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ABSTRACT Aiming at the problem that the traditional similarity measurement methods cannot effectively
measure the similarity of the time series with the difference both in the trend and detail, this paper proposes
a new time series similarity measurement method (MP-SAX) based on the morphological pattern (MP)
and symbolic aggregate approximation (SAX). According to the empirical mode decomposition (EMD),
the time series are decomposed and reconstructed into the trend component and the detail component.
Then, the similarity of the trend component under morphological pattern coding and that of the detail
component under symbolic aggregate approximation coding are respectively calculated by the longest
common subsequence (LCS). Finally, the similarity of the time series is obtained by weighted aggregation
of the similarity of trend component and detail component. The MP-SAX is verified by the simulation time
series and the time series from UCR Time Series Classification / Clustering Homepage. The results show
that the MP-SAX can effectively measure the similarity of the time series with the changes both in trend and
detail.

INDEX TERMS Similarity measure, morphological pattern, symbolic aggregate approximation, longest
common subsequence, empirical mode decomposition.

I. INTRODUCTION
With the development of modern industry and information
technology, massive data through various sensing devices are
generated. These monitoring data which are discrete time
series, in essence, have been widely analyzed to mine use-
ful potential information in many application fields, such
as finance, medicine, aerospace, and meteorology, etc. The
similarity measurement between two time series is a core
requirement for the data mining of time series and knowledge
discovery tasks, such as clustering and classification [1].

The similarity measurement of time series was first pro-
posed by Agrawal et al. [2], in which the similarity of time
series was measured by Euclidean distance. Euclidean dis-
tance is the most widely used similarity measurement method
which is easy to calculate and has clear meaning [3], [4].
It has been widely used in data mining tasks of time series [5].
However, Euclidean distance requires that the time series to
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be measured should have the same length. For calculating
the similarity of time series with different length, some elas-
tic measurement methods [6]–[9] based on the manner of
‘one-to-many’ or ‘one-to-zero’ are proposed. For example,
Hsu et al [10] proposed a Flexible Dynamic Time Wrapping
(FDTW). Folgado et al. [11] proposed TimeAlignmentMea-
surement to measure the similarity of time series in the tem-
poral domain after aligning two time series by Dynamic Time
Wrapping (DTW). Silva et al. [12] adapted the DTW with
pruned warping paths to improve the internal efficiency of the
DTW calculation. Tao et al. [13] proposed dynamic spatial
time warping which can maintain the invariance of curve sim-
ilarity to the rotations and translations of curves for predicting
the capacity degradation of the battery. Putpuek et al. [14]
utilized a simple signature and the longest common sub-
sequence (LCS) algorithm to improve the efficiency of the
automatic retake detection. Rivault et al. [15] proposed a
generalization of the LCS to measure the events’ semantic
similarity. Ayad et al. [16] extended the cyclic edit distance
based on q-gram to improve the computational speed and
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accuracy. Zhang et al. [17] embedded the edit distance with
a real penalty into difference-weighted KNN classifiers to
realize the classification of the pulse waveform.

In modern industry, the dimensionality of time series is
becoming higher gradually, and the rapid and accurate pro-
cessing of time series is a new requirement in the data min-
ing of time series [18]. Therefore, in order to improve the
computational efficiency of similarity measurement, some
methods which express the time series in a simple and
feature-rich manner have been proposed, such as, describe
time series from the following aspects of time series: symbol-
ization [19], change trend [20] and shape [21]. For example,
Tamura and Ichimura [22] proposed a hybrid symbolic aggre-
gate approximation by combining the symbolic aggregate
approximation strings of time series and moving average
convergence divergence histogram. For the time series of IoT,
Gonzalez-Vidal et al. [23] proposed an undeclared muta-
tion segmentation algorithm for data drift. Baldini et al. [24]
proposed a novel approach to Radio Frequency finger-
printing based on the symbolic aggregate approximation.
Wang and Tang [25] proposed the fluctuating pattern based
on the trend change information of the original time
series.

However, the similarity measurement methods mentioned
above can only evaluate the similarity of the time series
with either change in trend component or changes in detail
component. In the scenarios which both trend and detail
component have differences, these methods could not give
the most comprehensive measurement. For example, in the
life cycle of a product, the degradation of the product is
reflected in the change of trend component, and the real-time
operating status and environment of the product are reflected
in the change of detail component. Therefore, it is helpful to
improve the results of time series similarity measurement by
considering both the trend component and detail component
of the time series. Where the trend component of time series
is the general trend of changewhich is formed by some funda-
mental factors in a long-term period and the detail component
is constituted by seasonal variations, calendar variations, and
irregular component [26].

In this paper, a new similarity measurement method which
aggregates the similarity of the trend and detail component
of time series by weighted manner is proposed. According to
the Empirical Mode Decomposition (EMD), the original time
series are decomposed into Intrinsic Mode Functions (IMFs).
Then the IMFs are reconstructed into trend component and
detail component according to the multi-scale permutation
entropy (MPE) of IMFs. Then the trend component and the
detail component are coded by morphological pattern (MP)
and symbolic aggregation approximation (SAX) respectively.
The similarity of the trend component and the detail compo-
nent are respectively calculated by LCS. Finally, the similar-
ity of the time series is obtained by weighted aggregation of
the similarity of trend component and detail component.

The main contributions of our work are summarized as
follows:

(a) The similarity measurement of the time series with the
difference both in trend and detail can be realized by
using Empirical Mode Decomposition to obtain the
trend and detail component of a signal.

(b) The proposed method, MP-SAX, can achieve superior
performance under more extensive application scopes,
especially under the scenario that useful information
exists both in the trend and detail component of time
series. To some extent, the combination of MP and
SAX overcomes the issues that MP cannot measure
trend differences when the time series contain detail
component and SAX cannot effectively measure the
detail differences when the time series contain obvious
trend component.

The rest of the paper is organized as follows.
Section II introduces the necessary background knowledge,
In Section III, the new similarity measure method is pro-
posed. The results and discussion are given in Section IV.
In Section V, the conclusion of this paper is drawn.

II. BACKGROUND KNOWLEDGE
A. THE MORPHOLOGICAL PATTERN AND SIMILARITY
MEASUREMENT
The morphological pattern (MP) is an encoding method of
time series, which can encode the change rate of uptrend
and downtrend into a series of discrete values and reflect
the overall trend of time series very carefully. Meanwhile,
the morphological characteristics of the original series are
considered by MP, and the numerical size of the time series is
ignored. For a time series X = (x1, x2, · · · , xn), the morpho-
logical pattern series F = (f1, f2, · · · , fn) can be obtained as
follows [27]:

fi =



3, (xi − xi−1)
/
t > 1

2, (xi − xi−1)
/
t = 1

1, (xi − xi−1)
/
t < 1

0, xi = xi−1
−1, (xi − xi−1)

/
t > −1

−2, (xi − xi−1)
/
t = −1

−3, (xi − xi−1)
/
t < −1

(1)

where t is the interval between the two sampling points.
As the morphological pattern series is constituted by {−3,
−2,−1, 0, 1, 2, 3} alphabetic strings, the LCS can be used to
measure the similarity between the twomorphological pattern
series. For the time series X = (x1, x2, · · · , xn) and Y =
(y1, y2, · · · , ym), the corresponding morphological pattern
series Fx and Fy can be calculated by (1). Then the longest
common subsequence of the morphological pattern series can
be obtained by dynamic programming. Specifically, the LCS
can be obtained as follows [28]:

L (i, j) =

{
max(L (i− 1, j) ,L (i, j− 1)), Fx (i) 6= Fy (j)
L (i− 1, j− 1)+ 1, Fx (i) = Fy (j)

(2)
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TABLE 1. A lookup table for breakpoints with the alphabet size from 3 to 10.

where Fx (i) is the ith element of Fx , and Fy (j) is the jth

element of Fy, L (i, j) is the length of the longest common
subsequence of Fx and Fy.

Then the similarity based on the longest common subse-
quence can be calculated as follows

sim
(
Fx ,Fy

)
=

L
min(lFx , lFy )

× 100% (3)

where Lis the length of the longest common subsequence,
min

(
lFx , lFy

)
is the length of the shortest series in Fx and Fy.

B. THE SYMBOLIC AGGREGATE APPROXIMATION AND
SIMILARITY MEASUREMENT
Lin et al. [29], based on the piecewise and central limit theo-
rems of Piecewise Aggregate Approximation (PAA) and the
normal distribution characteristics of time series, proposed a
symbolic representation of time series – Symbolic Aggregate
approXimation (SAX). SAX has been verified as a fast and
effective tool for solving time series mining problems. The
SAX can convert a time series X of length n into a symbol
sequence of length w(w� n), in which the compression and
noise reduction of raw time series can be realized. The SAX
works as follows [30], [31].
Step 1: The time series is normalized in order to make

it obey the standard normal distribution by the equation as
follows

NX =
X − µ
σ

(4)

where NX is the normalized series of X , µ is the mean of all
the points in X and σ is its standard deviation.
Step 2: The normalized series is divided into w equal-sized

segments by PAA. That is, the time series X =

{x1, x2, · · · , xn} can be represented by the average of each
segment and the average is calculated by the following
equation

xi =
w
n

n
w i∑

j= n
w (i−1)+1

xj (5)

where xi is the average of the ith segment, xj is one point
of time series X , j is the sequence number of the time

series from the starting point to the ending point for each
segment.
Step 3: The breakpoints β that divide the distribution space

into α equiprobable regions are determined by a lookup table
shown in Table 1.
Step 4: After the aforementioned steps, each region is

assigned a symbol using the determined breakpoints. All
PAA coefficients below the smallest breakpoints are mapped
to the symbol ‘‘a’’, all coefficients greater than or equal to
the smallest breakpoint and less than the second smallest
breakpoint are mapped to the symbol ‘‘b’’, etc.

As the SAX converts the original time series into symbol
sequence, the similarity of the symbol sequence can also be
calculated by the LCS described as above.

C. THE THEORY OF EMPIRICAL MODE DECOMPOSITION
EMD is an adaptive approach to decompose non-linear and
non-stationary time series into a set of intrinsic mode func-
tions (IMFs) and a residual, which the IMFs should satisfy
two conditions: (a). the number of zero-crossing and extreme
points differs at most by one, (b). at any point in time,
the mean value of the upper envelope determined by the local
maximum and the lower envelope determined by the local
minimum of the series must be zero.

The residual and some higher-order IMFs can describe
the trend component of the original time series, meanwhile
other lower-order IMFs are the representations of the detail
component of original time series. The procedures of EMD
decomposition are shown as follows [32], [33]:
Step 1: The upper and lower envelopes of the original time

series x (t) are obtained by all local extreme points of the orig-
inal time series (including the maximum and the minimum
points). Then the mean value series of the envelopesm (t) are
obtained.
Step 2: The mean value series of the envelopes m (t) are

subtracted from the original series x (t) until the result h1 (t)
satisfies the two conditions of the IMF as follows:

h1 = x (t)− m (t) (6)

the result h1 (t) satisfying the two conditions of the IMF is
the first IMF c1 (t).
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Step 3: Subtracting the first IMF c1 (t) from the original
series x (t).

r1 = x (t)− c1 (t) (7)

where the r1 (t) is the residual series after decomposing the
first IMF.
Step 4: Then r1 (t) is used as the ‘original series’ to repeat

the above steps until r1 (t) becomes a monotone function
from which the IMF can no longer be extracted. Then the
original series x (t) can be express as:

x (t) =
n∑
i=1

ci (t)+ rn (t) (8)

III. THE PROPOSED METHOD
A. THE PROCESS OF THE PROPOSED METHOD
For accurately measuring the similarity of time series under
the scenarios that there are changes both in the trend com-
ponent and detail component, a new similarity measurement
method of time series based on the MP and SAX is pro-
posed in this paper. The similarity of time series is obtained
by the weighted aggregation of the similarity of the trend
and detail component. The essential discrepancy between
the trend and detail components is their complexity. The
change of the trend component is the long-term tendency
with lower complexity, while the change of the detail com-
ponent is rapid variation with larger complexity. Therefore,
the trend and detail component can be distinguished by the
complexity of time series. Meanwhile, the multi-scale permu-
tation entropy (MPE) is an effective method to measure the
complexity of time series. It is widely used to measure the
complexity of the time series [34]. The detailed calculation
process refers to [34]. And the MPE gradually increases
from 0 to 1 with the increase of the complexity of time series.
Therefore, the trend and detail component can be determined
by the MPE.

As shown in Fig. 1, given the two time series X =

{x1, x2, · · · , xn} and Y = {y1, y2, · · · , ym}, the process of the
MP-SAX is given as follows:
Step 1:Decompose the two time series to IMFs

{
IMFXi

}N1
i=1

and
{
IMFYj

}N2

j=1
according to the description in Section II.C.

Then, calculate the MPEs
{
MPEXi

}N1
i=1 and

{
MPEYj

}N2

j=1
of

each IMFs.
Step 2: According to the MPE, the IMFs of the two time

series are reconstructed into trend component and detail com-
ponent respectively as follows:

TRX =
∑

i∈
{
i|MPEXi <0.4

} IMFXi
TRY =

∑
j∈
{
j|MPEYj <0.4

} IMFYj (9)

DEX =
∑

i∈
{
i|MPEXi ≥0.4

} IMFXi

FIGURE 1. The calculation process of the MP-SAX.

DEY =
∑

j∈
{
j|MPEYj ≥0.4

} IMFYj (10)

where TRX and TRY is the reconstructed trend component of
time series X and Y respectively, DEX and DEY is the recon-
structed detail component of time series X and Y respectively.
Step 3: The symbol sequences of trend component MCX

and MCY are calculated by (1). The symbolic sequences of
detail component SCX and SCY are obtained by the SAX.
Step 4: According to the LCS, the similarity of trend com-

ponent STRand that of detail component SDE are calculated
by (2) and (3). Finally, the similarity between the two time
series is obtained byweighted aggregating the trend similarity
STR and the detail similarity SDEas follows:

Simtol = WTR · STR+WDE · SDE (11)

where WTR is the weight of the trend similarity, WDE is the
weight of the detail similarity, Simtol is the similarity of the
two time series.

And the weight can be obtained by one of the following
two methods.

(a). Subjective method: Set the corresponding weight
according to the focus of concern. Such as the weight of trend
similarity is greater than that of detail similarity if the impact
of trend on time series similarity is more concerned, and vice
versa.

(b). Objective method: Set the corresponding weight
according to the proportion of IMF in reconstruction. The
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FIGURE 2. The simulation data with difference in trend and detail.

TABLE 2. The summary of datasets.

weight can be obtained as follows.

WTR =
NTR
Ntol

(12)

WDE =
NDE
Ntol

(13)

where Ntol is the number of IMFs decomposed by EMD, NTR
is the number of IMFs reconstructed to trend component,NDE
is the number of IMFs reconstructed to detail component.

B. THE EFFECT OF EMD RECONSTRUCTION IN THE
MP-SAX
Next, two simulation time series are used to illustrate the
effect of EMD decomposition and reconstruction in the MP-
SAX. The simulation time series X , Y (as shown in the right
side of Fig. 2 (a) and (b)) are constituted by two different
groups of trend time series and detail time series (as shown in
the left side of Fig. 2 (a) and (b)). Then the process and result
of EMD are as follows.

The IMFs of time series X , Y (as shown in the left side
of Fig. 3 (a) and (b)) can be calculated by the method in
section II.C.

As shown in the left side of Fig. 3 (a) and (b), in order to
reconstruct the trend component and detail component, it is
necessary to determine which IMFs describe the trend com-
ponent and which describe the detail component. Because the
complexity of trend and detail component is different and the
complexity of time series can be effectively distinguished by

FIGURE 3. The decomposition and reconstruction of the simulation data.

FIGURE 4. The comparison between the reconstructed time series and
original time series.

MPE, the trend component and detail component of original
time series can be reconstructed according to their MPE
values.

After EMD decomposition, the MPE of each IMF is calcu-
lated respectively. Then, as shown in Fig. 3, the IMFs with
the MPE greater than 0.4 are reconstructed into the detail
component of the original time series, and the IMFs with the
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FIGURE 5. The constructed time series.

FIGURE 6. The calculation results under different MPEs.

FIGURE 7. The reconstructed result under different MPEs.

MPE less than 0.4 are reconstructed into the trend compo-
nent of the original time series. The comparison between the
reconstructed time series and the original time series is shown
in Fig. 4.

As shown in Fig. 4, it is found that the reconstructed
trend component of time series X and Y are similar to the
original trend time series. However, due to the criterion of
stopping iterative and the end effect of EMD, there are some
differences between the reconstructed trend component and
the original trend time series, the reconstructed detail com-
ponent and the original detail time series. And the difference
is mainly reflected in the reconstructed detail component.
Although the original trend and detail time series cannot be

completely restored by EMD decomposition and reconstruc-
tion, the reconstructed trend and detail component can also
effectively reflect the relevant information of the original
trend and detail time series. Therefore, using EMD and MPE
criterion, the trend and detail component are reconstructed to
measure the similarity in these two aspects respectively.

C. THE ESTIMATION OF PARAMETERS IN THE MP-SAX
The main parameters of the MP-SAX are the threshold of
the MPE and the weights of the trend and detail component.
As the weights of the trend and detail component can be
determined according to the description in Section III.A,
in this section, the estimation of the MPE threshold will
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FIGURE 8. The 8 sets of simulation time series.

be discussed. The threshold of the MPE is determined by
parameter optimization. Firstly, construct the time series with
different trend components by using multiple trend time
series and noise time series. As shown in Fig. 5, three of them
are selected as examples to explain the estimation.

Then, reconstruct the trend components based on different
MPE which is selected by step 0.1 in [0, 1]. The objective
function is the Euclidean distance between the reconstructed
trend components and the original trend time series. Then,
select the MPE corresponding to the minimum objective
function. As shown in Fig. 6, the objective function is at the
low position when the MPE is 0.3 to 0.5. Therefore, the range
0.3 to 0.5 is selected as the initial optimization results ofMPE.

Finally, based on the above optimization results, the trend
components are reconstructed and compared with the orig-
inal trend time series. Select the optimal MPE which the
reconstructed trend components contain fewer fluctuations.
As shown in Fig. 7, the reconstructed trend components
are closer to the original trend time series and contain less
fluctuation when the MPE is 0.4. Therefore, 0.4 is selected as
the threshold of MPE.

IV. RESULT AND DISCUSSION
In this section, both simulation datasets and real datasets are
conducted to evaluate the effect of the MP-SAX by com-
paring with Euclidean distance, morphological pattern, and
symbolic aggregate approximation. During the verification,
the parameters of the MP-SAX are set as follows:

(a) The threshold of MPE is 0.4.
(b) The weight is obtained by the subjective method as

the time series used in Section IV are mainly different in
trend component. Where the weight of the trend component
is 0.75 and that of detail component is 0.25.

A. THE SIMULATION DATASETS
To verify the effectiveness of the MP-SAX, 8 sets of simula-
tion time series are employed firstly. The 8 sets of simulation
time series are described in Fig. 8.

Then, the similarities of the 8 sets simulation time series
are calculated by cross-computing. Meanwhile, in order to
show a unified result, the Euclidean distance is transformed
into similarity as:

simED =
(
1−

Di
Dmax

)
× 100% (14)

where simED is the similarity of Euclidean distance, Di is the
ith Euclidean distance, Dmax is the maximum of Euclidean
distance.

The similarity of Euclidean distance (ED), morphological
pattern (MP), symbolic aggregate approximation (SAX), and
the MP-SAX are shown in Fig. 9.

As illustrated in Fig. 9, the similarity of MP, SAX, and
MP-SAX are different in the symmetrical positions. The
reason is that the LCS is obtained by dynamic programming
and the LCS of two time series might be a difference because
of the calculation order of the two time series. However,
the difference of the similarity in the symmetrical positions
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FIGURE 9. The similarity of simulation data.

is small. Besides, comparing the similarities of time series
2 and 5, 3 and 6, 4 and 7, the color of ED, SAX and MP-SAX
are the lightest. And there is no obvious difference in the
color of MP. In addition, comparing the similarity between
the time series 2, 3, 4, 5, 6 and 7 which are obtained by ED,
the similarities of time series 2 and 3, 2 and 4, 3 and 4 are the
same as that of time series 5 and 6, 5 and 7, 6 and 7. These
show that the time series cannot be effectively distinguished
by ED and MP, and can be effectively distinguished by SAX
and MP-SAX when the trend components of time series are
obviously different. Although the MP can effectively identify
the time series with different trend component, the MP can
only reflect the change in detail component of time series
rather than the change in trend component when there are
different kinds of detail component in the time series. There-
fore, only SAX and MP-SAX can effectively be used to
measure the similarity of the time series with different trend
component and same detail component.

Meanwhile, in the same trend, comparing the similarities
between the time series 1, 5, 6 and 7, the similarities of
ED, MP and the MP-SAX are difference under different
detail component. Although the disparity of the similarity
between time series 5 and 6 and that between time series 5
and 7 by MP-SAX are small, the time series with different
detail component can also be distinguished according to the
similarity of MP-SAX. However, the SAX will not be able
to distinguish the time series with different detail component
when the amplitude of the trend component of time series is
much larger than that of detail component. In addition, the

similarities of the time series 2 and 5, 3 and 6, 4 and 7 by
ED are same. Therefore, MP and MP-SAX can effectively be
used to measure the similarity of the time series with different
detail component and same trend component.

By comparing the similarity of time series 5 and 8, ED can
be affected by the amplitude translation of time series. How-
ever,MP, SAX, andMP-SAX can be used to identify the same
time series with different amplitude translation.

Consequently, the comparisons on the simulation time
series illustrate that the MP-SAX not only can measure the
similarity of the time series with the differences in trend
and detail component effectively, but also can obtain robust
results when the amplitude translation exists.

B. THE REAL DATASETS
In the previous section, the simulation datasets are used to
validate the effectiveness of the MP-SAX in measuring the
similarity of the time series with the difference in trend
and detail component. Then, the validity of the MP-SAX is
validated by the classification accuracy of the real datasets.

Therefore, the four datasets with obvious trends are
selected from the UCR Time Series Classification / Cluster-
ing Homepage, called CBF, ECG200, Symbols, Trace respec-
tively. The summary of the four datasets is shown in Table 2.

The accuracy of classification results will be directly
affected by the similarity algorithm of time series. The more
accurate the similarity measurement is, the higher the clas-
sification accuracy is. Therefore, the accuracy of classifica-
tion can be used to verify the effectiveness of the similarity
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FIGURE 10. The new dataset under scale factor 1.

TABLE 3. The classification accuracy of the four methods.

algorithm. Then, ED, MP, SAX, and MP-SAX are respec-
tively used as similarity measurement algorithms to classify
the above mentioned time series. The accuracy of classifica-
tion is shown in Table 3.

As illustrated in Table 3, ED, SAX, and MP-SAX all have
high and stable classification accuracy for the four datasets.
However, the classification accuracy of MP is unstable due
to the existence of some detail component in the above four
datasets. Therefore,MP can only effectively measure the sim-
ilarity of the time series with only trend component. Besides,
with respect to the four time series datasets, although the
classification accuracy of the MP-SAX is not the highest,
it can provide compared results for all the four datasets which
contain different characteristics. That is to say, the MP-SAX
is able to achieve acceptable similarity measurement without
a priori considering where the discrepancies between dif-
ferent time series may occur (in trend component or detail
component). Therefore, the application scope of MP-SAX
is larger than that of other methods. Most importantly, it is
unnecessary to know the characteristics of the time series
before the similarity measurement.

C. THE SIMULATION DATASET BASED ON
THE REAL DATASET
For the above-mentioned datasets, as the differences between
the time series are only contained in the trend component, the

classification accuracy of MP-SAX is not the highest when
compared to other methods. Therefore, in order to further
illustrate the advantages of the MP-SAX in measuring the
similarity of the time series with differences both in trend
and detail component, a new dataset is constructed based
on the above real dataset. Besides, in order to illustrate the
effectiveness of the MP-SAX in similarity measurement of
the trend time series with the different degrees of detail
component, the new datasets with the different scaling detail
component are simulated as follows:

NewData = TR+ SF · DE + AT (15)

where NewData is the new datasets, TR is the trend compo-
nent of the time series, SF is the scale factor, DE is the detail
component of the time series, AT is the random amplitude
translation quantity. Since the dataset Symbols only contain
simple trend component without obvious detail component,
the time series of Symbols are chosen as the trend component
of the new time series. Then, the three detail time series
in section IV.A are randomly added to the time series of
Symbols. The new dataset under scale factor 1 is shown
in Fig. 10.

Meanwhile, as there are few training sets in the dataset
Symbols, the testing sets of Symbols are used as the training
sets of the new dataset and vice versa. The summary of the
new dataset is shown in Table 4.

Then, ED, MP, SAX, and MP-SAX are respectively used
as similarity measurement algorithms to classify the new
dataset. The accuracy of the classification is shown in Fig. 11.

As illustrated in Fig. 11, the ED cannot achieve high and
stable classification accuracy due to the influence of the
random amplitude translation. The MP can also not achieve
the highest classification accuracy mentioned above as dif-
ferent kinds of detail component are added to the dataset
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TABLE 4. The summary of the new dataset.

FIGURE 11. The classification accuracy of the new dataset.

Symbols. Meanwhile, the distribution of time series is mainly
affected by the distribution of trend component when the
scale of detail component is small. Therefore, the SAX can
only distinguish the kinds of different trend component, but
cannot distinguish the kinds of different detail component.
However, as the scale of detail component increases, the dis-
tribution of time series is affected by both trend component
and detail component. Thus the classification accuracy of
SAX increases with the increase of scale factor. However,
the MP-SAX maintains the highest classification accuracy
under the different scaling detail component and different
amplitude translation. Besides, the classification accuracy of
the MP-SAX is relatively stable. Therefore, the MP-SAX
cannot only be effectively used to measure the similarity of
the time series with differences in trend and detail component,
but also the results cannot be affected by different quantities
of amplitude translation.

D. THE DISCUSSION OF PARAMETERS
The main parameters of the MP-SAX are the threshold of the
MPE and the weights of the trend and detail components.
Therefore, in this section, the influence of these parame-
ters on the results of similarity measurement is discussed,
respectively.

The dataset Symbols in the Section IV.B (represented by
time series in Section IV.B) and the dataset with scale fac-
tor 0.01 in the Section IV.C (represented by time series in
Section IV.C) is applied to illustrate the influence of the
parameters on the results respectively. Where the time series
in Section IV.B is the time series with difference in trend
component and the time series in Section IV.C is the time
series with difference both in trend and detail component.

Then, the classification accuracies of the two datasets are
used to illustrate the effect of the similarity measurement.
So, the classification accuracy of different thresholds of MPE
and the methods of determining weight (Subjective method
and Objective method) is calculated respectively. Where the
weight of the trend component is 0.75 and that of detail
component is 0.25 when the weight is obtained by subjec-
tive method as mentioned above. The classification accuracy
under different parameters is shown in Table 5.

In theory, the similarity measurement of the proposed
method is that of symbolic aggregate approximation when
the threshold of MPE is 0. And the similarity measurement
of the proposed method is that of morphological pattern when
the threshold of MPE is 1. However, in the proposed method,
the trend component is reconstructed by the IMFs which the
MPE of them is less than the threshold of MPE. Therefore,
the similarity measurement of the proposed method may be
different from that of morphological pattern when the thresh-
old of MPE is 1. So, the classification accuracy of the time
series in Section IV.B is different between the two methods
of determining weight in Table 5.

As shown in Table 5, the classification accuracy is mainly
affected by the threshold of the MPE. (a). For the time
series with the difference only in trend or detail component,
the best results may be obtained when the threshold of MPE
tends to 0 or 1. Take the time series in Section IV.B as an
example. The more IMFs will be reconstructed to the trend
component when the threshold of MPE tends to 1. There-
fore, the reconstructed trend component will contain more
information of the original time series. So, the classification
accuracy increases generally when the threshold of MPE
tends to 1. (b). For the time series with the difference both
in the trend and detail component, the best results may be
obtained when the threshold of MPE tends to middle. This is
because the similarity of trend and detail component is both
taken into account. Altogether, an ideal result can be obtained
for the time series with any characteristics when the threshold
of MPE is 0.4. This further proves the effectiveness of the
threshold 0.4.

Besides, the classification accuracy can be improved by the
weight of the trend and detail component. (a). For the time
series with the difference only in trend or detail component,
the results can be further improved by the subjective method
which considers the characteristics of time series. Take the
time series in Section IV.B as an example. The classification
accuracy of the subjective method which highlights the pro-
portion of trend component is higher than that of objective
method generally. (b). For the time series with the differ-
ence both in the trend and detail component, the objective
method is better than the subjective method. This is because
the objective method can determine the weights based on
the proportion of the information which is contained in the
reconstructed trend and detail component. So, the important
component can be highlighted by the objective method. Alto-
gether, the subjective method is applicable to the time series
with the difference only in trend or detail component, while
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TABLE 5. The classification accuracy under different parameters.

the objective method is applicable to the time series with the
difference both in trend and detail component.

Therefore, comprehensive analysis of the above simulation
and real datasets, the MP-SAX can measure the similar-
ity of time series more effectively than Euclidean distance,
morphological pattern, and symbolic aggregate approxima-
tion when the differences between time series exist in the
trend component, detail component, and amplitude transla-
tion simultaneously.

V. CONCLUSIONS
This paper proposes a new method for similarity mea-
surement of time series with the differences both in trend
component and detail component. TheMP-SAX can compre-
hensively consider the influence of the trend component and
detail component of time series on similarity measurement.
Using EMD, the original time series are decomposed and
reconstructed into trend component and detail component.
Then, the similarity of the trend component under morpho-
logical pattern coding and that of the detail component under
symbolic aggregate approximation coding is respectively cal-
culated by LCS. Finally, the similarity of the original time
series can be obtained by weighted aggregation of the sim-
ilarity of trend component and detail component. Through
the verification of the simulation time series and the real
time series from UCR Time Series Classification / Clustering
Homepage, it is proved that the MP-SAX can effectively
measure the similarity of the time series with the differences
both in trend component and detail component. The results of
similarity measurement are mainly affected by the threshold
of MPE, while the results can be improved by the weight of
trend and detail component. Besides, the application scope
of MP-SAX is larger than that of the MP and SAX. And it is
unnecessary to know the characteristics of time series before
the similarity measurement.

Although some important problems associated with the
proposed method have been investigated in this paper,
there are still a few questions that are worthy of further
consideration. Frist, due to the limitation of EMD, the orig-
inal trend and detail of the time series cannot be perfectly

represented by the reconstructed trend and detail compo-
nent. Second, as the proposed method needs to compute
the similarity of SAX and MP at the same time, for the
high-dimensional time series, the proposed method may cost
more time. Therefore, the two questions deserve further study.
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