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ABSTRACT Hardware/software (HW/SW) partitioning and scheduling are the crucial steps in HW/SW
co-design. They have a strong effect on performance, area, power and the system itself. In this paper,
a memory-reinforced tabu search algorithm with critical path awareness (MTSP) is proposed for solving
the HW/SW partitioning problem. First, the critical path (CP) algorithm can locate the critical task queues
and output a reduced task graph. Second, the solution to a heuristic algorithm (HA) is used as the initial
solution. Third, by introducing hash technology, adding dual memory tables improves the search strength and
effectiveness of the tabu search, and the experiment is completed by priority scheduling. MTSP especially
has good performance in large task graphs, while it can greatly improve system performance, especially
in the case of generating a large communication penalty. The experimental results show that the average
improvement over the latest efficient hybrid algorithm is up to 5%. The improvement in algorithm searching
time is 66% in comparison to the popular algorithms cited in this paper.

INDEX TERMS Hardware/software partitioning, task graph, heuristic method, tabu search algorithm,
MPSoC.

I. INTRODUCTION
As the density of transistors increases, multiple proces-
sors system on chip (MPSoC) came into being in order
to combat the power wall: with increased processor clock
speeds for faster performance came increased power (and
heat) output [1]–[3]. System on chip (SoC) platforms com-
posed of microprocessors and FPGAs are called reconfig-
urableMPSoCs [4], which ensure flexibility and better design
parameters. The general-purpose processor that implements
software computing and the intellectual property (IP) core
that implements hardware computing are collectively referred
to as computing resources.

The traditional performance improvement method for
MPSoC computing resources is the optimization of task
partitioning [5], [6] and scheduling algorithms [7], [8]. How-
ever, this method has obvious limitations in two aspects. First,
the scheduling algorithm itself has a very limited accelera-
tion for task operation, but its overhead cannot be ignored.

The associate editor coordinating the review of this article and approving
it for publication was Khursheed Aurangzeb.

Second, the type and quantity of computing resources and
the scheduling algorithm affect each other. Combinatorial
optimization can obtain the optimal solution. Therefore,
the hardware configuration of multicore platforms has caused
extensive research.

Efficient techniques for HW/SW co-design [9]–[11] are
necessary to realize embedded systems that must meet
design constraints while satisfying the shorter time-to-market
pressures [12]. HW/SW partitioning [9], [13], [14] is the
crucial step during HW/SW co-design, and the HW/SW
partitioning algorithm determines which components are
implemented in hardware and which components are imple-
mented in software [15]. First, it can guide the design and
configuration of computing resources, reducing the overall
power to achieve regional optimization; second, the system
can be optimized to obtain the maximum acceleration.

HW/SW partitioning is based on Amdahl’s law [16].
Twenty percent of the code consumes 80% of the time
cost. By performing a small number of tasks in parallel,
it combines other overhead costs (communication and mem-
ory I/O) analysis to benefit or not. In recent years, much
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research has been performed on HW/SW partitioning, which
can be divided into structure partitioning and functional
partitioning [13], [17], [18]. Structure partitioning has more
blocks, usually using functional partitioning.

The HW/SW partitioning algorithm can optimize multiple
targets, such as minimizing power consumption [19], [20],
hardware area [21], [22], and increasing the acceleration
ratio [23]–[25]. Arato et al. categorized HW/SW partitioning
problems into two types in [26]: a small part can be solved in
polynomial time, usually using dynamic programming [27],
integer linear programming [28], and accurate algorithms
such as branch and bound [29]. Most of the remaining par-
titioning problems are NP-hard [30]. For NP-hard or larger
partitioning problems, heuristic algorithms are the main topic
of research.

Traditional heuristic algorithms include genetic algorithm
(GA) [31], simulated annealing (SA) [32], and tabu search
(TS) [33]. In [34], the comparison of TS, SA and GA algo-
rithms proves the advantages of TS. There are also many
hybridizations of heuristic algorithms, such as the greedy
simulated annealing (GSA) algorithm combining the greedy
and SA algorithms [35], the modified GA algorithm with an
efficient crossover operator [36] and the re-excited particle
swarm optimization (PSO) algorithm [37], [38] proposed
an efficient heuristic algorithm refined by the TS algorithm
based on the multiple-choice knapsack problem (MCKP).
These hybrid algorithms all have good performance and are
mostly used to optimize performance and reserve an extended
area to determine the global optimal solution as much as
possible.

These methods focus on optimizing the algorithm itself
without considering the combination with the specific target
platform. Given the differences in the collaborative environ-
ment and the lack of a common standard [39], the results
obtained cannot be compared with others. This paper focuses
on the algorithms applied to reconfigurable MPSoC [40].
Because it is difficult to determine the impact of performance
metrics for hardware and software partitioning, this problem
requires the introduction of a multiobjective optimization
model [41]; Wang et al. [14] used an uncertain model and
analyzed reconfigurable HW/SW partitioning issues.

This paper presents theMTSP algorithm on reconfigurable
MPSoC for the HW/SW partitioning problem. First, the crit-
ical path algorithm is proposed. By locating the critical task
queues and configuring the crossbar to reduce the commu-
nication penalty. Second, because the quality of the solution
is significantly reduced when the TS algorithm searches a
large task graph, the HA algorithm is introduced to provide
an initial solution to improve the search efficiency. Hash
technology adds a dual memory table to improve the search
intensity, and the solution can match the well architecture of
the reconfigurable MPSoC. Finally, the experiments verify
the effectiveness of MTSP.

The rest of the paper is organized as follows. In Sect. 2,
we introduce some definitions and the architecture utilized
in this paper. In Sect. 3, we present the MTSP algorithm for

HW/SW partitioning. In Sect. 4, we verify the effectiveness
of our algorithm through experiments. Our discussions and
performance comparisons are presented. In the final section,
we conclude our research and analysis.

FIGURE 1. Overview of a reconfigurable MPSoC.

II. PRELIMINARIES
A. ARCHITECTURE OF RECONFIGURABLE MPSoCs
The target reconfigurable MPSoC architecture in this paper is
illustrated in Figure 1. The algorithm can be compared with
existing algorithms in a fair environment [14] without chang-
ing the reference architecture. The processing elements (PEs)
include the processors and the hardware IP core. The system
is built on programmable logic devices such asXilinx FPGAs,
such that the number of PEs for each type is configurable. The
processors are isomorphic, and each processor can execute
only one type of software task per unit time; each hardware
IP core is heterogeneous, and each hardware computing unit
is encapsulated into an IP core format and can perform only
one hardware task belonging to a specific type of task set
each time. In the platform to which the method is applied,
in order to enable as many kinds of computing tasks as
possible and provide acceleration, there is only one processor
along with a plurality of hardware computing units. At the
same time, in order to minimize the on-chip area consumed
by the hardware platform, there is only one type of hard-
ware IP core of each task type. In an attempt to meet the
communication requirements between the processors and the
FPGA, the two are connected by a crossbar switch to realize
parallel execution of HW/SW tasks. Since sharing the same
communication channel is bound to bring time loss, we use
latency to quantify this penalty.

B. TASK GRAPH MODEL
Formally, the application to be partitioned is represented as
task graph: a directed acyclic graph (DAG) where V is the set
of nodes and E is the set of edges. Each node in V represents
a task v. The execution time of each task v ∈ V in software
is sv, displayed in the upper left corner of the corresponding
node in G, and the hardware execution time is hv, displayed
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in the lower left corner of the corresponding node in G. Area
penalty is displayed below the nodes of the task graph and
the value on the edge represents the communication penalty.
The dependencies between tasks are represented by edges in
the task graph; for example, edge (u, v) indicates that task
v depends on the execution of task u; therefore, u is called
the predecessor task of v, and v is the successor task of u. The
predecessor set of task v is P (v), and the successor set is S (v).
The important notation is summarized in Table 1 (Table 1).

TABLE 1. Notation and their meanings.

For task graphs, if some tasks have no predecessors, these
tasks are called start tasks; similarly, if some tasks have no
successors, they are called termination tasks. In the DAG,
if there are multiple start nodes, Vstart is added as a predeces-
sor of all the start nodes. Similarly, when there are multiple
termination nodes, adding Vend after all the termination nodes
ensures that the DAG has a unique start node and termination
node, Vstart and Vend execution time are 0, and the communi-
cation overhead with the task graph is cost free.

Simultaneously, [42] defines the granularity g(G) of the
task graph G:

g (G) =
min
v=V

sv

max
u,v∈V

c (u, v)
(1)

By definition, when g (G) ≥ 1, G is called coarse-grained
task graph, all task graphs of this paper are coarse grain, and
it is ideal attribute of task graphs.

We add some qualifications to the execution of the task
graph on the target platform:

1) Each task in the task graph can be completed only by a
specific PE, and the PE is selected according to the HW/SW
partitioning algorithm.

2) The software PE executes one software task at a time,
and the hardware PE can execute multiple tasks in parallel
according to the area cost limit.

3) Once the task starts execution, it cannot be interrupted.
4) The high-speed and low-latency transmission can be

realized by the configured crossbar switch, which can be
regarded as cost free.

5) Communication time is the total time including read,
write and so on.

Given task u, v, if task u ∈ P(v) and task v is a software
task, before task u be executed on software PE, P(v) must
have been completed. In order to check the status of the
predecessor task, c(P(v), v) is defined as the sum of the

P(v) communication penalties in this case. In the other case,
if v is implemented on hardware PEs, then c(P(v), v) is cal-
culated by maximizing the communication cost. Formally,
c(P(v), v) is defined by:

c (P (v) , v) =


∑
u∈P(v)

c (u, v), if u is an SW task

max
u∈P(v)

{c (u, v)} , if u is an HW task
(2)

We introduce the concept of Pref in [43] to evaluate the
performance of the system:

Pref = Max{Tsoft,Thard} + Pena (3)

Tsoft is the total execution time of the software task, Thard is
the total execution time of the hardware task, and Pena is the
sum of the communication cost in the execution of all tasks.

FIGURE 2. An example for task graph G’ computing.

As shown in Figure 2, a task graph G with three nodes.
After reading the task graph, removing the communication
cost by adding it into the execution time of the task, consider-
ing tasks execution on software PEs are sequential communi-
cation with other tasks, while hardware PEs execute tasks can
communicate concurrently. Accordingly, we can simplify the
task graph to obtain G′, where sv’ and h′v replace sv and hv
in G, respectively:

s′v := sv +
∑
u∈P(v)

c(u, v)

h′v := max
u∈P(v)

hv + c(u, v)
(4)

Obviously, the new task graph G’ retains all the features of
the task graph, but the quantity of data is smaller, which is
beneficial to the calculation of our partitioning algorithm.

For the execution of the task graph, we make the following
assumptions:

1) The condition under which any task vi can start
execution is that P(vi) is executed, tvidate_ready =

max
u∈P(vi)

(tu + c(u, vi)), and the data ready time of the task vi

is when the data of the predecessor task has been transmitted
to the task node.

2) Tasks assigned to hardware can be executed in parallel.
3) Tasks assigned to the software need to be executed

sequentially, depending on the task priority.
4) The priority of the software task: First, check level;

the task of the previous level in the task graph is executed
before the next level of the task can be started. Second, check
numsuccessor for tasks at the same level. The higher the number
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of subsequent nodes, the higher the priority. Third, check svi;
tasks with short software execution time are preferred.

pri(vi) = {(level), (numsuccessor), (svi)} (5)

C. PROBLEM P AND RELATED METHODS
The resolution of a problem requires the definition of a model
representing all the important issues related to the specific
problem [39]. In this paper, the input of the HW/SWpartition-
ing algorithm is G′, the task nodes aremapped to the hardware
and software PEs, and the algorithm output is represented
by xi, where xi ∈ (0, 1), xi = 0 (xi = 1) The computing task
is implemented in SW (HW), W(v1, v2, . . . , vn) represents
the execution time of the computing task, and the area cost
A(a1, a2, . . . , an) of the PEs provided to the corresponding
task. The HW/SW partitioning problem discussed in this
paper can be formulated as the following nonlinear minimiza-
tion problem:

P :=

{
minimize Pref(G),

subjuect to
∑n

i=1
xiai ≤ A,

(6)

For a given area cost A, the partitioning result with the
least task execution time is solved. The area cost of the task
execution on software PE is negligible. For the convenience
of this discussion, we regard it as cost free.

In the work of predecessors, the TS algorithm has proved
that it is the optimal algorithm to solve the problem [34].
Therefore, there are many improved algorithms based on
the TS algorithm, such as tabu search simulated annealing
(TSSA) [43]. By generating the neighbors through the idea of
SA, it can be accepted with a certain probability. The differ-
ence solution can effectively avoid the local optimal solution.
TSSA has strong mountain climbing ability and combines the
advantages of the two algorithms. The genetic algorithm tabu
search (GATS) [44] provides the main framework of GATS
and uses TS as the mutation operator. TS to search the entire
solution space, so it has a strong ability to climb mountains
while providing memory capabilities by tabu tables. Both
algorithms have a certain degree of improvement over the TS
algorithm.

In summary, there was no single approach of absolute
advantage in both runtime and solution quality for problem P.
Therefore, this manuscript proposes a novel approach to solve
problem P.

--A novel critical path algorithm is proposed based on con-
figurable crossbars to ensure that system performance greatly
improves, even in the case of generation large communication
costs.

--In particular, we combine the advantages of accurate
algorithms and heuristic algorithms. A specific solution is
obtained by an accurate algorithm, and the solution is used
as an initial solution in the input TS algorithm, and the
global optimal solution can be accurately searched with fewer
iterations.

--Furthermore, our memory-reinforced TS algorithm
maintains a dual memory table. In this way, our strategy can

enhance the search directivity and eventually improve the
solution quality.

Experimental results show that the algorithm is effective.

III. ALGORITHM FOR PARTITIONING
A. OVERVIEW OF PROPOSED MTSP ALGORITHM
In our method, three algorithms are executed sequentially
to output the partitioning result. The input of MTSP is task
graph G, and the critical path task graph (CG) is output
through the critical path algorithm. As a local domain search
algorithm, a good initial solution can effectively enhance
the quality of the final solution of TS. The solution of the
heuristic algorithm as the initial solution of the TS algorithm
finally executes the TS algorithm to obtain the partitioning
solution. An overview of the proposed MTSP algorithm is
shown in Figure 3.

FIGURE 3. Flowchart of the proposed method.

B. CRITICAL PATH (CP) ALGORITHM
In our previous work [45], high-bandwidth, nonblocking,
low-latency transmissions were achieved with configurable
crossbars.

We selected some of the PEs that performed the same task
queue. Such a task queue is called a task chain (TC), and the
task chain is satisfied:

TC1(V ,E) ∩ TC1(V ,E) ∩ . . . ∩ TCj(V ,E) = ∅ (7)

Tasks within the TC, providing a communication interface
through the Xilinx Fast Simplex Link (FSL) bus in a config-
urable crossbar that allows Microblaze to directly access the
FIFO. We treat the interconnection between tasks in the same
TC as a type of local communication with no time cost.

To locate the task chain, we use the critical path algorithm
to traverse all the task queues from Vstart to Vend and set them
in descending order to the communication cost. Selected TC
by the formula below:

TC i = {Vstart → Vi→ Vj→ . . .→ Vend |max c(v)} (8)

Task node N and edge E will be deleted in the task graph
when they add to TC. The above steps will be executed
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iteratively as soon as there is no path from Vstart to Vend .
Furthermore, traversing all the edges with nodes remaining
in the task graph as the start and end nodes, the CP algorithm
will repeatedly execute formula 7 until there is no edge with
the task node as the vertex. All TCs will be output and
algorithm terminates.

FIGURE 4. An example for DAG simplified as CG’.

As shown in Figure 4, it is the task graph simplification of
radar signal processing. First, we obtain 6 task queues from
Vstart to Vend , calculate the communication cost of each task
path, and set them in descending order to the communica-
tion cost. Select TC1 in task queue by formula (7), nodes
V1, V3, V6 and edges V1V3, V3V6 will be deleted at the
same time, repeat the above steps twice, only one task node
V5 remains in the task graph, and the algorithm terminates.
Output: TC1 = {V1 → V3 → V6} TC2 = {V2 →

V4 → V7}, and finally, we convert CG into CG’ according
to formula (4). Considering that most of the task graphs have
a large size, the whole algorithm maintains anOpen list and a
Close list.
The TC can be accurately found by algorithm1. TC will

be indicated in CG, interconnection cost will be reduced by

Algorithm 1 CP Algorithm/∗Critical Path Algorithm∗/
Input: task graph G,
Output: TC, CG’
Begin
1 initialize vH , Open list, Close list
/∗Fill the task graph G into the open list∗/
2 for each edge in Open list with at least two nodes do
if (Open list exist task queue from Vstart to Vend )

Compute the communication cost of task queue
Choose vHi in task queue with maximum cost
Add vHi and all the edges with vHi to close list

else
Set Open list node VHi as Vstart
While (exist edges with vHi)

Compute the communication cost of eHi
Choose the edge eHi with maximum cost
Add vH and eHi to close list

end while
end for

3 Task chain← E(vH1, vH2, . . . , vHj)
4 CG’← Reduce CG
5 Output TC[1:j], CG’
End

formula (2) and output CG’, the time complexity is O[(m +
n) log n], m and n represents the number of edges and nodes
in the task graph.

C. HEURISTIC ALGOTITHM (HA)
The proposed algorithm utilizes the idea in solving the 0-1
knapsack problem. We initialize the solution of problem P:
[0, 0 . . . , 0], all tasks are executed by software PEs, and the
tasks are gradually transferred to be executed on hardware
PEs through HA. Formally, let bv denote the benefit of mov-
ing the task v to hardware [46], and T v denote the set of
software tasks (including v) lying in the same precedence
level of the software task v.

bv =

s
′
v, if h′v ≤

∑
u∈T v−{v}

s′u,∑
u∈T v−{v}

s′u − h
′
v, otherwise;

(9)

The area penalty of task executed on hardware PEs is dif-
ferent, and the total area penalty A of reconfigurable MPSoC
is limited; efficiency ev is defined and calculated as follows:

ev =
bv
av

(10)

After observation of the CG’, the benefit bv corresponds
to the profit in the knapsack problem. Obviously, the speed
of the key nodes has a great impact on the task execution
time. Therefore, task vi with the highest evi value should be
assigned to the hardware PE first.

The time complexity of HA is O(2n).
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Algorithm 2 HA/∗Heuristic Algorithm∗/
Input: CG′, A, (av1, av2, · · · avn) for (v1, v2, · · · , vn)
Output: the heuristic solution [1:n]
Begin
1 Aused = 0
2 for i := 1 to n

Solution [i]=0
Calculate bv, evi

3 Repeat
Choose the biggest evi
Aused = Aused + ai
Solution [i]=1
Update bv
/∗until no block fits for the residual hardware area, or all

the task execute in hardware∗/
4 Output the solution [1:n]
end

D. MEMORY-REINFORCED TABU
SEARCH ALGOTITHM (MTS)
TS is a heuristic local search algorithm proposed by Glover
and Laguna [47]. The basic idea is to add the history of recent
search movements to the tabu list during the search process
to prevent the loop of the search process. This paper proposes
a memory-reinforced tabu search algorithm applied to the
partitioning problem P. A good initial solution can effectively
improve the quality of the final solution of the TS algorithm,
we use the solution generated in HA as the initial solution of
MTS, and MTS maintains a tabu list with a maximum length
of l that stores the forbidden movement. Considering that the
partition solution in P is a sequence containing only 0 and 1,
the movement Sc can be formulated as (11), let Slocal denote
solution for the current iteration, and S ′local denote the solution
for last iteration.

Sc = S ′local ⊕ Slocal (11)

The tabu list can prohibit l types ofmovement in the current
iteration, and the tabu list is the FIFO queue. Whenever a new
value is stored, the earliest stored value will be released. Tabu
degree (TD) information will be saved according to the num-
ber of times added to the tabu list. The neighborhood search
strategy divides the movement {Sc} into three categories: not
prohibiting {U}, prohibited but beneficial {FB}, prohibited
but not beneficial {FN}, when {U}∪{FB} 6= ∅, next iteration
of moving Sc ∈ {U} ∪ {FB}.
Sc ∈ {FB} denotes prohibited solution has a good per-

formance, it can ‘break the law’ to accept this movement,
Sc ∈ {FN } denotes all solution after moving within the neigh-
borhood is prohibited and the performance is poor, we select
the movement with smallest tabu degree as the Sc of the next
iteration.

Considering that the tabu table saves only a short-term
memory of the movement, search around the optimal solution
neighborhood in the previous iteration. iterMAX denotes the
maximum number of TS iterations. During iterMAX iterations,

Algorithm 3 MTS /∗ Memory Reinforced Tabu Search∗/
Input: SHA-Initial solution generated by the algorithm HA;
Output: Sbest -the best-so-far solution found by MTS;
/∗q indicates the neighborhood size.∗/
Begin
1 Slocal := SHA, and Sbest := SHA;
2 If area A is enough for all tasks performed on the hardware
PEs
Then Sbest ← sol[1, 1, . . . , 1]
goto: stop

3 for iter:=1 to iterMAX
begin
3.1 Generate q neighbors N (S) of Slocal :{Sc1, Sc2, . . . , Scq}
3.2 Smin_neib:=the neighbor with the minimal Pref(N (S))
3.3 INTKEY=Hash(Smin_neib)
3.4 if Pref(Smin_neib) < Pref (Sbest )

then Slocal := Smin_neib, and Sbest := Smin_neib
else begin
delete {Scurrten_iteration}∈{N (s)∩hash table}
if {Scurrten_iteration}∈{tabu list}
Slocal := N (S) with the minimal TD

Else
Slocal := the minimal Pref(N (S)) and tabu list free

end else
end if

3.5 if Pref (Slocal) < Pref (Sbest )
then Sbest := Slocal

end if
3.6 Reward the tabu list with TD, INTKEY=Hash(Slocal);
3.7 Update tabu list and hash table
3.8 (Dealing with Conflict) /∗if necessary∗/
end for

4 output Sbest
end

much historical information goes unutilized. Therefore,
we added hash technology, which is a widely used search
method. The data are converted into the keyword INTKEY
by compression and stored in a hash table. The hash table
in this paper is equivalent to a long-term memory tabu table
and directly determines the partitioning solution that has
been searched. Keyword operations are performed by hashing
functions. In this manuscript, the solution calculated in each
iteration is converted to decimal value, and then the INTKEY
is obtained by the middle-square method.

When a solution is searched and the INTKEY is the same
as the value stored in the hash table, it is considered a con-
flict. The conflict resolution problem is a necessary prereq-
uisite for the effective use of hash technology. We evaluate it
through problem P. The better solution will be determined to
be saved as corresponding INTKEY . The movement with no
improvement will be added to the tabu table.

In the process of MTS, Slocal will be updated only when
the performance of Slocal is better than the Sbest for the given
condition. Movement for each time is two bits at random,
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i.e.,
∑i=n

i=1 Sci = 2, where n is the task number of problem P.
When the number of iterations reaches N times and still fails
to update Sbest , the search will be adjusted to

∑i=n
i=1 Sci = 1.

This process will be executed only once, the termination cri-
terion is that the number of whole search iterations reaches M
times, or when all tasks are transferred to hardware execution,
the output Sbest is the final solution the algorithm.

IV. RESULTS AND DISCUSSION
The proposed algorithms were simulated in C on an Intel(R)
Core(TM) CPU@ 2.00 GHz processor with 8G memory.
In order to make a fair comparison with TSSA and GATS,
considering that these algorithms are heuristics rather than
exact algorithms, a general test benchmark is necessary, and
our implementations are based on the same type of task graph
as used in [21]. All experiment is completed by our previous
work priority scheduling [48].

FIGURE 5. Five types of task graphs (DAGs).

The task graph used in this paper is uniform random gen-
eration of common structures by task graph for free (TGFF).
The number of task nodes is configurable, and task topol-
ogy includes in-tree, out-tree, fork-joint, mean-value analy-
sis and fast Fourier transform (FFT) task graphs, as shown
in Figure 5. The task graph generation parameters are shown
in Table 2:

TABLE 2. Parameters defined in DAGs.

The communication cost can be classified into two cases,
each of which follows a uniform random distribution in
its interval. This manuscript introduces the concept of the
communication-to-computation ratio (CCR). The value range
of (1) is the computationally intensive task, correspond-
ing to CCR_L. The value range of (2) is the calculation

communication equalization task corresponding to CCR_H.
The performance of the algorithm is fully compared for two
different CCR test environments.

Assume that the area of hardware PEs required by task i
is ai, let A be the total area for all tasks to be executed by
hardware in problem P, A = α∗

∑
ai. in consideration of the

given PEs are limited. α denotes the hardware coefficient by
adjusting the coefficient α ∈ [0%, 100%] to simulate the case
of allocating tasks on hardware PEs in an actual application,
and the relevant parameters of theMTSP algorithm are shown
in Table 3.

TABLE 3. Experiment parameters.

To measure the effectiveness of the algorithm, we define
two metrics, the acceleration ratio AR and the improvement
degree ImpD. We assume that the initial search task is exe-
cuted on the software. We define sol[0, 0 . . . , 0] as the initial
solution, while it has the maximum running time of the task.

AR =
pref(sol [0, 0, . . . , 0])
pref(sol[x1, x2, . . . ,xi])

(12)

Here, ImpD is the improvement of algorithm A over
algorithm B:

ImpD =
(
1−

(Algorithm A)
(Algorithm B)

)
× 100% (13)

Let θ1, θ2 be the two types of ImpD in our experiments,
θ1 denotes the improvement of the algorithm solution execu-
tion time, θ2 denotes the improvement of the algorithm search
time.

First, we investigated the effect of HA on the quality of
the MTS solution. HA+MTS denotes MTS starting with
the heuristic solution of the HA, RD+MTS denotes the
trivial solution chosen as the initial solution of the MTS.
The trivial solution is generated by randomly generating a
solution for problem P under the limited conditions of area A.
HA, RD+MTS and HA+MTS are compared in Figure 6,
α = 50%, and the input task graph does not consider commu-
nication cost: c(u, v) = 0, ∀(u, v) ∈ G, as the number of tasks
increases, the AR of RD+MTS decreases, from 1.30 to 1.10,
HA+MTS always approaches the optimal solution, and the
solution of the HA is in the range [1.18, 1.26]. In conclusion,
HA+MTS is the best among the three algorithms.
As shown in Figure 7, by adjusting the number of nodes in

the task graph, θ1 of the MTS with CP algorithm (CP+MTS)
overMTSwith different α, Figure 7a CCR_L is computation-
ally intensive tasks condition, as increases with the number of
tasks, θ1 shows a downward trend when α = 0.1 and α = 0.3,
and the overall decline is up to 66.08%. For α = 0.5 and
α = 0.7, the ImpD is relatively stable. In the case of α = 0.7
and N = 400, θ1 = 2.23%. For CCR_L, when α is small,
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FIGURE 6. Solution comparisons for HA, RD+MTS and HA+MTS.

FIGURE 7. Improvement of CP+MTS over MTS with different values of α.

the influence of communication penalty on the AR decreases;
however, for larger α, the hardware PEs are sufficient, θ1 is
more stable. As shown in Figure 7b, θ1 is positively correlated
with α, with the increase in α, θ1 increases significantly on
average. In this comparison, the CP+MTS algorithm has
obvious advantages and is more stable at CRR-H. In sum-
mary, CP+MTS is clearly superior to MTS.
The task graph has different topology, and at the same time,

the ratio of nodes to edges is different. It also affects the CP
algorithm. The performance of the CP algorithm is analyzed
for the task graphs of five different types of topologies.
Figure 8 shows the improvements of CP+MTS over MTS
for all types of task graphs considered. The communication
penalty is set to CCR_H, task number N=100.With increases
in α, θ1 also increases gradually, the performance in various
topological is quite different, the average value of θ1 for

FIGURE 8. Improvement of CP+MTS over MTS on real application graphs.

FIGURE 9. Comparisons of solution quality and searching time for the
HA, TSSA, GATS and MTSP algorithms over TS, averaged over 10 random
instances with 200 nodes.

out-tree is 16%, and for in-tree is 12.2%. The average number
of successor nodes impacts the performance of CP+MTS,
which is obviously reflected in the condition when α ∈
[0.3, 0.7]. In other words, CP+MTS performs better when
the node-to-edge ratio is larger.

Figure 9 shows the comparisons of solution quality pro-
duced by HA, TSSA, GATS and MTSP for the task graph
with 200 nodes. When the value of hardware area in percent-
age α exceeds 80%, considering the solution quality of TS is
good enough and it’s hard to make great improvement. MTSP
and TSSA keep positive returns, MTSP has the largest θ1 in
the range of α ∈ [0, 0.3], and hybrid algorithms all perform
well in the range ofα ∈ [0.35, 0.55]. The average θ1 ofMTSP
is 13% larger than TSSA (7%) and GATS (7%).
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In the comparisons of searching time for algorithms,
HA has the fastest searching time, less than 0.02 seconds;
however,MTSP, TSSA, especially GATS, suffers from higher
search time, and MTSP’s search time tends to decrease with
increasing α. The average θ2 of MTSP over TSSA and GATS
are 53% and 66%. Because MTSP maintains a dual memory
table is more efficient in search, at the same time, when the
solution does not improve over a period of time, the search is
terminated. Therefore, the optimal solution can be obtained
faster; however, GATS is based on GA, and the search speed
is slower by maintaining a population to iterate. In summary,
MTSP is clearly superior to the other approaches.

FIGURE 10. The distribution of iteration numbers MTSP arrived at the
best solution in N=100 tasks, collected from 100 random instances for
different values of α.

As shown in Figure 10, by changing the hardware area
in percentage α and the number of tasks N, we record the
iteration number MTSP arriving at the optimal solution for
the task graphs with 100 nodes randomly generated. From
Figure 10(a), the majority of cases obtain the best solution

within 10 iterations; only 5% of the solution is obtained by
more than 10 iterations but less than 140 iterations when
the hardware area is 60%. According to the nonimprovement
threshold, the final number of iterations of MTSP will not
exceed 350. Figure 10b and 10c show the case of α = 70%
and α = 80%, respectively. The variance of the iteration
number gradually increases, and the maximum value of the
iteration number increases from 458 to 748. For Figure 10b,
only 10% of the iteration number is obtained in the range
of [100, 500]. However, for Figure 10c, the iteration number
in the range of [100, 800] is 24%. This is because with the
increase in α; the quality of the solution obtained by the HA
algorithm decreases gradually; hence, MTSP requires more
iterations to obtain the optimal solution.

FIGURE 11. The distribution of iteration numbers MTSP arrived at the
best solution with α=80%, collected from 100 random instances for
different task number N.

For task graphs with more than 200 nodes, we enlarge
the length of the tabu list and neighborhood size to 50.
As shown in Figure 11, the available hardware area is set
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to α = 80%, and as the number of task nodes increases,
the variance of the iteration number value gradually increases.
When N=200, 61% of the optimal solution iteration number
is less than 100. When N increased to 600, only 40% of
the optimal solution iteration number was less than 150.
Considering that the quality of the initial solution is degraded
with the increase in task node number, thanks to the dual
memory table, MTSP can still obtain the optimal solution
through a large number of iterations, while MTSP eliminates
the search restriction [21] caused by the memory limitation
in the large-scale task graph of the TS algorithm. When
the task number=600, the maximum number of iterations
is 1431; therefore, a maximum of 2000 iterations is quite
enough to locate the optimal solution when N≤600. Because
of the nonimprovement threshold, the invalid search time
is reduced. Figures 10 and 11 show that with increasing α
and N, MTSP can locate the optimal solution for large-sized
problems.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a memory-reinforced tabu search
algorithm with critical path awareness for HW/SW parti-
tioning on reconfigurable MPSoCs. The contributions of this
work to field are as follows. First, we simplify the input
task graph by reducing the quantity of data and retaining
the complete information to improve processing efficiency.
Second, through the critical path algorithm, the crossbar
is configured according to the output task chain, and the
communication penalty of the task graph is reduced. Third,
the solution of an HA algorithm is used as the initial solu-
tion of the TS algorithm, which caters to the starting-point-
sensitive requirements of TS search, significantly improving
search efficiency. Fourth, by introducing hash technology,
adding dual memory tables improves the search strength and
effectiveness of the algorithm. The above technical details
and strategies have fully utilized the system characteristics
of MPSoCs, greatly reducing the runtime and significantly
improving the quality of the solution.

Although numerous experiments confirm the effectiveness
ofMTSP, there are still many areas worthy of further research,
such as making full use of partial reconstruction of FPGA
and adopting effective methods to solve the dynamic par-
tition problem; the proposed technique is designed for an
MPSoCwith a processor that executes only one task at a time,
not allowing interruption. This kind of system unsuitable to
support not only multithreaded software execution but also
execution of the interrupt service routine (ISR). All these
requirements in architecture lead us in future work to explore
algorithms for HW/SW partitioning on different types of
developed systems, combine this with more runtime task
problems, etc.
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