
SPECIAL SECTION ON ADVANCED SOFTWARE AND
DATA ENGINEERING FOR SECURE SOCIETIES

Received July 23, 2019, accepted August 5, 2019, date of publication August 9, 2019, date of current version August 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934221

On the Automated Management of Security
Incidents in Smart Spaces
FAEQ ALRIMAWI 1, LILIANA PASQUALE2, AND BASHAR NUSEIBEH1,3
1Lero—Irish Software Research Centre, University of Limerick, Limerick V94 NYD3, Ireland
2Lero, Computer Science Department, University College Dublin, Dublin D04 V1W8, Ireland
3School of Computing and Communications, The Open University, Milton Keynes MK7 6AA, U.K.

Corresponding author: Faeq Alrimawi (faeq.alrimawi@lero.ie)

This work was supported in part by the ERC Advanced Grant under Grant 291652 (ASAP), and in part by the Science Foundation Ireland
under Grant 13/RC/2094 and Grant 15/SIRG/3501.

ABSTRACT The proliferation of smart spaces, such as smart buildings, is increasing opportunities for
offenders to exploit the interplay between cyber and physical components, in order to trigger security
incidents. Organizations are obliged to report security incidents to comply with recent data protection
regulations. Organizations can also use incident reports to improve security of the smart spaces where
they operate. Incident reporting is often documented in structured natural language. However, reports often
do not capture relevant information about cyber and physical vulnerabilities present in a smart space that
are exploited during an incident. Moreover, sharing information about security incidents can be difficult,
or even impossible, since a report may contain sensitive information about an organization. In previous work,
we provided a meta-model to represent security incidents in smart spaces. We also developed an automated
approach to share incident knowledge across different organizations. In this paper we focus on incident
reporting. We provide a System Editor to represent smart buildings where incidents can occur. Our editor
allows us to represent cyber and physical components within a smart building and their interplay. We also
propose an Incident Editor to represent the activities of an incident, including—for each activity— the target
and the resources exploited, the location where the activity occurred, and the activity initiator. Building
on our previous work, incidents represented using our editor can be shared across various organizations,
and instantiated in different smart spaces to assess how they can re-occur. We also propose an Incident
Filter component that allows viewing and prioritizing the most relevant incident instantiations, for example,
involving a minimum number of activities. We assess the feasibility of our approach in assisting incident
reporting using an example of a security incident that occurred in a research center.

INDEX TERMS Security incidents, smart spaces, incident reporting, incident prioritization, smart buildings.

I. INTRODUCTION
A smart space is a physical or digital environment where
humans and technology-enabled systems interact in a con-
nected and intelligent ecosystem. Examples of smart spaces
include smart buildings [1]. In a smart building, cyber or
physical components can interact with one another. For exam-
ple, a sensor can communicate a room’s temperature to a
digital control process that decides whether to turn on the
HVAC (Heating, Ventilation, and Air Conditioning) unit to
cool/heat the room, or to turn the HVAC off — if it was on.

However, the interplay between cyber and physical com-
ponents is increasing opportunities for offenders to trigger

The associate editor coordinating the review of this article and approving
it for publication was Mahmoud Barhamgi.

security incidents and cause harm. For example, in 2014 [2]
offenders were able to access the plant network of a German
still mill and infect various physical devices connected to the
network. This caused significant harm, because the furnace
was prevented from shutting down and the alarm system was
disabled. Similarly, in 2015 [3], offenders accessed the power
grid network of a Ukrainian power grid to infect various
devices, such as a serial-to-Ethernet converter and power
breakers, with malware. This caused a power outage that
affected more than 200,000 customers.

To comply with recent data protection regulations, such as
the GDPR, organizations are obliged to report security inci-
dents. Incident reporting [4] is often carried out by writing
a document in natural language [5], according to a custom
template (e.g., [6]). However, this can be tedious, because

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

111513

https://orcid.org/0000-0002-2236-5073


F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

it requires a manual description of the incident activities,
including the vulnerabilities present in the smart space that
were exploited during the incident. Incident reporting can
introduce errors and omit activities and/or interactions that
were relevant to the incident. Although approaches formodel-
ing and visualizing cyber incidents have been proposed, such
as attack graphs [7], they only focus on cyber incidents and
cannot represent security incidents in a smart space.

Organizations can use incident reports to improve the secu-
rity posture of the smart spaces where they operate. However,
sharing information about security incidents can be difficult,
or even impossible, since a report may contain sensitive
information. Thus, although reporting of security vulnera-
bilities is quite common (e.g., as in the Common Vulnera-
bilities & Exposures database [8]), security incident reports
are either kept internally within organizations, are shared
partially, or shared only within certain communities, such as
the industrial control systems community RISI (Repository
of Industrial Security Incidents) [9].

In previous work [10], we provided a meta-model to rep-
resent security incidents in smart spaces. We also developed
an automated approach to share incident knowledge across
different organizations. In this paper, we focus on incident
reporting. We provide a graphical System Editor to represent
smart buildings where incidents can occur. Our editor pro-
vides a graphical interface to design the layout of a smart
building, drag and drop pre-defined cyber and physical com-
ponents, and represent their interactions. We also propose an
Incident Editor that provides a graphical interface to represent
the activities of an incident, including —for each activity—
the target and the resources exploited, the location where an
activity can occur, and the activity initiator. Target, resource,
location and activity initiator can be imported directly from a
model of a system created using our System Editor, or can
be created from scratch. The Incident Editor also allows
validating an incident model to identify issues and possible
problems.

Building on our previous work, incidents represented using
our Incident Editor can be shared and instantiated in dif-
ferent smart spaces, to assess how can they re-occur. How-
ever, because incidents can re-occur in many different ways,
it would be cumbersome to filter the most relevant inci-
dent instantiations among all the possible ones. To address
this problem, we propose an Incident Filter component that
allows viewing and prioritizing the most relevant incident
instantiations, for example, by focusing on instantiations
involving a minimum number of activities. We demonstrate
the feasibility of our approach in assisting incident reporting
and prioritization using an example of a security incident that
occurred in an actual research center to which we had access.
Wemodel the research center rooms, components, and behav-
ior using the System Editor. Then, we model the incident
activities using the Incident Editor. Finally, we use the Inci-
dent Filter to prioritize incident instantiations. We measure
the overhead (time) required for modeling, and discuss the
advantages and limitations of our approach.

The paper provides the following contributions. a) We
develop an approach to support reporting of incidents in
smart spaces. b) Building on our previous work [10], we sup-
port sharing and visualization of incident instantiations
in different smart buildings. c) Finally, we provide fil-
ters to prioritize incidents depending on their number of
actions or the components of the smart space that they
involve.

The rest of the paper is structured as follows. In Section II,
we discuss related work. In Section III, we describe a moti-
vating example to illustrate the current issues with reporting
a security incident in smart spaces. In Section IV, we present
the architecture of our approach. In Section V, we describe
how the various components of our proposed architecture
can be used during incident reporting. Then, in Section VI,
we illustrate the implications of this work on our previously
developed techniques for sharing and assessing security inci-
dent knowledge. We demonstrate our approach using a case
study in Section VII. Finally, we conclude and discuss future
work in Section VIII.

II. RELATED WORK
Incident reports describe the activities performed by offend-
ers. They are usually expressed in natural language and
can follow a custom structure. For example, the reports
of the German steel mill [2] and the Ukrainian power grid
incidents [3] are expressed in natural language and describe
various aspects of the incident, such as activities and targeted
components. Because security incidents reports are usually
written manually, they may be tedious to create and can
have errors and omissions. Although data mining techniques
(e.g., text mining) have been applied over reports to extract
incident information (e.g., actors involved) [11], they require
the report to follow a precise structure. Sharing security inci-
dent information across organizations can also be difficult,
because different organizations can use a different format to
represent incidents.

Various approaches have been proposed to represent secu-
rity incidents. For example, attack graphs [12] represent visu-
ally the actions of a cybersecurity incident. However, they do
not allow representing other information that can be relevant
to the incident, such as the assets targeted and the resources
adopted by offenders. STIX (Structured Threat Information
Expression) [13] was proposed as a language for representing
Cyber Threat Intelligence (CTI). It provides various entities
and relationships to represent CTI such as Threat Actor entity,
which represents an offender,Malware, and uses relationship,
which represents the use of a one entity by an actor. STIX
uses TAXII (Trusted Automated Exchange of Intelligence
Information) [14] to share incident information. While STIX
allows the representation and sharing of CTI between orga-
nizations, it does not provide a way to reason automatically
about how an incident can re-occur in a different system.
Moreover, both attack graphs and STIX do not allow repre-
senting incidents in smart spaces, which can involve cyber
and physical components and their interaction.

111514 VOLUME 7, 2019



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

Reports are shared via common repositories, which can
be private, i.e. accessed by certain communities, or pub-
lic. Repository of Industrial Security Incidents (RISI) [9]
is a private resource that provides reports about inci-
dents that occurred in industrial control systems. The
Common Attack Pattern Enumeration and Classification
(CAPEC) [15] catalog is a public repository that provides
description of various attack patterns against ‘‘cyber-enabled
systems’’. Both RISI and CAPEC provide information
expressed in natural language about incidents. Therefore,
automation of such resources for analysis (e.g., to assess
whether an incident can happen in a specific system) is
limited.

Sharing information about an incident mainly revolves
around sharing partial information, such as vulnerabilities,
via a common repository. For example, the Common Vul-
nerabilities & Exposures (CVE) [8] resource is a public
dictionary of known cybersecurity vulnerabilities in soft-
ware and devices, which were exploited during a security
breach. Based on CVE, the National Vulnerability Database
(NVD) [16] attaches various metrics to cybersecurity vul-
nerabilities such as severity, impact on environment, and
interactions required from users. Both CVE and NVD can
be analyzed automatically to detect potential incidents in a
system. Potteiger et al. [17] proposed an approach for threat
modeling and risk assessment that uses the scoring system
provided by NVD to quantify vulnerabilities in attack graphs.
However, existing approaches only allow sharing information
about vulnerabilities, neglecting the activities performed dur-
ing a security incident.

III. MOTIVATING EXAMPLE
In this Section we use a motivating example to illustrate the
issues facing the reporting and sharing of security incidents
in smart spaces.

Our example revolves around the ACME company, which
operates across three different smart buildings: a Research
Center, a Warehouse, and a Manufacturing Plant. This is
depicted in Fig. 1. The plan of the 2nd floor of the Research
Center consists of a Server Room, a Control Room, and a Toi-
let. The Server Room contains a Fire Alarm, an air condition-
ing unit (HVAC), and some Servers, while the Control Room
contains aWorkstation. The whole building is equipped with
Smart Lights. TheHVAC, theFire Alarm and the Smart Lights
communicate with the Workstation through the Installation
Bus network, which adopts the KNX protocol [18].
A security incident occurred in the 2nd floor of the

Research Center. An offender entered the Toilet, and then
connected to the Smart Light (SL1) using a Laptop. After
that, s/he obtained access to the Installation Bus and was
able to collect data transmitted over the network (e.g., data
exchanged between the Workstation and the HVAC). This
was possible because messages exchanged through the instal-
lation bus are not encrypted [19]. The offender then sent a
targeted Malware (e.g., exploiting the vulnerabilities present
in Trane HVACs [20]) to disable the HVAC, subsequently

FIGURE 1. The ACME company motivating example.

causing the Servers to heat up. The incident actions are listed
at the bottom of Fig. 1.

Upon the discovery of this incident, it was necessary to
collect more information, in order to assess how the incident
occurred and write an incident report. An incident report
should describe the activities performed by an offender, such
as ‘‘enter Toilet’’ or ‘‘connect Laptop to the Bus Network’’.
For each activity it is necessary to specify the location where
an activity is performed (Toilet), the target components that
were exploited (e.g., smart light SL1), the resources that
where used (e.g., Laptop), and who performed the activity
(e.g., Visitor). Moreover, for each activity it is important
to specify containment and connectivity relationships in the
smart space that allowed it to be performed. For example,
an offender was able to access SL1 because it is contained
in the Toilet, which in turn is connected to theHallway. Also,
the offender was able to connect his/her Laptop to the Bus
Network by replacing SL1, which was initially connected to
the network.

However, the reporting process that each organization fol-
lows is not standardized [21]. Incident reports may not pro-
vide a structure to represent the vulnerabilities exploited by
an offender. These vulnerabilities can be brought by cyber
and physical components and their interactions in a smart
space. Thus, security administrators may overlook, in their
report, some characteristics of the smart space that allowed
the incident activities to be performed (e.g., connectivity of
SL1 and the HVAC to the Bus Network).

Security incident reports can be shared within the same
or a different organization. Before a report is shared, it is
necessary to ensure that it does not contain any sensitive infor-
mation (e.g., network structure) about the system in which the
incident occurred [21]. In our example, the report describing

VOLUME 7, 2019 111515



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 2. The architecture of our approach for incident reporting.

the security incident at the research center can be shared
within the same organization to assess how the incident can
re-occur in another smart building, such as the manufacturing
plant. To achieve this aim, it is necessary to assess how each
activity can happen, in a similar way, at the manufacturing
plant, depending on its cyber and physical components and
their connectivity and containment relationships. However,
this is arduous since it requires a security administrator to
analyze the incident report manually, and then speculate on
all possible ways in which the incident activities can be
performed. Additionally, there can be many possible ways in
which an incident can occur (instantiations) in a new system,
which cannot be captured manually. Also, security adminis-
trators may focus on some incident instantiations that are less
relevant or likely, overlooking some of the most important
ones.

Thus, it is necessary to provide an approach to assist
security administrators in reporting security incidents in a
more automated and structured form. Incident reports should
also allow representing cyber and physical components of a
smart space that allowed incident activities to be performed.
Finally, when an incident report is shared, it is necessary to
support security administrators in visualizing and prioritizing
the incident instantiations that aremore likely and/or relevant.

IV. ARCHITECTURE FOR INCIDENT REPORTING
We developed an approach to automate reporting of inci-
dents in smart spaces, particularly smart buildings. As shown
in Fig. 2, we developed a System Editor and an Incident
Editor to support incident reporting. Building on our previous
work [10], we can share incident reports across different
organizations and instantiate them onto different smart build-
ings. We also provide an Incident Filter to support visualiza-
tion and prioritization of incident instantiations in different
smart buildings.

• The System Editor provides a GUI to represent smart
buildings and their dynamic behaviour. As shown

FIGURE 3. System editor architecture.

in Fig. 3, the System Editor includes a Component
Editor, an Action Editor, and a System Model Builder.
The Component Editor extends a graphical designer for
smart buildings that we proposed in previous work [22].
This graphical designer builds on SweetHome3D,1

an open source software tool to draw house plans.
SweetHome3D allows creating the physical layout of a
building by dragging and dropping pre-defined elements
representing, for example, rooms, doors, furniture and
so on. Our graphical designer allows representing digital
devices (HVACs, computers) and network connectivity
within buildings created using SweetHome3D. It also
allows one to import the physical layout of a building
directly from models compliant with the BIM (Build-
ing Information Model) standard [23]. The Component
Editor, in turn, extends our graphical designer by adding
more pre-defined components, such as smart lights and
access points, that can be included in the building layout.
The Action Editor is a graphical designer that allows
a security administrator to represent the dynamic
behaviour of a smart building. The Action Editor allows
creating and adding actions that can be performed in
a smart building, such as ‘‘enter room’’ or ‘‘connect
to network’’. The System Model Builder converts the
representation of the smart building and its dynamic
behavior to a format compliant with the meta-model that
we proposed in previous work [10] to represent smart
buildings.

• The Incident Editor provides a GUI to model and view
incidents in smart buildings. To represent an incident
it is necessary to import a model of the smart building
where the incident occurred. The IncidentModel Builder
converts the graphical representation of the incident to a
format that is compliant with a meta-model, which we
proposed in previous work [10] to represent and share
incident information.
After a representation of an incident instance is cre-
ated using the Incident Editor, we reuse two automated
techniques for sharing incident information: incident
extraction and instantiation [10] (see Fig. 2). Incident

1http://www.sweethome3d.com/

111516 VOLUME 7, 2019



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 4. Incident editor architecture.

FIGURE 5. Incident filter architecture.

extraction creates a more abstract representation of an
incident instance, called incident pattern. This does not
contain sensitive information which otherwise would
be shared. In an incident pattern, entities within the
smart building referred by the incident activities are only
represented using their type (e.g., SmartLight), without
representing the specific instance name (e.g., SL1). Inci-
dent activities are also merged following a pre-defined
set of activity patterns. Created patterns are stored in
an Incident Pattern Repository. When a new incident
pattern is shared, organizations can access the repository
to assess whether and how that pattern can materialize
in the smart buildings under their control. Our incident
instantiation technique generates all potential instantia-
tions of an incident pattern in a specific smart building.

• The Incident Filter provides a GUI to visualize and filter
a given set of potential incident instantiations. Filter-
ing prioritizes the most critical incident instantiations
depending on different criteria, such as instantiations
that have the shortest number of activities, that include
specific types of activities, or have activities that target a
given asset. As shown in Fig. 5, the Incident Filter takes
as input all the incident instances generated during the
instantiation activity, and allows a security administrator
to select a filtering criteria.
The FilterManager component applies the filtering cri-
teria selected, and returns the most relevant incident
instantiations, which can be visualized and/or stored —
if necessary.

V. TOOL FOR AUTOMATED INCIDENT REPORTING
In this Section we describe in more detail the functional-
ities implemented by the System Editor, the Incident Edi-
tor and the Incident Filter to support automated incident
reporting.

FIGURE 6. System editor main screen.

A. SYSTEM EDITOR
Fig. 6 shows the main panels and functionalities of the System
Editor. The Layout Editor contains the plan of the smart
building to be edited. It is possible to create rooms and walls
by selecting the corresponding functionalities in the top tab.
The Components Selector allows selecting the components
(furniture, doors, digital devices) that can be contained in
each room and can be dragged to the Layout Editor. The 3D
Viewer shows a 3D view of the smart building created in the
Layout Editor. It is also possible to add network connectivity
between devices in the building by selecting functionality
create connection in the top tab. Moreover, function edit
action allows adding and editing actions representing the
dynamic behavior of the smart building. Function extract
system model is used to generate a system model out of
the rooms and components added to a layout. We added the
extract system model and edit action functionalities to the
original SmartHome3D tool.

Amodel of the smart building can be created by performing
the following operations.

1) Create Layout. The layout of a floor can be created by
adding rooms andwalls to the Layout Editor. For exam-
ple, the floor layout of the research center considered
in our motivating example is shown in Fig. 7.

2) Add Components. After creating the rooms, it is pos-
sible to drag components (e.g., actor, HVAC) from
the Components Selector and then drop them into the
targeted room. Adding a component to a room estab-
lishes a containment relation between the component
and the room; i.e. the room contains the component.
In Fig. 7 it is possible to see the components that
are contained inside each room of the research center.
Network connections between components can also be
established by selecting two components to be con-
nected and then clicking on the create connection
functionality.

3) Add/Create Actions. Using functionality edit action
it is possible to create and/or import a pre-defined
set of actions, in order to represent the dynamic

VOLUME 7, 2019 111517



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 7. Layout of the research center that is modeled using the system
editor.

behavior of a smart building. Actions can represent a
person entering a room or connecting his/her laptop to
a computing device via the bus network. The screen for
editing actions is shown in Fig. 8. Panel System Actions
describes the actions currently added to the system;
ActionDetails allows visualizing, editing and removing
a selected system action; Actions Catalog shows the
pre-defined actions that could be added to the system.
An Action is expressed as a re-writing rule where
a portion of the system matching a pre-condition is
re-written with the sub-system represented in the post-
condition. Pre- and post-conditions are expressed using
a custom notation inspired by Bigraphical Reactive
Systems (BRS) [24], which allows representing cyber
and physical components and their connectivity and
containment relations. Creating a new action requires
a security administrator to specify a name and a pre-
and post-condition. For example, Fig. 8 shows action
‘‘enter Room’’. The pre-and post-condition indicate
that two different rooms (Room1 and Room2) are con-
tained in the same physical structure (see operator ’|’),
for example, the same floor. An Actor is inside Room1
(see operator ’.’). As a result of the action execution,
the Actor who was previously contained in Room1 is
now inside Room2.

4) Extract System Model. Finally, it is possible to use
functionality extract systemmodel to convert the graph-
ical representation of the smart building to an Eclipse

FIGURE 8. The action editor screen.

FIGURE 9. Example output of functionality extract system model.

Modeling Framework (EMF)2 model representing the
structure of the building and its possible actions. This
model is compliant with the meta-model we propose
in previous work [10] to represent smart buildings, and
can be used to represent an incident using the Incident
Editor.
We also generate a representation of the dynamic
behavior of the smart building as a Labeled Transition
System (LTS). To do this, we transform the structure of
the building to a bigraph [25] and the actions defined
for the smart building to a set of reaction rules. We then
use BigraphER [26], a software tool that implements
bigraphs and their dynamics, to generate the LTS auto-
matically. The representation of the dynamic behavior
of a smart building is used to create potential instantia-
tions of an incident pattern within that smart building.

B. INCIDENT EDITOR
The Incident Editor allows creating a representation of an
incident that can be shared across different organizations.
Our incident representation is inspired by Crime Script [27],
a concept that is used in criminology to describe physical
crimes, such as subway mugging. We extend the original
use of Crime Script to represent incidents that can occur in

2EMF: https://www.eclipse.org/modeling/emf/

111518 VOLUME 7, 2019



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

smart spaces. These incidents can target and exploit cyber and
physical components and their interplay. An incident is repre-
sented as a sequence of activities; each activity indicates the
execution of an action in the smart space. Incident activities
may be malicious because they exploit a specific vulnerabil-
ity, and/or may be legitimate (e.g., enter a room, connect to
network). Using our tool, incidents can refer to components
and actions defined for one or more smart building models
created using the System Editor.

The main screen of the Incident Editor is shown in Fig. 10.
The main panel shows the model of the incident. This always
includes entity CrimeScript, which is the root entity contain-
ing all the incident activities. A CrimeScript can optionally
be characterized by the following attributes: Intent defines
the aim of the incident (e.g., disruption); Motive defines
the motive for the incident (e.g., competitive advantage,
revenge); Goal specifies the set of goals that are required to
achieve the Intent (e.g., reach a target location, send malware
to a device, runaway).

The Palette (right side of Fig. 10) shows the elements that
can be dragged and dropped onto the main panel, to model
an incident. They are divided into the following categories:
Incident Entity, Entity Relations, Activity Element, Condition
Element, and Ordering.
Category Incident Entity allows creating entities that can be

referred to in an incident model and can be of one of the fol-
lowing types: Actor, Resource, Asset, and General. An Actor
represents the initiator of an incident activity; it can also be
further specified as an Offender or a Victim. A Resource is
a tool (software or hardware) that can optionally be used to
perform an activity. Specific Resources can be defined in the
editor, such as Laptop and Malware. An Asset represents a
component in the smart building that is exploited or targeted
in an incident activity. Each Asset refers to components of
a smart building where the incident supposedly occurred.
These components can be selected using functionality Select
Asset from System. General allows representing a component
that is relevant to the incident, but not included in the repre-
sentation of the smart building where the incident primarily
occurred.

Category Entity Relation has Contain and Connect func-
tionalities that can be used to create, respectively, contain-
ment and connectivity relations between incident entities.
These relations are relevant to the incident, because they can
enable occurrence of some of the incident activities.

Category Activity Element can be used to define scenes,
activities and their attributes. A Scene represents a phase of
an incident (e.g., preparation, execution). Each Scene con-
tains one or a sequence of activities. An Activity represents
the execution of an action, and can be characterized by the
following attributes. Initiator refers to an Actor, Victim, or an
Offender that performs the activity. Target Asset refers to an
Asset that is targeted or exploited by the activity. Resource
Used refers to a Resource that is used in the activity. Location
represents the location where the activity is performed. It can
be an Asset, which refers to a component in an existing

smart buildingmodel, or aGeneral incident entity not defined
previously. Goal represents the goal of an activity and should
refer to one of the goals specified as an attribute of the
CrimeScript.
Precondition and Postcondition are also attributes of an

activity that express the state of the smart building, respec-
tively, before and after the activity execution. An activity
can represent the execution of an action defined in the
model of the smart building where the incident primarily
occurred. In this case, Precondition and Postcondition repre-
sent, respectively, the pre- and post-condition of the selected
action. To associate an incident activity with the action of
interest from the model of the smart building, functionality
Select Action from System should be used. Then, entity types
specified in the pre- and post-conditions of the selected action
should be mapped to incident entities specified in the incident
model. Considering our incident example shown in Fig. 1,
to represent movement of the offender from the Hallway to
the Toilet, action ‘‘enter Room’’ shown in Fig. 8 should be
imported. Room1 and Room2 have to be instantiated to assets
that refer, respectively, to the Hallway and the Toilet in the
smart building model. Actor should be instantiated to the
Offender defined in the incident model.
An activity Precondition and Postcondition can also be

specified from scratch. To represent the subsystem involved
in a pre- or post-condition, a security administrator should
select a set of incident entities and specify a set of con-
tainment and connectivity relations between them. The inci-
dent entities involved in the pre- and post-conditions can be
selected using functionality Select Incident Entity in category
Condition Element. Containment and connectivity relations
can be created using the functionalities included in category
Entity Relation.

Category Ordering provides elements for defining the
order of Scenes and Activities. Next Scene allows defining a
chronological order between two subsequent incident scenes.
Similarly,Next Activity is used to define a chronological order
between two subsequent activities.

An incident model can be created by performing the fol-
lowing operations.
• Edit CrimeScript.When a new incident model is created,
it is necessary at least to provide a name for the Crime-
Script. Intent, Motives, and Goals can also be speci-
fied in natural language to better describe an incident,
although it is not mandatory. As shown in Fig. 11, for
our incident example, the name of the CrimeScript is set
to ‘‘disable hvac’’.

• Add IncidentEntities.
Actor, Asset, Resource, or General incident entities can
be subsequently added to the model. If an Asset is
added to the model, it is necessary to select it explicitly
from the model of the smart building, using function
Select Asset from System. The Properties view (bottom
of Fig. 10) displays the properties of a selected entity in
the incident model. From there, a security administrator
can view and change these attributes —if necessary.

VOLUME 7, 2019 111519



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 10. Incident editor main screen.

Relations between incident entities can also be specified
using functionality Contain and Connect.
For example, as shown in Fig. 11, a security adminis-
trator adds the following Assets (1): secondFloor, toilet,
and sl1. Fig. 11 shows how sl1 can be selected from the
model of the smart building using functionality Select
Asset from System. After that, the security administrator

creates an offender and a laptop. Then s/he creates rela-
tions between incident entities (2): connectivity between
sl1 and the laptop and containment between offender
and laptop, i.e. the offender carries the laptop. Finally,
the security administrator can edit the properties of some
of the incident entities. For example, s/he can edit the
name, description and status of the laptop (3).

111520 VOLUME 7, 2019



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 11. Creating incidententities and their relations.

FIGURE 12. Creating scenes, activities, and their attributes.

• Create Activity. A security administrator should create
the incident Scenes and, then, s/he can add relevant
activities to the scenes. For example, as shown in Fig. 12,
a security administrator first defines a Scene named
‘‘execution’’ (1). After that, the s/he creates activities
‘‘enter Toilet’’ and ‘‘connect to SL1’’ (2). These activ-
ities represent the execution of actions ‘‘enter room’’
and ‘‘connect to ComputingDevice’’ in the model of
the smart building. Fig. 12 shows how action connect
to ComputingDevice can be selected from the model of
the smart building using functionality Select Action from
System. Subsequently, the security administrator defines
activities Precondition and Postcondition, which will be
illustrated in more detail in the next point (3). Then s/he
defines the activities’ attributes (4), such as Initiator,
which —in this case— is the offender for both activi-
ties. Finally, s/he indicates that Activity ‘‘enter toilet’’
precedes Activity ‘‘connect to SL1’’ using functionality
Next Activity (5).

• Define Condition. As shown in Fig. 13, to define
an activity Precondition and Postcondition a security

FIGURE 13. Creating a condition.

administrator adds the incident entities involved in the
pre- and post-conditions, using functionality Select Inci-
dent Entity (1). Fig. 13 shows how asset toilet can be
selected from the model of the incident using func-
tionality Select Incident Entities. Then, the security
administrator defines the relations (i.e.Containment and
Connectivity) between the involved incident entities (2).
Fig. 13 shows the Precondition and Postcondition for
Activity ‘‘enter toilet’’. In the Precondition, the security
administrator defines a containment relation between the
hallway and the offender i.e. hallway contains offender.
S/he also defines a connectivity relation between the
hallway and the toilet. In the Postcondition, the security
administrator changes the containment to become toilet
contains offender.

To further help security administrators in modeling an
incident, we provide filters and validations functionalities in
the Incident Editor. Filters can be used to hide certain aspects

VOLUME 7, 2019 111521



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 14. Filters in the incident editor, with the ‘‘hide connection’’ filter
selected.

FIGURE 15. Validating an incident model. Validation highlights a missing
type for the actor ‘‘offender’’.

of an incident model that do not require to be visualized.
For example, one can hide all Connections between entities,
or hide a certain type of incident entities, such as Actors.
Available filters in the Incident Editor are shown in Fig. 14.
Validation functionalities check for syntactical correctness
of the incident model. For example, a security administrator
may forget to specify a type of an IncidentEntity. In this
case, when validating the model, the Incident Editor shows
an error message (‘‘Missing a Type. Please select a Type.’’)
attached to the IncidentEntity, as shown in Fig. 15. Other
validations include Activities in-sequence (i.e. only the last
activity in a scene should not be associated with the next one),
Condition not-empty, and Containment no-cycle (i.e. an Inci-
dentEntity cannot contain an IncidentEntity that is one of its
containers).

VI. IMPLICATIONS ON SHARING AND ASSESSMENT
A security administrator can share information about security
incidents and also assess whether and how incidents can
re-occur —even in a different smart space. In the rest of this
Section we describe how our Incident Editor and Incident
Filter can be used to support sharing of incident knowledge
and incident assessment.

A. SHARING INCIDENT KNOWLEDGE
Information about a security incident can be shared by per-
forming the following steps.

FIGURE 16. Output of function extract incident pattern for the incident
instance shown in Fig 12.

1) Generate an incident pattern. After an incident model
is created, a security administrator can extract an inci-
dent pattern using functionality Extract Incident Pat-
tern in our Incident Editor, as indicated in Fig. 16.
An incident pattern is a more abstract representation of
a security incident that avoids disclosing confidential
information. To generate an incident pattern we reuse
an automated extraction technique that we proposed
in previous work [10]. This technique implements two
heuristics. One heuristic abstracts the type of the assets
referred by the incident entities defined in the incident
model. More precisely, assets are only described using
a type that is at one level of abstraction higher than
their original type in the smart building meta-model.
For example, smart light sl1 is simply referred to as
a ComputingDevice, which abstracts type SmartLight,
as shown in Fig. 16. Another heuristic is to merge
sequences of incident activities that match an activity
pattern. An activity pattern is a compressed represen-
tation of a recurring activity that can be observed in
many security incidents. We define activity patterns
based on the Common Attack Pattern Enumeration and
Classification (CAPEC) catalog [15].

2) Review the incident pattern. A security administra-
tor can view the generated incident pattern using the
Incident Editor. S/he can also edit the incident pat-
tern directly, or modify the original incident instance
in order to regenerate a new pattern. This allows
a security administrator to change the incident pat-
tern, for example, to make sensitive components more
abstract and/or to remove sensitive components and/or
activities.

111522 VOLUME 7, 2019



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 17. Main screen of the incident filter component.

3) Share the incident pattern. When the security admin-
istrator is satisfied with the generated incident pattern,
s/he can share it by uploading it to the Incident Pattern
Repository.

B. INCIDENT ASSESSMENT
A security administrator can use the Incident Editor to assess
whether and how incident patterns can re-occur in smart
buildings. S/he can do so by performing the following steps.

1) Instantiate the incident pattern. A security adminis-
trator has to first select an incident pattern from the
repository. S/he should also select the smart build-
ing where the incident pattern should be instantiated,
by importing the files representing the building struc-
ture and dynamic behavior (see Fig. 9). Then, a security
administrator can use functionality Instantiate Incident
Pattern in the Incident Editor, to generate all possible
instantiations of an incident pattern. To do so, we reuse
an automated instantiation technique that we proposed
in previous work [10]. This technique analyzes the LTS
modeling the dynamic behavior of the selected smart
building, to identify traces that match the activities
represented in the incident pattern. A matching instan-
tiation should be composed of sub-instantiations, each
of them, matching the activities of the incident pat-
tern in the same temporal order. An activity matches
a sub-instantiation of the LTS when the first state of
the sub-instantiation satisfies the activity pre-condition
and the last state of the sub-instantiation satisfies the
activity post-condition.

2) Filter instantiations. A security administrator can also
use our Incident Filter component to prioritize the
most relevant incident instances. The main screen
of the Incident Filter is shown in Fig. 17. After
the incident instantiations are provided as input, the

Incident Filter identifies the minimum and maximum
length of incident instantiations, i.e. the minimum
and maximum number of actions of which are com-
posed the LTS traces representing the incident instan-
tiations. The Incident Filter also identifies actions
with their occurrences, i.e. number of times an action
appears in the instantiations. Then, a security admin-
istrator can select an appropriate filter to prioritize
incident instantiations. Current available filters include
Shortest, Shortest with shared sequence (ClaSP), and
Customized. Shortest filter identifies shortest instanti-
ations, which are relevant because they require a mini-
mum number of actions to be performed. Shortest with
shared sequence (ClaSP) filter identifies instantiations
that share the longest partial sequence of actions and
have a minimum number of actions. This filter can
identify incident instantiations that are only composed
of actions that are strictly necessary for an incident to
be successful, while avoiding to include unnecessary
actions. This filter uses a sequential pattern mining
technique called ClaSP [28]. An implementation of
the ClaSP algorithm is provided by SPMF,3 which is
an open source data mining library. Customized filter
allows a security administrator to customize filters by
tweaking various properties, such as the maximum
length of the desired sequence, actions that an incident
instantiation should include, and minimum percentage
of instantiations in which each action occurs at least
once.
The right-top side of the Incident Filter shows the fil-
tered incident instances. An instantiation is represented
as a sequence of states and actions; it has the form
of ‘‘system-state-number =[action-name]=> system-
state-number . . . ’’. A system-state-number refers to a
system state in the LTS representation of the dynamic
behavior of the smart building. Action-name indicates
the system action that moves the smart building to
a new state. For example, as indicated in Fig. 17,
the first filtered instantiation has the sequence
‘‘1 =[enter toilet]=> 2 =[connect to sl1]=> 3’’. For
example, state 1 represents the smart building when
the offender is in the hallway. The right-bottom side of
Fig. 17 shows the Top Common Actions, i.e. the actions
that occur in the majority of the instantiations. For
example, ‘‘enter toilet’’ and ‘‘connect to sl1’’ are the top
common actions, with occurrence percentages of 80%
and 90%, respectively, in all filtered instantiations.

VII. CASE STUDY
To evaluate our approach, we use a case study inspired by
a real-world incident scenario [29]. The case study revolves
around an offender who was able to obtain information about
relevant assets in a smart building, by eavesdropping packets
transmitted over the bus network. This security incident was

3http://www.philippe-fournier-viger.com/spmf/index.php

VOLUME 7, 2019 111523



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 18. A model of the research center floor that we created using the System editor.

facilitated by the limited presence of security features in the
bus network protocol (e.g., KNX [30]). We use our approach
to model and share information about the security incident of
the case study.

We assume the incident to have occurred in one of the
floors of a research center to which we had access. We model
the research center floor, rooms, components, and behavior
using the System Editor. We modify the original floor layout
by populating it with various smart devices (e.g., smart lights)
to mimic a real smart building setup. The floor includes
90 components and 30 actions; the LTS representing the
dynamic behavior of the smart building is composed of 30K
states and 110,569 transitions.

Then, we model the incident activities using the Incident
Editor. The security incident consists of 5 activities: enter-
Floor, enterHallway, connectToAccessPoint, connectToBus-
Network, and collectDataFromBusNework. Then we extract
an incident pattern and instantiate it to the same smart build-
ing to identify all possible ways in which the incident can
re-occur. Finally, we use the Incident Filter to prioritize inci-
dent instantiations. The tools and data are available online.4

We measure the overhead (time) required for modeling, and
discuss the advantages and limitations of our approach.

A. RESULTS
Modeling the layout and components of the floor (90 compo-
nents) of our case study using the System Editor took around
65 minutes. The modeled floor is shown in Fig. 18. Modeling

4https://sourceforge.net/projects/tools-incidents-smart-spaces/files/

actions of the system (30 actions) took around 130 minutes.
Each action took around 3-5 minutes to model it.

Modeling the incident of our case study using the Inci-
dent Editor took approximately 85-95 minutes. Modeling
an activity took 10-15 minutes. Fig. 19 shows the modeled
incident, which includes three scenes: movingAround, which
has two activities (enterFloor, enterHallway); establishing-
Connection, which has two activities (connectToAccessPoint,
connectToBusNetwork); and collectingData, which has one
activity (collectDatafromBusNetwork).

243,928 incident instantiations were generated in total.
Using the Incident Filter, we identified 368 instantiations to
be the shortest. This number is further reduced by using the
sequential pattern mining technique ClaSP, which allows us
to select 120 instantiations, as shown in Fig. 20. The Incident
Filter also identifies three actions as the top common actions
(EnterRoom, ConnectBusDevice, and CollectData) in all the
instantiations, as shown in Fig 21.

B. DISCUSSION
The time for modeling a smart building may vary depend-
ing on its size, i.e. the number of rooms, components, and
connections between them. It also depends on the number
of actions that the system should include. Another limi-
tation is that modeling actions requires having knowledge
about Bigraphical Reactive Systems [25] and the syntax used
by BigraphER [26] to represent pre- and post-conditions.
We mitigate this limitation by creating an Actions Cata-
log, which contains various actions that are common in a
smart building such as ‘‘connect_to_computingDevice’’, and

111524 VOLUME 7, 2019



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 19. A model of the research center incident that we created using the incident editor.

‘‘enter_room’’. These actions can be selected by a security
administrator directly without the need to represent them
from scratch. Also, a security administrator can only select
the components that are available in the System Editor to
represent a smart building. However, we can easily add com-
ponents to the System Editor by extending the smart building
meta-model with the component type, and then importing a
3D model of the component to the System Editor.
The time for modeling an incident may vary depending on

the number of components and activities that are relevant to
the incident. We mitigate this limitation by allowing security
administrators to refer to components and actions from a
selected smart buildingmodel, when defining an incident. For
our case study, one of the authors of this paper performed the
modeling activities. Thus, the times recorded to model the
smart building and the incident instance could increase in case
a non-expert adopts our tool. In future work, we are planning

to perform an extensive evaluation of the tool, assessing its
usability with external users and domain experts.

We discussed expressiveness of our approach for incident
reporting with a practitioner working on access control for
smart buildings. He agreed on the fact that the proposed rep-
resentation allows modeling explicitly vulnerabilities arising
from the interplay of cyber and physical components of a
smart building. The practitioner also agreed on the impor-
tance and the relevance of the filters implemented to reduce
the number of incident instances that a security administrator
has to examine. However, one limitation of our approach is
that it only allows modeling time-discrete activities, but can-
not express time-continuous activities, for example to char-
acterize the behavior of a physical component (e.g., power
plant). Furthermore, activities pre- and post-conditions can
only refer to qualitative relations (connectivity and contain-
ment) between smart building components, and cannot model

VOLUME 7, 2019 111525



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

FIGURE 20. Filtered instantiations using ClaSP.

FIGURE 21. Top common actions in all generated instantiations.

quantitative relationships (e.g., an actor is 5meters away from
a device). However, using the types of activities proposed in
our approach we were able to represent some of the most
recent security incidents occurring in smart buildings, such
as the German Still mill [2] and the Ukrainian Power Grid [3]
incidents.

VIII. CONCLUSION & FUTURE WORK
In this paper, we discussed limitations in reporting secu-
rity incidents in smart spaces. To address these limitations,
we proposed a set of software tools that can be used to
automate the modeling of smart spaces and the reporting of
incidents, respectively. We discussed the design, functional-
ities, and use of a System Editor to represent smart spaces.
We presented an Incident Editor and illustrated how it can
be used to report an incident in a smart space via a case
study. Using our previous work, incidents represented using
our editor can be shared and instantiated in smart spaces.
Since an incident can be realized in many ways in a smart
space, we proposed an Incident Filter that can be used to
view and prioritize the most relevant incident instantiations.
We suggest that our work represents an important first step in
automating the reporting of security incidents in smart spaces.

In future work, we will extend the functionalities of the
Incident Editor to facilitate themodeling activities. For exam-
ple, we will suggest potential actions/components that can be
relevant to the incident that is being modeled. We will enrich
the system actions catalog and facilitate the representation
of actions’ pre- and post-conditions by providing a more
intuitive GUI. We are also planning to assess expressivity of
our modeling approach, by using it to model a large set of
security incidents in smart buildings. Furthermore, we will
assess usability of the tool with domain experts. Finally,
our ultimate objective is to use our approach for automated
incident reporting to make smart spaces more secure and
forensic-ready [31]. To achieve this aim, we will use potential
incident instantiations to suggest appropriate security con-
trols and to identify monitoring activities that can be useful
to detect and/or investigate these potential incidents.

REFERENCES
[1] A. A. Cárdenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry,

‘‘Challenges for securing cyber physical systems,’’ in Proc. Workshop
Future Directions Cyber-Phys. Syst. Secur., vol. 5, 2009, pp. 1–7.

[2] R. M. Lee, M. J. Assante, and T. Conway, ‘‘German steel mill cyber
attack,’’ Ind. Control Syst., vol. 30, p. 62, Dec. 2014.

[3] R. M. Lee, M. J. Assante, and T. Conway, ‘‘Analysis of the cyber attack on
the Ukrainian power grid,’’ Electr. Inf. Sharing Anal. Center, Washington,
DC, USA, Tech. Rep., 2016.

[4] P. Cichonski, T. Millar, T. Grance, and K. Scarfone, ‘‘Computer
security incident handling guide,’’ Nat. Inst. Standards Technol.,
Tech. Rep., 2012. Accessed: May 11, 2018. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-61rev2/SP800-61rev2.pdf

[5] N. Tulechki, ‘‘Natural language processing of incident and accident
reports: Application to risk management in civil aviation,’’ Ph.D. disser-
tation, CLESCO, Univ. Toulouse le Mirail-Toulouse II, Toulouse, France,
2015.

[6] M. J. West-Brown, D. Stikvoort, K.-P. Kossakowski, G. Killcrece, and
R. Ruefle, ‘‘Handbook for computer security incident response teams
(CSIRTs),’’ Softw. Eng. Inst., Carnegie-Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep., 2003. Accessed: Jun. 15, 2018. [Online]. Available:
http://www.dtic.mil/docs/citations/ADA413778

[7] H. S. Lallie, K. Debattista, and J. Bal, ‘‘An empirical evaluation of the
effectiveness of attack graphs and fault trees in Cyber-attack percep-
tion,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1110–1122,
May 2018.

111526 VOLUME 7, 2019



F. Alrimawi et al.: On the Automated Management of Security Incidents in Smart Spaces

[8] MITRE Corporation. Common Vulnerabilities & Exposures (CVE).
Accessed: Nov. 15, 2018. [Online]. Available: https://cve.mitre.org/

[9] RISI. The Repository of Industrial Security Incidents (RISI). Accessed:
Nov. 15, 2018. [Online]. Available: http://www.risidata.com/

[10] F. Alrimawi, L. Pasquale, D. Mehta, N. Yoshioka, and B. Nuseibeh, ‘‘Inci-
dents are meant for learning, not repeating: Sharing knowledge about secu-
rity incidents in cyber-physical systems,’’ Jun. 2019, arXiv:1907.00199.
[Online]. Available: https://arxiv.org/abs/1907.00199

[11] M. Chau, J. J. Xu, and H. Chen, ‘‘Extracting meaningful entities from
police narrative reports,’’ in Proc. Annu. Nat. Conf. Digit. Government
Res., 2002, pp. 1–5.

[12] O. Sheyner and J. Wing, ‘‘Tools for generating and analyzing attack
graphs,’’ in Proc. Int. Symp. Formal Methods Compon. Objects. Berlin,
Germany: Springer, 2004, pp. 344–371.

[13] Standardizing Cyber Threat Intelligence Information With the Structured
Threat Information Expression (STIX), MITRE Corporation, McLean, VA,
USA, 2012, vol. 11, pp. 1–22.

[14] OASIS Open. Introduction to TAXII. Accessed: Jul. 10, 2018. [Online].
Available: https://oasisopen.github.io/cti-documentation/taxii/intro

[15] MITRE Corporation. Common Attack Pattern Enumeration & Classifica-
tion. Accessed: Jan. 20, 2018. [Online]. Available: http://capec.mitre.org/

[16] NVD. The US National Vulnerability Database (NVD). Accessed:
Jan. 20, 2018. [Online]. Available: https://nvd.nist.gov/

[17] B. Potteiger, G. Martins, and X. Koutsoukos, ‘‘Software and attack centric
integrated threat modeling for quantitative risk assessment,’’ inProc. Symp.
Bootcamp Sci. Secur. (HotSos). New York, NY, USA: ACM Press, 2016,
pp. 99–108.

[18] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, ‘‘Com-
munication systems for building automation and control,’’ Proc. IEEE,
vol. 93, no. 6, pp. 1178–1203, Jun. 2005.

[19] T. Mundt and P. Wickboldt, ‘‘Security in building automation systems—A
first analysis,’’ in Proc. Int. Conf. Cyber Secur. Protection Digit. Services
(Cyber Secur.), 2016, pp. 1–8.

[20] B. Krebs. (2016). IoT Reality: Smart Devices, Dumb Defaults. [Online].
Available: https://krebsonsecurity.com/2016/02/iot-reality-smart-devices
-dumb-defaults

[21] A. Ahmad, J. Hadgkiss, and A. B. Ruighaver, ‘‘Incident response
teams—Challenges in supporting the organisational security function,’’
Comput. Secur., vol. 31, no. 5, pp. 643–652, 2012.

[22] L. Pasquale, C. Ghezzi, E. Pasi, C. Tsigkanos, M. Boubekeur,
B. Florentino-Liano, T. Hadzic, and B. Nuseibeh, ‘‘Topology-aware access
control of smart spaces,’’ Computer, vol. 50, no. 7, pp. 54–63, 2017.

[23] C. Eastman, P. Teicholz, R. Sacks, and K. Liston, BIMHandbook: A Guide
to Building InformationModeling forOwners,Managers, Designers, Engi-
neers and Contractors. Hoboken, NJ, USA: Wiley, 2011.

[24] R. Milner, ‘‘Pure bigraphs: Structure and dynamics,’’ Inf. Comput.,
vol. 204, no. 1, pp. 60–122, 2006.

[25] R. Milner, The Space and Motion of Communicating Agents, 1st ed.
New York, NY, USA: Cambridge Univ. Press, 2009.

[26] M. Sevegnani and M. Calder, ‘‘BigraphER: Rewriting and analysis engine
for bigraphs,’’ in Proc. Int. Conf. Comput. Aided Verification. Cham,
Switzerland: Springer, 2016, pp. 494–501.

[27] D. Cornish, ‘‘Crimes as scripts,’’ in Proceedings of the International
Seminar on Environmental Criminology and Crime Analysis. Tallahassee,
FL, USA: Florida Criminal Justice Executive Institute, 1994, pp. 30–45.

[28] A. Gomariz, M. Campos, R. Marin, and B. Goethals, ‘‘ClaSP: An efficient
algorithm for mining frequent closed sequences,’’ in Proc. Pacific–Asia
Conf. Knowl. Discovery Data Mining. Berlin, Germany: Springer, 2013,
pp. 50–61.

[29] W. Granzer, F. Praus, and W. Kastner, ‘‘Security in building automation
systems,’’ IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3622–3630,
Nov. 2010.

[30] H. Merz, T. Hansemann, and C. Hübner, Building Automation. Cham,
Switzerland: Springer, 2009.

[31] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh, and A. Rashid,
‘‘Towards forensic-ready software systems,’’ in Proc. 40th Int. Conf. Softw.
Eng., Ideas Emerg. Results (NIER), Gothenburg, Sweden, May/Jun. 2018,
pp. 9–12.

FAEQ ALRIMAWI received the B.Sc. degree in
computer system engineering from Birzeit Uni-
versity, Palestine, in 2010, and the M.Sc. degree
in mobile and high-speed telecommunication net-
works from Oxford Brookes University, U.K.,
in 2012. He is currently pursuing the Ph.D. degree
in computer science with Lero—The Irish Soft-
ware Research Centre, University of Limerick,
Ireland.

His research interests include software engi-
neering, digital forensics, and security for cyber-physical systems.

LILIANA PASQUALE received the Ph.D. degree
from the Politecnico di Milano, Italy, in 2011. She
is currently a Lecturer with University College
Dublin, Ireland, and a Researcher with Lero—the
Irish Software Research Centre.

Her research interests include requirements
engineering and adaptive systems, with a
particular focus on security, privacy, and digital
forensics. She has served in the Program and
Organizing Committee of prestigious software

engineering conferences, such as ICSE, FSE, ASE, and RE. She is also
part of the review committee of the IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING journal and the ACMTransactions on Software Engineering and
Methodology journal.

BASHAR NUSEIBEH is currently a Professor of
computingwith TheOpenUniversity and a Profes-
sor of software engineering and a Chief Scientist
with Lero—The Irish Software Research Centre.
He is also a Visiting Professor with University
College London (UCL) and the National Institute
of Informatics (NII), Tokyo, Japan.

Dr. Nuseibeh is a Fellow of the British and Irish
Computer Societies, a Fellow of the Institution of
Engineering and Technology, and a member of

Academia Europaea. He received the ICSE Most Influential Paper Award,
the Philip Leverhulme Prize, the Automated Software Engineering Fel-
lowship, the Royal Academy of Engineering Senior Research Fellowship,
the IFIP Outstanding Service Award, in 2009, the ACM SIGSOFT Distin-
guished Service Award, in 2015, the Royal Society-Wolfson Merit Award,
and two European Research Council (ERC) awards, including the ERC
Advanced Grant on ‘‘Adaptive Security and Privacy.’’ He was the Chair of
the Steering Committee of the International Conference on Software Engi-
neering (ICSE). He serves as the Editor-in-Chief for the ACM Transactions
on Autonomous and Adaptive Systems and an Associate Editor of the IEEE
Security and Privacy Magazine.

VOLUME 7, 2019 111527


