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ABSTRACT Automatic modulation recognition (AMR) plays an important role in cognitive radio (CR),
which relies on AMR responding to changes in the surrounding environment and then adjust strategies
simultaneously. Deep learning based reliable AMR method have been developed in recent years. However,
all of their AMR training models are considered in a specialized channel rather than generalized channel.
Hence, these AMR methods are hard to be applied in general scenarios. In this paper, we propose a blind
channel identification (BCI) aided generalized AMR (GenAMR) method based on deep learning which
is conducted by two independent convolutional neural networks (CNNs). The first CNN is trained on
in-phase and quadrature (IQ) sampling signals, which is utilized to distinguish channel categories like BCI
behaviors. The second CNN is trained by line of sight (LOS) model and non-line of sight (NLOS) model,
respectively. Simulation results confirm that our proposed generalized AMR method is significantly better
than conventional method.

INDEX TERMS Automatic modulation recognition (AMR), deep learning, convolutional neural

network (CNN), in-phase and quadrature (IQ) samples, blind channel identification.

I. INTRODUCTION

Modulation identification techniques have many potential
applications in the field of wireless communications, typi-
cally in cognitive radio systems [1], [2]. Generally speak-
ing, the communication receiver desires to implement a
universal receiver to accurately receive the signal. In the
design of general-purpose receiver, recognition of the mod-
ulation signal is considered one of most important tech-
niques. When modulation mode of the signal is recognized,
the information of frequency and bandwidth can be accu-
rately estimated, which help us demodulating and decod-
ing. Furthermore, with the increased complexity of today’s
wireless communication environment, the electromagnetic
signal space is more complex. While the amount of infor-
mation transmitted becomes larger, the signal changes faster.
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Therefore, high-efficient automatic modulation recogni-
tion (AMR) method for different modulation signals
(e.g., two frequency shift keying (2FSK), quadrature phase
shift keying (QPSK), quadrature amplitude modulation
(QAM)) is truly required to develop.

In the last decade, many interesting AMR methods have
been proposed [3]-[6]. In general, those methods can be
classified into two categories: maximum likelihood theory
method [7] and statistical-based pattern recognition method.
Hence, statistical-based pattern recognition method can dis-
tinguish the signals by extracting characteristic parameters
from the received signals while does not depend on cer-
tain assumptions. This advantage makes a large number of
researchers pay attention to this method. The statistical-
based pattern recognition system, as shown in Fig. 1, can be
divided into two subsystems: feature extraction and pattern
classification. The function of the feature extraction system
is to extract the defined feature parameters in the received
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FIGURE 1. Framework of a statistical-based pattern recognition system.
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FIGURE 2. Architecture of our proposed BCl aided GenAMR.

signal and reduce the dimension of the mode representation
such as instantaneous features [8], Fourier transform, wavelet
transform [9], higher order cumulants (HOC) [10]. Pattern
classification system can identify modulation of the signal
using artificial neural architecture (ANN) [11], support vector
machine (SVM) [12], and decision tree [13].

In recent years, deep learning has been widely applied
in physical layer wireless communications [14]-[17]. Many
methods are proposed that achieve better classification per-
formance. There are some scholars proposing AMR based
on CNN to identify multiple modulation signals. The authors
proposed different AMR systems to classify QAM and PSK
modulation signals for various channels [18]. Wang et al.
proposes a network architecture containing two CNNs to
achieve higher classification accuracy as well [19].

Both of the previous methods just identify the modulation
signals with the same channel. However, a huge drawback
exists. When we use the mixed signals under LOS and NLOS
channels, these AMR systems seem to be incapable and is
difficult to achieve the previous high accuracy. One deep
learning-based algorithm containing two CNN networks pro-
posed in this paper can solve such problem. The former
CNN identifies the channel categories of signals, while the
latter is responsible for classifying the signals under the same
channel.

The reminder of the rest paper is organized as follows.
Section II introduces the system model and CNN model,
respectively. In Section III, we propose the BCI based
generalized AMR based on deep learning. In Section IV,
experiments are conducted to evaluate the proposed method.
Finally, we conclude this paper in Section V.

Il. SYSTEM MODEL AND DATASET

A. SYSTEM MODEL

In this work, the goal of AMR is to classify the modula-
tion patterns of unknown signals, including 2FSK, DQPSK,
16QAM, 4PAM, MSK, GMSK. Our proposed AMR sys-
tem consists of two CNNs, and the system model is shown
in Fig. 2. After the unknown signal reaches, the former CNN
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classifies the signal containing the IQ samples to distinguish
whether going through LOS or NLOS channel, which is
called as BCIL. In the latter CNN, we train the modulation
recognition based LOS and NLOS channel, respectively.
After distinguishing the channel category, the corresponding
CNN-based AMR system can be selected to identify its mod-
ulation mode accurately.

B. DATASET

To test the algorithm presented in this paper, we created
two separate datasets, one for training and one for testing.
Each data set contains data for both channel categories.
The random input signals in each channel category are first
divided into in-phase and quadrature samples and the IQ
sampling [20] points are 256, so the matrix of each signal is
2x256. In addition, one of the following modulation modes,
i.e., 2FSK, DQPSK, 16QAM, 4PAM, MSK, GMSK, are con-
sidered, respectively, and the signal-to-noise ratios (SNRs)
range from 0~12 dB with the interval of 2 dB. The amount
of samples for each modulation mode is 2000. Besides,
training set and testing set are set to 1:1, each the set has
24,000 samples.

C. CNN MODEL

Actually, the CNN architecture [21] is a neural network con-
taining multiple hidden layers, each of which has several two-
dimensional planes consisting of several neurons. Besides, all
of neurons are assumed independently. Its input data can be
considered a two-dimensional image, and the feature extrac-
tion module is embedded in the CNN architecture. The basic
architecture of CNN is shown in the Fig. 3.

_Output Layer

Input Layer
Convolution Pooling  Convolution Pooling T
Layer Layer Layer Layer Fully

Connected
Layer

FIGURE 3. Basic architecture of CNN.

As is shown in the Fig. 3, the basic composition of CNN
architecture can be divided into five parts: input layer, con-
volution layer, down-sampling layer, fully connected layer
and the output layer. The detailed description of each part is
explained as below.

Input Layer: The input raw data set can be directly input
to the input layer. One image is actually inputted by its pixel
value into the input layer.

Convolutional Layer: Also known as the up-sampling layer
that is to extract features from the input data. Each convo-
lutional layer has its own convolutional kernel and different
convolutional kernels extract different features from the input
data. The number of extracted features grows as the number
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of convolutional kernels included in the up-sampling layer
increases.

Down-Sampling Layer: Also called as the pooling layer.
Its main function is to finish the second extraction of the
feature data followed by the convolution layer. Under normal
conditions, the CNN architecture contains at least two con-
volutional layers and two down-sampling layers respectively.
With the more layers of the architecture are set, extracting
features from input data are more likely to help obvious
classification.

Fully Connected Layer: All the feature maps are connected
together as input. In general, the nodes of the neurons in the
later layer are connected to the nodes of the neurons in the
previous layer, but the nodes in each layer are disconnected.
This layer integrates and normalizes the abstracted features
of the previous convolutions in order to yield a probability
for various conditions.

Output Layer: The number of neurons in this layer is set
according to the required conditions. If the classification is
required, the number of neurons is generally related to the
number of categories to be classified.

TABLE 1. Layers of former CNN and activation functions and output
dimensions of every layer.

Layer Output dimensions
Input 2x256x1
Conc2D (filters 128, size 1x8) + BN + 2x249x128
PReLU
Dropout (0.4) /
Conc2D (filters 64, size 1x4) + BN + PReLU 2x249%64
Dropout (0.4) /
Flatten 31488
Dense + BN + PReLU 256
Dropout (0.4) /
Dense + BN + PReLU 128
Dropout (0.4) /
Dense + BN + PReLU 64
Dropout (0.4) /
Dense + SoftMax channel modes

1. OUR PROPOSED BCI AIDED GenAMR ALGORITHM

A. FORMER CNN FOR BCI

We use the former CNN to implement one two-class problem
of bind channel identification (BCI). The structure is shown
in Table 1. It consists of two parts such as two convolutional
layers and four fully connected layers. The first convolu-
tional layer is composed of 128 filters, each of which is a
1x8 convolution kernel. In addition, the second convolu-
tional layer containing 64 filters whose convolution kernel
is 1x4. Totally, the last three layers of the network shown
in the table are fully connected layers. Neurons in the first
fully connected layer is connected to neurons in the second
convolutional layer one by one. Based on the same strategy,
one connection exists between each neuron in the second
fully connected layer and each neuron of the first fully
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connected layer. Therefore, the fourth fully connected layer
that is the output layer can get the output of the entire network.

After above network layers, we also add a batch normal-
ization (BN) layer [22] and an activation function layer. The
power of the BN is to choose a large learning rate, which
achieve fast training speed as well as fast convergence. Since
each layer of the network causes changes in the distribution
of the data, hence pre-processing step is required at the input
layers. The input data x®) is normalized via

2 B[]
Var [x(k)]

and then send it to the next layer of the network. Hence,
the normalization stage can affect the characteristics learned
from the former network layer. The features learned by the
network layer will be destroyed resulting in the normalization
being forced directly. So we need to make some improve-
ments to the above method, such as transforming, refactoring
and introducing parameters that can be learned as

y(k) — )/(k)fc(k) + /g(k) )

Each neuron x® will have such a pair of parameters y and 5,
they are defined as:

R0 —

ey

y® = /Var [x®] 3)

g = E[xV] @)

In this way, we can recover the features learned from a
certain layer of the original layer. Therefore, we can intro-
duce the parameters that can be learned so that our network
can recover the distribution of features in the original net-
work. Finally, our activation function uses parametric rec-
tified linear unit (PReLU), which is distributed after each
convolutional layer and fully connected layer. In recent years,
the ReLU [23] algorithm becomes more and more popular
because it converges faster than other activation functions.
What’s more, it also has a low computational complexity and
is suitable for backward propagation. As an upgraded version
of it, PReLU has an excellent performance.

B. LATTER CNN FOR GenAMR

The latter CNN used to identify the six modulation modes
under the specified channel conditions, thus we need to train
the AMR models under LOS and NLOS channel conditions
respectively. This work has been done in GenAMR system.
As is shown in Table 2, This CNN contains two layers of
convolutional layers and three layers of fully connected lay-
ers. The number of convolution kernels in the convolutional
layer is 128 and 64 respectively, while the number of neurons
in the fully connected layer is 256, 128 and 6 respectively.
In addition, the activation function what we use is PReLU
and the drop layer [19] is added to prevent overfitting prob-
lems. Finally, Softmax is utilized as an activation function of
the output layer in order to predict the probability of each
classification result.
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TABLE 2. Layers of latter CNN and activation functions and output
dimensions of every layer.

Layer OQutput dimensions
Input 2x256x1
Conc2D (filters 128, size 1x8) + PReLU 2x249x128
Dropout (0.6) /
Conc2D (filters 64, size 1x4) + PReLU 2x249%64
Dropout (0.6) /
Flatten 31488
Dense + PReLU 256
Dropout (0.6) /
Dense + PReLU 128
Dropout (0.6) /

Dense + SoftMax Modulation modes

C. AMR AND BCI AIDED GenAMR

Our data set has two attributes, one of which is modula-
tion mode divided into 2FSK, DQPSK, 16QAM, 4PAM,
MSK, GMSK. The other is channel category including LOS
and NLOS. Furthermore, we need to prepare two labels
(Ymod and ycha) for the data set. Firstly, we ignore the ycha
of the data set and randomly assign it to the LOS or NLOS
channel label with equal probability, and pass it to the tradi-
tional AMR system. So we could simulate the situation that
because of ignoring the channel category of the input signals,
the training model of AMR can only be randomly selected.
Then, we use the data set with the correct ymoq and ycha
as the input of the BCI-AMR system, which consists of
the former CNN for blind channel identification (BCI)
and the latter CNN for generalized automatic modulation
recognition (GenAMR).

D. IMPLEMENTATION PLATFORM

All training and testing data sets are randomly generated by
Matlab software. The entire system is trained and tested on
the GPU, which contains four NVIDA GeForce GTX1080Ti.
The deep learning algorithm framework we use is the Keras
library with tensorflow as the backend.

IV. EXPERIMENT RESULTS

A. FORMER CNN PERFORMANCE COMPARISONS

In this paper, the first CNN we trained is used to iden-
tify the channel type of the unknown input signal sampled
by IQ. We have adopted 5 deep learning or machine learning
algorithms to compare the classification accuracy. They are
CNN, CNN without BN layer, RNN, HOC feature extraction
followed by Deep Neural Network (DNN) and HOC feature
extraction followed by the Random Forest (RF) classification
algorithm. The experimental results of blind channel identifi-
cation are shown in the Fig. 4. As the SNR increases, the accu-
racy of each algorithm performs well obviously observed
in the figure. The correct classification probability under
high SNR condition can reach over 99% with CNN. It is
a pleasure for us to observe that CNN is superior to other
traditional algorithms under all SNR conditions. In addition,
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FIGURE 4. Test accuracy of different networks in various SNRs.
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FIGURE 5. Training/validation curves of accuracy and loss. The x-axis
denotes the training epoch. (a) CNN; (b) CNN without BN.

RNN (LSTM) did not achieve great performance, and clas-
sification is even not good. It is preliminarily determined
that because of random characteristics of the channel and no
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FIGURE 6. Confusion matrix of the modulated signals passing GenAMR
system: (a) LOS signals pass LOS AMR; (b) LOS signals pass NLOS AMR;
(c) NLOS signals pass NLOS AMR; (d) NLOS signals pass LOS AMR.
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FIGURE 7. Test accuracy of different AMR systems in various SNRs.

temporal correlation, the continuous input of samples hard to
improve the accuracy.

With previous comparison of accuracy, we can see that
results of CNN and CNN without BN are quite similar
because of great performance. The difference is whether the
BN layer is added or not after each network layer. In total,
the curves of training/validation loss/accuracy in a complete
CNN with or without BN layers training process are plotted in
Fig. 5. From the curves we obviously see that due to absence
of the BN layers, the accuracy and loss fluctuate violently.
Curves are hardly to obtain stable. However, after adding the
BN layers, the accuracy and loss curves converge quickly and
smoothly. Therefore, the training and validation curves are
basically similar.

B. BCI AIDED GenAMR PERFORMANCE COMPARISONS
Firstly, we tested the accuracy of the modulated signals in
GenAMR system. Fig. 6 illustrates that the confusion matrix
of LOS signals and NLOS signals with different AMR sys-
tems when SNR is 12 dB. It is obvious that LOS signals
passing the AMR system for NLOS and NLOS signals pass-
ing the AMR system for LOS have no ability to recognize
modulations precisely, especially the latter one. Above all,
classifying the modulated signals without understanding their
channel modes is terrible.

Then, the correct classification probabilities under the con-
ditions of 0-12 dB with AMR and BCI-AMR are plotted
in Fig. 7. It can be seen that the correct classification proba-
bilities of AMR system increase slowly with SNR range from
0 dB to 12 dB. Because of lacking channel identification
for unknown signals, the accuracy is always less than 80%.
Conversely, the BCI aided GenAMR proposed in this paper
obtains ideal classification result, who reaches 95% or more
with large SNRs (greater than 4 dB). While this system has
a low Modulation recognition accuracy under low SNR con-
ditions (0-2 dB), which is caused by poor channel classifica-
tion. Generally, BCI-AMR system’s Modulation recognition
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FIGURE 8. Confusion matrix of different AMR systems. (a) SNR=0 dB in AMR; (b) SNR=6 dB in AMR; (c) SNR=12 dB in AMR;
(d) SNR=0 dB in BCI-AMR; (e) SNR=6 dB in BCI-AMR; (f) SNR=12 dB in BCI-AMR.

accuracy is much better than AMR system, no matter what
the environment is.

In order to further investigate the correct recognition prob-
abilities of the two systems, we visualized the confusion
matrix of two AMRs at the region of SNR = 0 dB, 6 dB
and 12 dB in Fig. 8. Each column of the confusion matrix
represents a prediction label, and the total number of each
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column representing the number of data predicted to be a
modulation. Each row representing the true label of the data,
and the total number of data for each row representing the
number of its true modulation category.

Comparing the prediction label accuracy of the two AMR
systems, the traditional AMR system often misjudges 2FSK
as DQPSK, MSK as GMSK at all SNRs. However, the
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difference between this two AMR system is very obvious.
The predicted label of the BCI system is basically consistent
with the true label and the label prediction accuracy rate is
98% when SNR is greater than 6 dB.

V. CONCLUSION

In this paper, we have proposed a BCI aided GenAMR based
on deep learning with two CNNs. This BCI-AMR system
can obtain correct recognition probabilities in identifying
modulation modes because of the double CNN architecture.
Moreover, the former CNN classifies the unknown signals
sampled by IQ into certain channel categories. After that,
the latter CNN obtains the channel information by modula-
tion recognition of the signals. Finally, our research implies
that the proposed BCI aided GenAMR can replace conven-
tional AMR in many applications. In future work, we will
focus on the robustness of CNN-based classifiers in the larger
range of SNR, and further improvement of recognition effi-
ciency in many applications [24]-[29].
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