

µik (xhij − a
h
kj)

2

For clustering multi-view data, Xu et al. [14] proposed a
multi-view k-means clustering algorithm, called the weighted
multi-view clustering with feature selection (WMCFS),
by designing two weighting schemes for features and views
such that the best view and the most representative fea-
ture subspace in each view can be selected for clustering.
The WMCFS objective function in Xu et al. [14] is as
follows:

JWMCFS (U ,A,W ) =
s∑

h=1

(vh)α
c∑

k=1

n∑
i=1

µik

×

dh∑
j=1

(
whj
(
xhij − a

h
kj

))2
+β

s∑
h

dh∑
j=1

(
whj
)2

where α is used to adjust the sparsity of viewweights, ranging
from 1 to 30. β = 0.1 is a parameter to control the sparsity
of the feature weight. In their experiments, the iterations stop
when the number of iterations reaches the maximum number
of iterations with threshold ε = 0.00001. The real-world
datasets they used in their experiments are Multiple Feature
(MF), Reuters and Corel. Jiang et al. [12] proposed another
multi-view k-means clustering algorithm via simultaneous
weighting on views and features, called SWVF. In [12], they
proposed weighting strategy where each feature for multi-
view data is given bi-level weights to express its importance

in feature level and view level, respectively. To implement the
idea of simultaneous weighting, they embedded the proposed
weighting method into k-means clustering algorithm to han-
dle multi-view data. The SWVF objective function [12] is as
follows:

JSWVF (A,W ,V ,U ) =
s∑

h=1

(vh)α
c∑

k=1

n∑
i=1

µik

×

dh∑
j=1

(
wj
)β (xhij − ahkj)2

where α and β are two exponent parameters to respectively
control view weights and feature weighs. They applied three
real-world datasets to test the performance of SWVF, namely
Amsterdam Library of Object Image (ALOI), Multiple Fea-
ture (MF) and 3-Sources. However, the SWVF clustering
results are sensitive to the selection of parameters α and β.
Different α and β will lead to different distributions of view
and feature weights in which slight changes of them may
yield quite different clustering results. Unlike the SWVF
algorithm, the WMCFS algorithm may reduce sensitivity of
parameter selection. TheWMCFSmakes use of the balancing
parameter β to control the sparsity of feature weights in each
view. The WMCFS clustering results are usually stable when
the balancing parameter β is given a small value. Xu et al. [14]
suggested the optimal performance can be achieved when the
balancing parameter β = 0.1 for most data sets. However,
the WMCFS algorithm is still sensitive to the selection of
parameter α.

III. THE PROPOSED FEATURE-REDUCTION MULTI-VIEW
K-MEANS ALGORITHM
In this section, we propose the feature-reduction multi-view
k-means (FRMVK) clustering algorithm. Firstly, we give the
FRMVKobjective function, where the updating equations for
FRMVK are derived by using the Lagrangian multiplier. Let
X = {x1, . . . , xn} be a multi-view data set in a d-dimensional
Euclidean space Rd with xi =

{
xhi
}s
h=1, x

h
i ∈ Rdh , and

xhi =
{
xhij
}dh
j=1

with
∑s

h=1 dh = d . Let U = [µik ]n×c, where

µik = 1 if the data point xi belongs to the k-th cluster, and
µik = 0 otherwise, i.e. µik ∈ {0, 1}. Let A = {a1, . . . , ac} be
the c cluster centers with ak = {akj}. LetW = [wj]1×d , where

wj =
{
whj
}s
h=1

is the j-th feature weight in the h-th view
and let V = [vh]1×s, where vh is a weight for the
h-th view. Since multi-view data may include some irrele-
vant feature components in each view, feature reduction for
multi-view data is important. A novel schema with feature-
weighted entropy in each view is proposed to have fea-
ture reduction for multi-view data. In this schema, each
feature in each view has its own feature weight that will
be updated at each iteration. After some learning proce-
dures, feature(s) with small weights(s) in each view will
be eliminated. The proposed FRMVK objective function is
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as follows:

J (U ,A,V ,W )=
s∑

h=1

(vh)α
c∑

k=1

n∑
i=1

µik

dh∑
j=1

whj δ
h
j

(
xhij−a

h
kj

)2
+

n
dh

s∑
h=1

dh∑
j=1

whj ln δ
h
j w

h
j (1)

subject to
∑dh

j=1 w
h
j = 1,wj ∈ [0, 1] and

∑s
h=1 vh = 1,

vh ∈ [0, 1]. Note that δhj is a balance parameter to control
the feature weights of the k-th cluster in each view; α > 0 is
the exponent for the view weights.

The FRMVK clustering algorithm is to minimize
Eq. (1) with its constraints. Since we have to solve the
variables ahkj, µik , vh and whj in Eq. (1), the FRMVK updat-
ing equations can be obtained using the four minimiza-
tion steps, where one of the four variables is updated
by fixing the other three variables. The updating equa-
tion for µik is to minimize the FRMVK objective function
J (U ,A,V ,W ) of Eq. (1) w.r.t. µik that is equivalent to

minimizing
s∑

h=1
(vh)α

c∑
k=1

n∑
i=1
µik

dh∑
j=1

whj δ
h
j

(
xhij − a

h
kj

)2
w.r.t.

µik . Let dik (xi, ak ) =
s∑

h=1
(vh)α

dh∑
j=1

whj δ
h
j

(
xhij − a

h
kj

)2
. Thus,

we can obtain the following updating equation for µik :

µik =

{
1 if dik (xi, ak ) = min

1≤q≤c
diq(xi, aq)

0 otherwise
(2)

By taking the partial derivative of the FRMVK objec-
tive function J (U ,A,V ,W ) of Eq. (1) w.r.t. ahkj and set-
ting them to be zero, we obtain the equation ∂J

∂ahkj
=

−2 (vh)α
n∑
i=1
µikwhj δ

h
j

(
xhij − a

h
kj

)
= 0,and then we have that∑n

i=1 µik

(
xhij − a

h
kj

)
= 0. Thus, the updating equation for

ahkj can be obtained as

ahkj =
n∑
i=1

µikxhij

/
n∑
i=1

µik (3)

where ahkj is the j-th feature component of the k-th cluster
center in the h-th view.

For solving the optimization problem of the FRMVK
objective function J (U ,A,V ,W ) of Eq. (1) with the con-
straints w.r.t. vhand whj , the Lagrangian multiplier needs to be
used. The Lagrangian for J (U ,A,V ,W ) is given as

J̃ (U ,A,V ,W )

=

s∑
h=1

(vh)α
c∑

k=1

n∑
i=1

µik

dh∑
j=1

whj δ
h
j

(
xhij − a

h
kj

)2
+

n
dh

s∑
h=1

dh∑
j=1

whj ln δ
h
j w

h
j

− λ1

 dh∑
j=1

whj − 1

− λ2 ( s∑
h=1

vh − 1

)
(4)

By taking the partial derivative of the Lagrangian J̃ of Eq. (4)
w.r.t vh and setting them to be zero, we obtain the equation
∂ J̃
∂vh
= α (vh)α−1

c∑
k=1

n∑
j=1
µik

dh∑
j=1

whj δ
h
j

(
xhij − a

h
kj

)2
− λ2 = 0.

Thus, we have

vh =

(
λ2

/
α

c∑
k=1

n∑
i=1
µik

dh∑
j=1
δhj w

h
j

(
xhij − a

h
kj

)2) 1
α−1

. Since∑s
h=1 vh = 1, we get

λ2 =

 s∑
h′=1

(
α

c∑
k=1

n∑
i=1
µik

dh′∑
j=1
δh
′

j w
h′
j

(
xh
′

ij − a
h′
kj

)2) −1α−1
−1.

Thus, the updating equation for vh can be obtained as

vh =


s∑

h′=1


c∑

k=1

n∑
i=1
µik

dh∑
j=1
δhj w

h
j

(
xhij − a

h
kj

)2
c∑

k=1

n∑
i=1
µik

dh′∑
j=1
δh
′

j w
h′
j

(
xh
′

ij − a
h′
kj

)2


1
α−1


−1

(5)

By taking the partial derivative of the Lagrangian of
Eq. (4) w.r.t whj and setting them to be zero, we

obtain the equation ∂ J̃
∂whj
= vαh δ

h
j

c∑
k=1

n∑
i=1
µik

(
xhij − a

h
kj

)2
+

n
dh

(
lnδhj w

h
j + 1

)
− λ1 = 0. Thus,

we have ln δhj w
h
j =

(
−dhvαh

c∑
k=1

n∑
i=1
µikδ

h
j

(
xhij−a

h
kj

)2
−n+dhλ1

)
n and

whj =

1/
δhj

exp

(
−dhvαh

c∑
k=1

n∑
i=1
µikδ

h
j

(
xhij−a

h
kj

)2/
n

)
exp(1−dhλ1/n) . Since∑dh

j=1 w
h
j = 1, we get exp

(
n− λ1

/
n
)

=

dh∑
j′=1

1
δh
j′

exp
(
−dh (vh)α δhj′

c∑
k=1

n∑
i=1
µik

(
xhij′ − a

h
kj′

)2/
n
)
. Thus, the

updating equation for whj can be obtained as

whj =

1
δhj
exp

(
−dh (vh)α δhj

c∑
k=1

n∑
i=1
µik

(
xhij−a

h
kj

)2/
n
)

dh∑
j′=1

1
δh
j′
exp

(
−dh (vh)α δhj′

c∑
k=1

n∑
i=1
µik

(
xhij′−a

h
kj′

)2/
n
)
(6)

It is necessary to explain why we use n
/
dhto control the

effect of the entropy term
∑s

h=1
∑dh

j=1 w
h
j ln δ

h
j w

h
j in the pro-

posed FRMVK objective function, where it is also appeared
in the updating equation (6) for feature weights. In Eq. (6),

if the term exp((vh)αδhj
c∑

k=1

n∑
i=1
µik (xhij − ahkj)

2) is too large,

then the numerator in Eq. (6) will become too small as
close to zero. We need to avoid this case for preventing too
many features to be discarded during updating steps. On the

other hand, if the term exp((vh)αδhj
c∑

k=1

n∑
i=1
µik (xhij − ahkj)

2)

is too small, then the numerator in Eq. (6) will be large as
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close to one so that it is difficult for the feature(s) to be
discarded during updating steps. This case also needs to be
avoided. In this sense, we need to put a suitable constant
to control the effect. In the FRMVK clustering algorithm,
one goal is to cluster the n data points into c clusters. The
numbers n and dh are the two commonly given constants.
We use the constant n

/
dh to control the effect of the term

exp((vh)αδhj
c∑

k=1

n∑
i=1
µik (xhij − a

h
kj)

2).

Another problem is how to estimate the value of δhj in
Eqs. (2), (5) and (6). There are two δhj terms in the FRMVK
objective function. The first is the sum of feature-weighted
distance between data points and cluster centers in each view,
which is minimized when the distance between points and
centers is small. The second is the feature-weight entropy.
Because the δhj in the first and second terms of the FRMVK
objective function are used to control the variants of feature
weights in each view, the choice of δhj is very important.
We next propose a learning schema for estimating δhj . Exam-
ple 1 is used to demonstrate the proposed learning schema.
Example 1: In this example, we generate a multi-view

2-cluster data set that has 1000 data points from
a 2-component Gaussian mixture distribution

∑2
k=1 (1/2)

N (u(h)k ,
∑(h)

k ), where h =1 and 2 are the two views. The
means u(1)k for the view 1 are

(
2 2

)
and

(
5 5

)
. The means

u(2)k for the view 2 are
(
−6 6

)
and

(
2 2

)
. The covariance

matrices for the two views are
∑(1)

1 =

(
0.9 −0.0255

−0.0255 0.9

)
,∑(1)

2 =

(
0.5 0
0 0.3

)
,

∑(2)
1 =

(
1.5 −0.4
−0.4 1.5

)
and∑(2)

2 =

(
1 0.4
0.4 0.7

)
. These x(1)2 and x(1)3 are the coordinates

for the view 1, and x(2)2 and x(2)3 are the coordinates for
the view 2, as shown in Fig. 1(a) and (b), respectively. For
demonstrating the feature-reduction schema, we add a fea-
ture, coordinated by x(1)1 , for the view 1, and another feature,
coordinated by x(2)1 , for the view 2 where they are gener-
ated from a uniform distribution over the interval [−4,−2].
Obviously, the uniform distribution will stretch the 2-cluster
data over the interval [−4,−2] in each view, as shown
in Fig. 1(c) and (d). Of course, the features generated from the
Gaussian mixture are important, but the features generated
from the uniform distribution are unimportant.

We next use the idea of coefficient of variance (CV) in
statistic that is defined as CV = σ

/
µ or CV = σ

/
|µ|.

The reciprocal of CV is also known as signal-to-noise ratio
(SNR) that is widely used in quality engineering to evaluate
the performance of a system. SNR is defined as the ratio
of average received signal value to standard deviation of
noise background, i.e. SNR = µ

/
σ (see [24]). Furthermore,

in physics, Fano factor (FF), which can be seen as a similar
CV, had been proposed and defined asFF = σ 2

/
µ (see [25]).

If we consider the reciprocal of Fano factor, that is similar
as SNR being the reciprocal of CV, then we haveµ

/
σ 2, i.e.,

mean-to-variance ratio (M-V-R). However, the parameter δhj

FIGURE 1. The 2-cluster data set for (a) view 1; (b) view 2; The 2-cluster
data set by adding one feature generated from a uniform distribution for
(c) view 1; (d) view 2.

must be positive. Therefore, the (absolute mean)-to-variance
ratio (AM-V-R), i.e. |µ|

/
σ 2, can be nature as an estimate

for δhj . However, to estimate δhj , we have to pick a number as
a better estimate for reducing unimportant features in each
view. We may also take the square root of the absolute mean
in the AM-V-R, i.e.

√
|µ|/σ 2. We call it the (square root of

absolute mean)-to-variance ratio (SRAM-V-R). We think that
the impact of the SRAM-V-R

√
|µ|/σ 2 on δhj will give more

effect for feature weights.
We use the three factors, FF, AM-V-R, and SRAM-V-R for

estimating the parameter δhj with their respectively obtained
feature weight values of whj using the data set in example 1
where the values of δhj will affect the obtained featureweights.
These values of δhj and whj are shown in Table 1. As can
be seen, SRAM-V-R can produce smaller feature weights
for x(1)1 and x(2)1 , while FF produces smaller feature weights
for x(1)2 , x(1)3 , x(2)2 and x(2)3 and AM-V-R produces smaller
feature weights for x(2)1 and x(2)3 . It is found that SRAM-V-R
can be fitted as an estimate of the parameter δhj . Therefore,
the estimator of δhj is used as follows:

δhj =


√∣∣∣mean (xhj )∣∣∣
var

(
xhj
)

 (7)

To create a feature-reduction schema in the proposed
FRMVK algorithm, we need to select the irrelevant features
via automatically adjust the feature weights in each view
during clustering processes. In our construction, we use a
threshold to determine which feature(s) will be selected and
discarded. It is known that the data set has n data points that
belong to the h views in which each view has dh feature com-
ponents. The data set is represented by the h different views
with xhi ∈ R

dh where dh is the dimension of the h-th view with
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TABLE 1. Comparison of FF, AM-V-R, and SRAM-V-R for the 2-cluster data
set of example 1.

The FRMVK Algorithm

Input: Dataset X = {x1, . . . , xn} with xi =
{
xhi
}s
h=1 and

xhi =
{
xhij
}dh
j=1

, number c of cluster, α, and ε > 0.

Output: ahkj, µ
h
ik , vh and w

h
j .

Initialization: Randomly generate initial Uh, initialize
feature weightW h(0)

= [whj ]1×dh
(user may define whj = 1

/
dh∀j), initialize view weight

V (0) = [vh]1×s (user may define vh = 1
/
s∀h), and set

t = 1.
Step1: Calculate δhj by Eq. (7).

Step 2: Compute the cluster center Ah
(t)

using U (t−1) by
Eq. (3).

Step 3: Update membership matrix U (t) using
δhj ,A

h(t) ,V (t−1) and Wh(t−1) by Eq. (2)

Step 4: Update the feature weightW h(t) using δhj ,A
h(t) ,U (t)

and V (t−1) by Eq. (6)
Step 5: Update the view weight V (t) using δhj ,A

h(t) ,U (t) and

W h(t) by Eq. (5)
Step 6:Discard total dr number of these j feature components

for W h(t) , if W h(t)
= 1

/√
ndh, and set dnew = D− dr

Step 7: AdjustW h(t) by Eq. (8).
Step 8: If

∣∣∣∥∥∥W h(t)
∥∥∥− ∥∥∥W h(t−1)

∥∥∥∣∣∣ < ε, then stop;

Else set t = t + 1, d = d (new) and go back to Step 1.

∑dh
j=1 w

h
j = 1. If dh is large, then the threshold for feature

reduction in the h-th view is intuitively chosen as 1
/
dh.

However, the proposed feature-reduction algorithm must fit
for most multi-view data sets, even for small dh. In this sense,
the data number n should be considered as another factor. It is

known that 1
/
dh = 1

/√
d2h = 1

/√
dhdh. For a balance

between small and large dh, we replace one dh with n so that
it becomes 1

/√
ndh. Therefore, we consider 1

/√
ndh as a

suitable threshold for discarding these irrelevant features in
the h-th view. After these irrelevant features in the view h are
discarded, to retain the constraint

∑dh
j=1 w

h
j = 1, these feature

weights whj need to be adjusted by

(whj )
′
= whj

/∑dh(new)

p=1
whp (8)

Thus, the proposed FRMVK algorithm is summarized as
follows:

In the proposed FRMVK algorithm, we first give the
number c of clusters and assign the values of exponential
parameter α. We need to initialize feature weights whj and
viewweights vh, but simply initialized withwhj = 1

/
dh∀j and

vh = 1
/
s∀h. For stopping the algorithm, we set the iterative

process of the weighted sum of the intra-features weight
variances between the t-th and the (t-1)-th iterations as MJ(t)

which can be computed as MJ (t) =
∣∣∣∥∥∥W h(t)

∥∥∥− ∥∥∥W h(t−1)
∥∥∥∣∣∣ ,

where W h(t)denotes the updated iteration of feature weights
in each view and W h(t−1) is the feature weights in the
(t-1)-th iterations. MJ (t) ≥ 0 means the sum of intra-feature
weight variances in h-th view distances updated in each step
of iterations is strictly decreasing. In our experiments, the iter-
ation stops when the gap of the sum of intra-feature weight
variances distances between the two consecutive iterations is
less than the threshold ε.

IV. EXPERIMENTAL RESULTS AND COMPARISONS
In this section, three synthetic and four real data sets
are used to illustrate the performance of the proposed
FRMVK algorithm. Among the four real data sets, the first
one is the text data set, the second is the image data set,
and the last two are the images of CALTECH-101 data
sets. Comparison of the proposed FRMVK algorithm with
SWVF [12] and WMCFS [14] is also made. For the exper-
imental comparisons, all algorithms use the same initial clus-
ter center assignments, the same initial feature weights, and
the same initial view weights. Accuracy rate (AR) and Rand
Index (RI) [26] are used as the criteria for the performance
evaluation. Note that all the three algorithms of FRMVK,
SWVF, and WMCFS have the same parameter α that is used
to control view weights, so the parameter α must have the
same given values in all experimental comparisons.
Example 1 (Cont.): We continue Example 1 by imple-

menting the FRMVK algorithm for the 2-cluster data set
with equal feature weights and equal view weights as the
initialization W h(0) . After two iterations, FRMVK clearly
demonstrates x(1)1 andx(2)1 as unimportant features. This fea-
ture reduction behavior is shown in Table 2, where the clus-
tering result from FRMVK is with AR = 1.00.
Example 2: In this example, we use a more compli-

cated synthetic data set with manifold shapes that is the
2-HalfMoon+1-block, as shown in Fig. 2(a) and (b) for
view 1 and view 2, respectively. The manifold data set has
3 clusters and 900 data points for which the 600 data points
are for the HalfMoon pattern and the 300 data points are
for 1-block shape. Fig. 2(a) is the visualization of view-1
with the coordinates x(1)1 and x(1)2 , while Fig. 2(b) is the
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TABLE 2. Feature reduction behavior by FRMVK for the 2-cluster data set
of example 1.

FIGURE 2. (a) 2-HalfMoon+1-block of View-1; (b) 2-HalfMoon+1-block of
View-2; (c) Combination of features in Fig. 2(a) with another feature
generated from a uniform distribution; (d) Combination of features
in Fig. 2(b) with another feature generated from the uniform distribution.

visualization of view-2 with the coordinates x(2)1 and x(2)2 .
Furthermore, we design another irrelevant feature in each
view with uniform distributions, where we generate x(1)3
and x(2)3 from the uniform distributions over intervals [0,5],
respectively. Fig. 2(c) is the visualization of view-1 with the
coordinatesx(1)1 , x(1)2 and x(1)3 , while Fig. 2(d) is the visualiza-
tion of view-2 with the coordinates x(2)1 , x(2)2 and x(2)3 .

This complicated manifold data set is a challenge for most
clustering methods. We implement the FRMVK algorithm
for this data set. FRMVK is able to adaptively identify these
important features of each view, in which it demonstrates that
the feature weighting mechanism in FRMVK can enhance
the algorithm stability. The feature reduction behavior is
shown in Table 3, where the unimportant features x(1)3 and
x(2)3 from uniform distributions are reduced after iteration 2.
The clustering results from FRMVK in each view are shown
in Fig. 3(a) and (b). Furthermore, we implementWMCFS and
SWVF for the 2-Half-Moon+1-block data set. The clustering
results from WMCFS in each view are respectively shown
in Fig. 3(c) and (d), and the clustering results from SWVF
in each view are respectively shown in Fig. 3(e) and (f).
The average ARs for the FRMVK, WMCFS, and SWVF
algorithms are as 0.965, 0.554 and 0.878, respectively. As can

FIGURE 3. Clustering results of view 1 and view 2 in 2-HalfMoon+1-block
by FRMVK; (c)-(d) Clustering results of view 1 and view 2 in
2-HalfMoon+1-block by WMCFS; (e)-(f) Clustering results
of view 1 and view 2 in 2-HalfMoon+1-block by SWVF.

TABLE 3. Feature reduction behavior by FRMVK for the manifold data set
of example 2.

be seen, the proposed FRMVK actually presents better clus-
tering results than WMCFS, and SWVF.
Example 3: In this example, a numerical three-view data

set with 3 clusters and 5 feature components is consid-
ered. The data points in each view are generated from
a 3-component 5-variate Gaussian mixture model (GMM)
where their mixing proportions, means and variance matrices
are shown in Table 4. Furthermore, two irrelevant features
in the view 2 with uniform distributions are added. For the
feature component x(2)6 , 307 data points generated from the
uniform distribution over the interval [0, 12] are added in
the first component; 332 data points generated from the
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TABLE 4. Mixing proportions, means and variance matrices of the GMM for the data set of example 3.

uniform distribution over interval [0,18] are added in the sec-
ond component; 361 data points generated from the uniform
distribution over the interval [0,20] are added in the third
component. For the feature component x(2)7 , 307 data points
generated from the uniform distribution over the interval
[0, 14] are added in the first component; 332 data points
generated from the uniform distribution over interval [0,16]
are added in the second component; 361 data points gener-
ated from the uniform distribution over the interval [0,18]
are added in the third component. We implement FRMVK,
WMCFS and SWVF for the multi-view data set. It is found
that FRMVK, SWVF and WMCFS get average ARs with
0.856, 0.720 and 0.444, respectively. As can be seen, the
proposed FRMVK gets the best performance. On the other
hand, FRMVK also performs feature reduction where the
feature reduction behaviors of FRMVK are shown in Table 5.
From Table 5, FRMVK clearly demonstrates that the sixth
and seventh features in the view 2 are unimportant features.
It is good because the sixth x(2)6 and seventh x(2)7 features

are originally generated from uniform distributions that are
unimportant features in the view 2. Furthermore, ARs and
RIs from the proposed FRMVK after different iterations are
also shown in Table 5. It is seen that the proposed FRMVK
increases the values of ARs and RIs after each iteration.
As can be seen, the proposed FRMVK takes feature reduction
behavior that successfully detects unimportant features and
also improves clustering performance.

In next example, we use four real multi-view data sets from
UCI repository [27], that include Image Segmentation data
set,Multiple Features data set, and two image data sets known
as Caltech-7/20 [10], for investigating the performance of the
proposed FRMVK algorithm. Comparisons of the proposed
FRMVK with SWVF and WMCFS are also made.
Example 4: Detailed information for the real data sets,

Image Segmentation (IS) [27], Multiple Features (MF) [27],
and Caltech-7/20 [28] is shown in Table 6. Note that the
exponent α for view weights are all appeared in the proposed
FRMVK, SWVF and WMCFS where, in SWVF [12] and
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TABLE 5. Feature reduction behavior by FRMVK for the data set of example 3.

TABLE 6. Characteristics for the real data sets.

WMCFS [14], they had shown that the exponent α for view
weights actually has the influence on clustering performance
of SWVF and WMCFS. In this example, we first explore
the influence of the exponent α on clustering performance
and feature reduction behavior of FRMVK. We analyze the

effect of the exponent α using accuracy rate (AR) and rand
index (RI). On the other hand, both WMCFS and SWVF
need extra setting for the parameter β, except the exponent
α for view weights. Therefore, we also make comparisons
of FRMVK with both WMCFS and SWVF algorithms under
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TABLE 7. Worst/Average/Best of AR and RI from algorithms with different α on IS and MF data.

different values for the parameter β. We run the FRMVK,
WMCFS and SWVF for the four real multi-view data sets
and make comparisons using different α with a fixed β value.
The exponent α is searched from 2 to 10. We also make the
comparisons for the four data sets using different values of β
with a fixed α value. The different values of β for WMCFS
are 0.0001, 0.005, 0.025, 0.05, 0.075 and 0.1, while the
different values of β for SWVF are in the range of [0 30] with
the step 5. The results for the IS and MF data using different
α values with a fixed β value are presented in Table 7, and
for the Caltech-7/20 data are presented in Table 8. While
the results for the IS and MF data using different β values
with a fixed α value are presented in Table 9, and for the
Caltech-7/20 data are presented in Table 10. By observing
these experimental results, we conclude the following results.
Result 1: As shown in Table 7 on the IS dataset, the per-

formance of our algorithm obtains the best clustering results
when the exponent α = 4 and, at the same time, the final
numbers of feature components obtained from FRMVK are
stable, as shown in Table 11. For the MF dataset, FRMVK
gives the optimal clustering results when α = 4, while for
Caltech-7 when α = 10 and for Caltech-20 when α = 3.

Result 2: For the four real world data sets, the expo-
nent parameter α in WMCFS is sensitive. As shown
in Tables 7 and 9, it is seen that the best clustering results
of WMCFS can be obtained when α = 10 and β = 0.1 on
the IS data set, while with α = 10 and β = 0.05 on the
MF data set, with α = 10 and β = 0.1 on the Caltech-7 data
set, and with α = 4 and β = 0.1 on the Caltech-20 data set.
Result 3: For the four real world data sets, the

exponentαand the parameter β in SWVF are relatively sen-
sitive. For the IS data set, when we run SWVF with β = 10
under different α, we find that the clustering performance
obtained unbalance ARs and RIs. On the MF, Caltech-7,
and Caltech-20 real data sets, we also find that different
α and β have big impacts on clustering performance. From
Tables 7 and 8, it is seen that different α produces different
clustering performance.
Result 4: From the worst, average, and the best of

ARs and RIs obtained by three algorithms, the proposed
FRMVK algorithm actually presents better results than other
two algorithms. In FRMVK, we only need to assign the
exponent parameter α, but both WMCFS and SWVF need
to have another parameter β.
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TABLE 8. Worst/Average/Best of AR and RI from algorithms with different α on Caltech 7 and Caltech 20 data.

TABLE 9. Worst/Average/Best of AR and RI from algorithms with different β on the IS and MF data.

Result 5: For the four real datasets, Table 11 reports
the total running time from each algorithm (in seconds).
As shown in Table 11, we can see that the proposed

FRMVK is much faster than WMCFS and SWVF. To further
explain this phenomenon, we also present the final d obtained
by FRMVK in each view. We observe that if the dataset
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TABLE 10. Worst/Average/Best of AR and RI from algorithms with different β on Caltech 7 and Caltech 20 data.

has more total feature components, FRMVK will give much
less running time than other algorithms. This situation occurs
because FRMVK gives feature reduction behavior. The fea-
ture components will be discarded during iterations so that
the number of feature components will be decreasing. This
means that the computation time is also decreasing. The final
number of feature components obtained fromFRMVK for the
four real data sets under different α are shown in Table 11.
Furthermore, we make more observations about the perfor-

mance of FRMVK. We know that both WMCFS and SWVF
algorithms quite depend on the parameter α and are sensi-
tive to the parameter. The proposed FRMVK algorithm also
depends on the parameter α where it is the only parameter.
However, the proposed FRMVK algorithm is not so sensi-
tive to the parameter α. We will demonstrate this behavior.
To better asses how α competition has changed over cluster-
ing results, we first perform evaluation using three synthetic
multi-view data sets of Examples 1, 2, and 3. Figure 4(a)
shows the performance results in terms of accuracy rate of
FRMVK by varying α in {0.01, 0.02, . . . , 0.1}. We then
perform evaluation using four natural multi-view data. The
results, i.e., the average accuracy rate, are shown in Fig. 4(b).
These results indicate that the performance of FRMVK is
stable across a range of parameters α ∈ [0.00010.1] for the
data sets. On the other hand, for the natural multi-view data,
the results prove that FRMVK is pretty stable regardless of
the choice of its parameter α > 1. For synthetic data set with
α in {0.01, 0.02, 0.03, 0.04, 0.05}, we report the weights
in each view in Table 12. It can be seen that view weight
distributions of each view in all three synthetic data sets are
consistently stable for the given values of the parameter α.
Besides, the proposed FRMVK algorithm also exploits these

FIGURE 4. (a) Exponent parameter α for Examples 1, 2, and 3 by FRMVK;
(b) Exponent parameter α for Example 4 by FRMVK.

important views based on the feature weight values. The
greater the weight is the importance of the view is.

Finally, we further analyze more feature-reduction behav-
iors in the FRMVK algorithm. Usually, features with small
weight values that fall below the defined threshold will
be removed from the set of features during clustering pro-
cesses. In other words, these features contain less informa-
tion that should not be included. In the above examples,
the FRMVK algorithm had been experimented and compared
to the WMCFS and SWVF algorithms with synthetic and
real data sets. The results show that the proposed FRMVK
algorithm actually give the feature reduction behavior. How-
ever, we may ask whether these reduced features by FRMVK
should be naturally discarded in data sets. From the synthetic
data sets of Examples 1, 2 and 3, we had demonstrated that
these reduced features by FRMVK are significantly irrelevant
features in each view that need to be naturally discarded.
In fact, for real data sets in Example 4, if we check these
reduced features by FRMVK, we can find that these reduced
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TABLE 11. Numbers of original and final features obtained from FRMVK and total running time (in seconds) for real data sets.

features are less relevant compared to these reserved fea-
tures. Another way is to see whether the feature reduction
by FRMVK as an impact factor used in other multi-view
clusteringmethods, such asWMCFS and SWVF, can produce
better clustering results. To address this issue, we imple-
ment the WMCFS and SWVF algorithms for the data set of
Example 2 and the IS (Image Segmentation) real data set of
Example 4 with feature reduction (With FR) by FRMVK.
Note that the chosen features in each view by FRMVK
presented in Table 3 and Table 11. These clustering results

(With FR) and without feature reduction (Without FR) from
WMCFS and SWVF are shown in Table 13. The results
show that the WMCFS and SWVF algorithms can yield
better clustering quality for the data set (With FR) of Exam-
ple 2 and IS (With FR) of Example 4. The average ARs and
RIs of both algorithms (With FR) are increasing compared
to those (Without FR), while the total running times are
decreasing. It means that the feature reduction schema in
the FRMVK algorithm is useful with beneficial impact on
clustering results.
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TABLE 12. Weight of each view.

TABLE 13. Performance of WMCFS and SWVF without irrelevant features
obtained by FRMVK.

V. CONCLUSION
In this paper, we propose a novel algorithm for clustering
multi-view data, termed Feature-Reduction Multi-View
K-Means (FRMVK), which can automatically reduce unim-
portant features in each view. The proposed FRMVK algo-
rithm uses a learning mechanism to compute new feature
weights in each view by adding a feature-weight entropy
in the FRMVK objective function. These new weights are
then used to update cluster centers, memberships, and view
weights for the data set during iterative processes. The
FRMVK algorithm is able to select important features in
each view and to reduce feature dimensions by discarding
unimportant features in each view. Experimental results show
that the proposed FRMVK algorithm performs well for clus-
tering multi-view data. In our future work, we will investigate
the parameter selection for the view exponent α and then
extend FRMVK to be suitable for different cluster shapes
in multi-view data. Furthermore, there exist multi-view data
with categorical or mixed data types, and our further research
will try to extend FRMVK for handling these data types.
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