
Received July 14, 2019, accepted July 26, 2019, date of publication August 9, 2019, date of current version August 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934143

Prospect of Using Artificial Intelligence for
Microwave Nondestructive Testing
Technique: A Review
NAWAF H. M. M. SHRIFAN1,2, MUHAMMAD FIRDAUS AKBAR 1, (Member, IEEE),
AND NOR ASHIDI MAT ISA 1
1School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Penang 14300, Malaysia
2Faculty of Oil and Minerals, University of Aden, Shabwah, Yemen

Corresponding author: Nor Ashidi Mat Isa (ashidi@usm.my)

This work was supported by the USM Short-Term under Grant 304/PELECT/6315298.

ABSTRACT The development in materials technology has produced stronger, lighter, stiffer, and more
durable electrically insulating composites which are replacing metals in many applications. These com-
posites require alternative inspection techniques because the conventional nondestructive testing (NDT)
techniques such as thermography, eddy currents, ultrasonic, X-ray and magnetic particles have limitations
of inspecting them. Microwave NDT technique employing open-ended rectangular waveguides (OERW)
has emerged as a promising approach to detect the defects in both metal and composite materials. Despite
its promising results over conventional NDT techniques, OERW microwave NDT technique has shown
numerous limitations in terms of poor spatial resolution due to the stand-off distance variations, inspection
area irregularities and quantitative estimation in imaging the size of defects. Microwave NDT employing
OERW in conjunction with robust artificial intelligence approaches have tremendous potential and viability
for evaluating composite structures for the purpose mentioned here. Artificial intelligence techniques with
signal processing techniques are highly possible to enhance the efficiency and resolution of microwave NDT
technique because the impact of artificial intelligence approaches is proven in various conventional NDT
techniques. This paper provides a comprehensive review of NDT techniques as well as the prospect of using
artificial intelligence approaches in microwave NDT technique with regards to other conventional NDT
techniques.

INDEX TERMS Microwave nondestructive testing, open-ended rectangular waveguides, artificial intelli-
gence.

I. INTRODUCTION
The developments of imaging techniques for investigating
physically inaccessible objects have been a topic of research
for many years and have found widespread applications in
the field of nondestructive testing (NDT). Nondestructive
testing (NDT) is defined as a practice of evaluating the
change in various properties of a material such as delami-
nation, corrosion, cracks, and fatigue including internal flaw
or metallurgical condition without interfering in any way
the integrity of the material or its suitability for service [1].
Regular inspection evaluating the integrity of the system is
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mandatory by using NDT to prevent serious system failures,
which have several adverse consequences including the risk
to the safety of site personnel, damage to the environment,
and an economic impact in terms of the maintenance cost and
production lost. NDT plays a crucial role in many industrial
applications especially in aerospace, power generation, petro-
chemical, railway and automotive. The NDT inspections to
assess the damage to structure or parts of the system is crucial
for the saving of the maintenance cost, improving the safety
and reliability of the entire system [2].

There is a wide range of commonly used NDT meth-
ods and well established in the industry such as thermogra-
phy inspection, ultrasonic inspection, eddy currents testing,
X-ray and magnetic particles inspection [3], [4]. The choice
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between these techniques is based on their advantages and
disadvantages with considering the safety, operational cost
and their efficiency with the material to be inspected. For
instance, ultrasonic inspection is not capable of penetrating
highly porous materials and requiring extensive data inter-
pretation [5]. Although the laser ultrasonic performs the non-
contact inspection without the couplant, its performance is
degraded when inspecting highly porous materials [6]. More-
over, laser ultrasonic simultaneously generates various waves
(e.g. shear, longitudinal waves, Rayleigh and Lamb waves)
which complicate the signal analysis [7]. The eddy current
testing is extensively used in industry for surface crack and
corrosion detection but this method does not work well when
inspecting low-loss dielectric materials due to penetration
limitation of low-frequency electromagnetic waves [8].

The demands of composite materials replacing or coated
with metals in many applications require alternative inspec-
tion technique since conventional NDT technique does not
work properly when inspecting composite materials due to
field penetration limitations. Composite materials become
popular due to their stability, strength and lightweight char-
acteristics, replacing metals in many applications such as
power plant, aerospace and automotive industries. The per-
formances of these materials are affected due to aging and the
cyclic process by various defects such as corrosion, cracks on
metal substrate undercoating, delamination between coatings
and the metal substrate. Microwave nondestructive testing
(MNDT) technique is well suited for inspecting the compos-
ite materials since the electromagnetic waves at microwave
frequencies hold the prospect of providing better inspection
resolution for composite materials [9].

Microwave signals, unlike ultrasonic and acoustic sig-
nals, are capable to penetrates inside composite material
such as dielectric insulations and interact with their inner
structure and sensitive to changes associated with boundary
interfaces makes them a very attractive candidate for com-
posite inspection. Several microwave techniques have been
reported for composite inspection. Despite their promising
results, the conventional microwave based techniques face
several challenges such as data complexity, poor quality of
the spatial image and blurred defect shape due to the stand-
off distance variations and optimal frequency point selec-
tion which degrade the geometrical measurements of defects
[5], [10]. Therefore, the emerging of soft computing tech-
niques makes it possible to handle these challenges due to the
development of intelligent systems such as machine learning-
based techniques. The high capability of machine learning
techniques to solve complex data make it applicable to handle
the microwave data complexity and small variations as well
as to improve the sensitivity of the sensor and spatial image
resolution [11].

The trend of using artificial intelligence (AI) for defects
detection and identification is recommended in some
researches such as an artificial intelligence-based machine
learning has been used to build a classification system to auto-
mate defects identification during fabrication or in service as

FIGURE 1. Schematic diagrams of thermography NDT passive and active
modes.

well as improves the quality of NDT inspection [12]. Despite
the promising future of both MNDT and AI as separate
techniques, the current attempts to hybridize them together
have great potential to overcome the mentioned challenges.

A comprehensive review of NDT techniques as well as
the prospect of using artificial intelligence approaches in
microwave NDT technique is reviewed and presented in this
paper. Conventional NDT techniques such as thermography,
eddy current, ultrasonic, X-ray and magnetic particle with
their applications are introduced in section two and reviewed.
In section three, several conventional MNDT techniques are
reviewed together with their advantages and disadvantages.
The application of AI in the conventional NDT techniques are
described in section four and staged into three phases which
are preprocessing, feature extraction and machine learning
classification. Section five describes the existing techniques
of AI in microwave NDT. Prospect of using artificial intel-
ligence in microwave NDT is summarized in the conclusion
section.

II. CONVENTIONAL NDT TECHNIQUES
A. THERMOGRAPHY NDT
A conventional thermography procedure is based on infrared
(IR) radiation. The emitted radiation from the material under
inspection is observed and captured using an infrared camera
to represent the temperature distribution of the inspected
material in a visible image [13]. Infrared thermography (IRT)
is classified into passive and active thermography [14]. The
passive IRT depends on the temperature variations between
two mediums which are not in thermal equilibrium. While
the active IRT depends on an external excitation source (e.g.
flash lamp, ultrasonic waves or laser) for modifying the tem-
perature of the inspected materials as shown in Figure 1. The
defected area will generate a different temperature distribu-
tion from its neighbors which forms the shape of the defect.
Thermography technique is considered as one of the most
widespread in NDT due to the fast inspection, high imaging
resolution and defect detection sensitivity. In NDT, the IRT
techniques are usually limited to the active ones [15].

Pulsed thermography (PT) is used in active mode to inspect
CFRP composites in [16]. In the first stage of the experiment,
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the CFRP specimen is subjected to a pulsed-heating using two
Balcar Xenon flash lamps whilst the specimen is observed by
an IR camera. The heat will be transferred into the specimen
and the temperature distribution will be decreased uniformly
if the specimen is defect-free. In case of defect presence,
it will affect the uniformity of the temperature distribution.
This variation will be recorded using an IR camera for further
processing. The camera is cooled during the inspection to
196.15 ◦C for mitigating the effects of the incoming tem-
perature on the thermal detector. Two types of inspection are
performed using PT;reflection and transmission. The reflec-
tion inspection is achieved by positioning the IR camera and
excitation source in the same direction against the inspected
specimen. On the other hand, the transmission inspection is
performed when the inspected specimen is being between
the IR camera and heating source. Both techniques perform
an efficient inspection in locating defects of the inspected
materials. However, a controlled environment of the inspec-
tion is needed such controlled ambient temperature and IR
camera cooling. Moreover, a static position of IR camera
is required to measure the amount of temperature on the
inspected material at a particular time.

In the second stage of the experiment, ultrasonic waves are
used as excitation source which named ultrasonic infrared
thermography (UIT). The ultrasonic transducer excites the
inspected specimen with a frequency of 20 kHz. The mechan-
ical sound waves are propagated through the surface, if there
is a defect on the surface, friction will be occurred by the
crack. As a result, the friction will increase the temperature
around the crack regions which will be recorded by IR cam-
era. The advantage of this technique is that the crack itself will
be the source of heating. Therefore, UIT successfully locates
the CFRP defects which are more visible than the PT results.
However, the suitable excitation source of IRT should be
critically selected to avoid damaging the inspected materials.
Actually, the excitation source changes the temperature of the
medium under test. Therefore, the capability of the medium
to be excited should be investigated first. Moreover, perfect
control of the inspection environment is required to equally
distribute the temperature on the inspected material. There-
fore, the temperature is difficult to be controlled especially
for inspecting the materials in service due to the variations of
ambient temperature.

In addition, laser thermography (LT) in [17] is used to
inspect glass laminated-reinforced epoxy (GLARE) which is
a complex structure and widely used in aerospace applica-
tions. A matt black painting is applied on the surface of the
inspected specimen to uniform the IR emissivity. A moving
beam of the laser is focused with 1.5 mm spot for heat-
ing up the material under test. Moreover, the IR camera is
used to acquire the temperature distribution on the inspected
specimen. In case of defect presence such as delamination,
a modification on the surface temperature will occur over
the defected area. Standard division (SD) is used for post-
processing of the defect representation. SD is applied on tem-
perature distribution of the current laser spot and a reference

FIGURE 2. The principle of Eddy currents.

area follows that point in the left side. The reference area has
an elliptic shape which is positioned at 10 mm away from
the laser spot with dimensions of 10 mm and 5 mm in x and
y-axes respectively. Involving the reference area is because
the position of the inner defect in composite materials does
not correspond to the laser spot. The technique showed a
very good detectability of the size of delamination. However,
the small size of delamination is difficult to be evaluated
because a small perturbation is induced over the reference
area which is difficult to be observed. Moreover, the matt
black painting is applied to the inspected specimen which is
not practical to be used for inspecting in-service materials.
In addition, critical positioning speed is required to avoid
focusing the laser spot on the inspected specimen. This is
possible to damage the coating paint. Finally, the reference
area cannot be estimatedwhen the laser spot in the left edge of
the inspected specimen because the reference area is outside
the inspected area.

B. EDDY CURRENT NDT
Eddy current (EC) testing uses a transmitter coil to generate
a primary magnetic field near the inspected specimen which
is a conductive material [18]. Figure 2 illustrates the eddy
currents which are formed on the conductive body opposite
the coil. Eddy currents generate a secondary magnetic field
which counteracts the primary magnetic field. In the case
of defects presence such as discontinuity, the eddy currents
become weak because the disruption of the crack to connect
the currents which induce a weak secondary magnetic field
against the primary magnetic field. Thus, the differences
between the secondary magnetic field occur in the case of
defected and nondefective regions.

EC testing is widely used in various applications. In carbon
fiber reinforced polymer (CFRP) production, EC testing is
used to detect fiber orientation and defects as well as accumu-
lation of ripples and folds [19]. In term of aerospace applica-
tions, an EC technique is employed to detect the waviness in
the aircraft structure [20]. Eddy current probe includes three
coils were used to inspect the aircraft structure. All probes
are placed above the sample to be inspected and the phase
and amplitude of the output signal are measured to detect
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FIGURE 3. Typical ultrasonic pulse echo system.

the presence and location of the waviness of the inspected
specimen.

In a different way, He et al. [21] examined eddy currents
probes in various excitation modes to detect flaws in tita-
nium alloy. In the first experiment, a small excitation coil
is placed above the specimen under test to generate eddy
currents to be detected by the high electromagnetic sensor.
In this case, the excitation coil and electromagnetic sensor
are moved along specimen under test to construct 2D spa-
tial images based on phase and magnitude coefficients. The
images are visually compared, and the finding shows that the
phase image is the best to represent the flaws. In the sec-
ond experiment, a large excitation coil is placed under the
specimen under test. The coil covers whole titanium alloy
and only the electromagnetic sensor is spatially moved to
measure the changes of the yielded magnetic field. Similarly,
to the first experiment, 2D spatial images are constructed
based on phase and magnitude coefficients. In this case,
the amplitude image shows a better representation of the
titanium flaws. Therefore, the experiment conditions make
large differences through choosing phase or amplitude in
eddy currents imaging. Moreover, the scanning direction is
another factor which gives an impact on the pixel intensity
of eddy currents imaging which is clearly seen in the first
experiment. In addition, the ripples of eddy current are clearly
seen in the amplitude image of the second experiment which
is undesirable noise because of the fixed position of the exci-
tation coil. However, the optimal frequency is still manually
selected, and the automated selection should be investigated.
In most cases, the manual process is highly subjective and
time-consuming.

Pulsed eddy current (PEC) is another technique of NDT
which uses square wave voltage pulse to generate eddy
currents in the conductive materials instead using the con-
tentious sinusoidal signal. PEC is employed to inspect micro-
cracks of aluminum alloys compared to the conventional EC
in [22]. The study shows that the conventional EC can detect
microcracks in the aluminum alloys, but PEC can provide
more information about the crack depth due to the discrete
frequency distribution which provides valuable information
about the crack. However, eddy current based methods are
restricted to be used in electrically conducting materials
because of the lack of induced current in the dielectric mate-
rials which degrades the defects detection.

C. ULTRASONIC NDT
Figure 3 depicts the system of typical ultrasonic testing (UT)
which employs a transducer to generate a beam of high-
frequency sound waves that induced toward a specimen under
test, travel through it and are reflected at back surface or
defects [23]. The reflected wave is transformed into an elec-
trical signal to be analyzed which will identify the presence
and location of defects.

In NDT, ultrasonic is used for various inspection pur-
poses such as crack detection, delaminations and corrosion
detection. Various levels of intergranular corrosion of sev-
eral stainless-steel pipes are studied in [24]. The study used
a transmitter and receiver ultrasonic transducers to mea-
sure a longitudinal ultrasonic wave along the tube wall.
The study shows that the ultrasonic non-linear coefficient
is significantly increased with increasing corrosion level.
As a result, ultrasonic NDT can detect the corrosion of
steel pipe and estimate its level. However, the length of
pipe highly influenced the non-linear coefficient because the
longitudinal wave is degraded by the length of the inspected
pipe.

Ultrasonic based on Lamb waves is another nondestructive
technique which is popular to inspect plate-like structures.
Lamb waves can propagate a long distance with low attenu-
ation and are highly sensitive to small defects [25]. In case
of defect presence in the inspected specimen, the defect
will produce forward and backward scattering of waves. The
scattering waves by the defect can be observed and eval-
uated for damage diagnosis. However, the reflected wave
from the defect may overlap with that waves are reflected
from the structure [26]. Moreover, most of Lamb waves are
non-stationary in nature and needs effective time-frequency
representation. The effective time-frequency representation is
proposed in [25] possible to play a vital role in defect detec-
tion and localization. Among time-frequency techniques,
continuous wavelet transform (CWT) is applied to process
the Lamb waves signals to estimate a defect size and position
on an aluminum plate. Four transducers are located on the
corners of the aluminum specimen to receive the Lambwaves
which are generated by an extra transducer on the plate
center. The reflected waves from the defect edges are used to
construct 4 ellipses to locate the defect. Thereafter, a circle
is drawn based on the external tangent of all ellipses. The
drawn circle is used to estimate the size of the circular defect.
The technique provides near to the actual defect size and
location. Moreover, the technique reduces the inspection time
due to the induced Lamb waves cover the whole the inspected
specimen in one time. However, the technique is limited to
measure a circular defect shape.

The change in coupling material conditions is reflected in
the inspection reliability due to the wave amplitude is affected
by coupling variations. Equivalent Time Length (ETL) in [27]
is employed to eliminate the coupling material effects on
defect detection. The technique evaluated the bonding qual-
ity between CFRP and concrete using a pair of ultrasonic
transducers. ETL is employed to measure the propagating
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waves’ energy with respect to its onset time which is small
when the bonding is fitted well to the concrete. Therefore,
the bonding weakness’ level can be estimated due to the
increasing ETL value. Thus, the defects such as air gaps
between the concrete and CFRP can be detected. However,
this technique is only suitable if the defect is away from the
specimen edges because ETL value is affected by the position
of the transducer when it is close to the boundary. Moreover,
ultrasonic NDT based on couplant cannot be applied to an
irregular surface [23]. It is limited in detecting defects of high
anisotropy [28].

Laser ultrasonic (LUT) is a nondestructive technique has
the advantage of being non-contact technique. In LUT inspec-
tion, a pulsed beam of the laser is distantly generated toward
the surface of the inspectedmaterial [4]. A part of laser energy
is absorbed and rapidly heat up the inspected region. The
rising of temperature leads to expand the scanned region.
As a result, the expansion of the scanned region propagates
ultrasonic waves which interact with internal features and
defects. The propagated waves can be observed on the sur-
face using a contentious laser wave’s detector for further
processing.

LUT inspection in [6] is performed in transmission mode
on additive manufactured components. The sample is com-
bined from pre-alloyed AlSi12 powder was fabricated using
selective laser melting which is popularly used in aerospace,
automotive and medical engineering applications. The pulsed
beam of the laser is induced on the inspected sample and
the propagated wave is received using the contentious laser
wave’s detector. The laser detector is placed 50 mm away
from the sample. The detector generates a time-varying ana-
log signal which is proportional to the instantaneous sur-
face displacement (e.g. 0.2 mm in both x and y-axis) on
the inspected sample. The instantaneous displacement is
converted into velocity using an analog processing module
(APM). Thereafter, the analog signal is digitized at 8 bits
using an analog-to-digital converter for further defect imag-
ing. In the first stage, the acquired signals are analyzed using
A-scan representation which provides the received amount of
ultrasonic energy over time. A-scan is processed to produce
B-scan representation which provides the traveling time of
the sound waves at the scanned position. The maximum
response is obtained between 1.6 and 2.3µs. Therefore,
the surface representation will be obtained from the maxi-
mum amplitude of A-scan at that range. The technique pro-
vides several advantages which are a non-contact inspection
to be used in an abnormal temperature environment, couplant
is not needed, defect detection and imaging. However, the
high intersection is seen between the defected and defect-free
regions. This is becausematerial porosity passes only the low-
frequency and mitigates the high-frequency waves. There-
fore, the power to resolve sharp defect’s edges is low. As a
result, accurate defect size is difficult to be measured. More-
over, safety hazards with high-power pulsed lasers should be
considered and beam enclosures should be used to perform
safe inspection [29].

FIGURE 4. X-ray backscattering system.

D. X-RAY NDT
X-ray NDT based methods depend on the different levels of
absorption of X-ray photons which pass through the inspected
specimen [30]. Therefore, X-ray is sensitive enough to detect
a change of the material thickness or density variations.
Figure 4 shows the backscatter data of X-ray which contains
quantitative information about variations in density, which is
caused by changes in material properties or internal delam-
inations. Therefore, X-ray can be used to locate the internal
non-homogeneities within the depth of the material [31].

These advantages of X-ray make it applicable in NDT
for various purposes such as evaluation of aluminium alloy
edged joints [32] and monitoring the quality of oil and gas
pipes [33]. Moreover, the trend of using X-ray in digital
form is an active topic among the researchers which allows
the radiations of X-ray to be converted into digital data.
This makes X-ray data is capable to be filtered and digitally
processed. In [34], two sides digital X-ray NDT are used
in pearl cultivation to check the presence of pearl nucleus
without destroying the oyster shell. The study investigates
the drawback of X-ray energy which is higher than that used
by digital radiography. Therefore, optimization is needed to
obtain high quality of the pearl image. The optimization is
done by varying the voltage, current, and exposure time to
acquire the optimal contrast to noise ratio (CNR) that can
enhance the radiography image.

On the other hand, single side digital inspection technique
is developed in [35] which used un-collimated X-ray radi-
ation to inspect whole material. Twisted-slit collimator and
digital array detector are used to construct a backscatter-
ing image. The specimen under test is placed on the 45◦

front of the X-ray tube and X-ray backscatter camera. The
ambient noise such as undesirable radiations and structure
noise is eliminated by subtracting the values of the digital
array detector when the X-ray source and slit collimator are
closed. Moreover, bad pixel correction is achieved using the
in-house developed radiographic image quantitative analysis
software to adjust grayscale pixels’ values. Various materials
are inspected such as aluminium sheets, honeycomb struc-
tured plate and an inhomogeneous component. The finding
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FIGURE 5. Illustration of magnetic particle principle.

shows an improvement of signal to noise ratio in the backscat-
ter images. However, the heavy system’s structure and a long
time of acquiring an image are the main limitations of this
technique.

Although its advantages, X-ray imaging is very challeng-
ing for large structures and harmful to human health as well
as special protection is needed.

E. MAGNETIC PARTICLES NDT
Magnetic particles testing (MT) performs by magnetization
of the inspected material first and the discontinuity of the
inspected specimen generates leakage of magnetic flux [36].
Figure 5 illustrates the magnetic particles coil sensor which
is near to the inspected surface can absorb magnetic parti-
cles and reveals the location, shape, size and severity of the
discontinuity. MT is widely used in the heavy engineering,
welding defects and aerospace applications to inspect the sur-
face break, defects and discontinuity of the surfaces whether
in production or in service. However, MT technique in NDT
still suffers from reliability and sensitivity in detecting the
surface cracks because it depends on the capability of the
material to be magnetized and can only detect the defects in
few millimeters below the surface [37]. The reliability and
sensitivity of MT are investigated in [38] to detect cracks of
welded components. The study shows that the technique is
not capable to detect any defects with a length of less than
1.5 mm which is not reliable to detect a small size of cracks.

In [39], a magnetic conductive head is employed as a mag-
netic flux leakage sensor to increase the detection sensitivity
to detect surfacemicro-crack in bearings. The sensor is placed
in a parallel direction to the crack with small lift-off distance.
The surface defect with 15 µm is detected and the weak
magnetic flux leakage is picked up which is near to zero.
The technique shows reliable inspection of the conductive
materials and near surface crack. However, this technique
is limited to conductive materials and surface cracks. The
friction between the yoke’s structure and bearing’s surface
may cause temperature increasing and damage the sensitive
surfaces. In addition, the capability of this technique is only to
classify the defected and defect-free bearings without further
processing such defect localization and measurements.

.Sadr and Okhovat [40] presented the concept of the his-
togram for canceling the effects of a defect noise in com-
puting background signal to inspect the pipeline’s surface.
The common techniques of defect detection based on the use
of a simple threshold to distinguish between the defected
and background regions which depend on the average of
the acquired signal. Therefore, the approach uses particular
regions around the peak histogram signal of the defect to
calculate the average of the acquired signal because of the
impact of the large difference between the defect and back-
ground values. Then, the threshold is applied to distinguish
between the defected and background regions. As a result,
the detection rate is increased compared to the typical average
method. However, the technique is limited to the optimal
threshold value to be selected.

Table 1 summarizes a comparison of various conventional
NDT techniques. Thermography techniques perform a non-
contact and remote inspection of complex structures such
as CFRP and GLARE. Moreover, the excitation techniques
hugely improve the sensitivity of thermography inspection
in NDT. However, the selection of optimal excitation source
is based on the capability of the inspected materials to be
excited. Moreover, the selected excitation technique should
consider the integrity of the inspected materials. Focusing
high power of laser may damage the material under test.
In addition, the controlled environment is the main issue
faces thermography based techniques due to the difficulty of
controlling the temperature in the real environment.

Eddy current based techniques show the high capability to
detect the small surface’s changes and microcracks evalua-
tion. On the other hand, the main limitation of eddy current
based techniques is the lack of the induced current in compos-
ite materials which leads to induce a weak electromagnetic
field. Therefore, the weak electromagnetic field degrades the
defects detection due to the low sensitivity. The ultrasonic
NDT is capable to inspect conductive and non-conductive
materials. Ultrasonic shows robust defect detection in the low
porous materials and the small size of the inspected speci-
mens. However, the sensitivity of ultrasonic is limited to the
length of the inspected specimen which degrades the induced
signals. Moreover, ultrasonic technique based on couplant
material is not suitable for large structure inspection due to
the coupling material should cover the whole inspected spec-
imen. Among ultrasonic NDT techniques, laser ultrasonic
is introduced to perform a non-contact and remote inspec-
tion which overcomes the couplant limitation. High porosity
materials degrade the reliability of laser ultrasonic inspection.
As regards to the Lamb waves technique, it performs fast
inspection but it is limited to inspect plate-like structures.

X-ray NDT shows high sensitivity to layers’ variations
of the inspected materials whether conductive or non-
conductive materials. The expert operator and safety proce-
dures are critically needed.

The magnetic particles inspection shows robust surface
defect detection. However, magnetic particles inspection is
sensitive to the lift-off distance which is unreliable to inspect
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TABLE 1. Comparison summary of various conventional NDT techniques.
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the deep cracks. The lift-off distance increases when the
defect far from the inspected surface which leads to the low
sensor sensitivity. Additionally, magnetic particles technique
highly depends on the capability of the materials to be mag-
netized to induce enough magnetic flux leakage in case of
defect presence. Therefore, it can be only used to inspect the
conductive materials.

Among the abovementioned techniques, ultrasonic pro-
vides safe inspection for both ferromagnetic and non-
conductive materials as well as it can be used in contact and
non-contact modes. In contrast, it suffers from the intensive
data interpretation, and low penetration. Therefore, these lim-
itations can be handled using microwave NDT inspection due
to several attributes when applying Microwave NDT such
as non-contact, interact with the inner structure, no need
for coupling material, no need for complicated post signal
processing, operator friendly and relatively inexpensive one-
sided inspection [42].

III. CONVENTIONAL MICROWAVE NDT TECHNIQUES
In the past two decades, microwave NDT methods also have
shown significant success in composite materials inspection.
[44]–[46]. The composite materials become popular due to
their stability, strength and lightweight characteristics, replac-
ing metals in many applications such as aircraft, aerospace
and automotive industries. This demands the popularity of
microwave methods since microwave signals can penetrate
composite materials and interact with their surface and inner
structure.

MicrowaveNDTusingmicrowave transmission line (MTL)
sensor is presented in [41], [47]. In MTL technique,
the inspected specimen acts as a conductive material of a
microwave circuit. Any defect in the specimen will lead to
change the material permittivity and will be reflected in the
measurements of the signals’ responds. These changes are
used to detect the abnormality of the inspected specimen in
term of defect location and size as well as the variation in the
specimen layers.

The high capability of MTL to evaluate the materials’
porosity employs it as an effective technique to evaluate the
purity of honey to ensure the production quality [48]. Also,
MTL is used in [47] to detect invisible pieces of stone and
glass which were put in the vegetable salad. The proposed
method measured the ratio of the real and imaginary parts
of the transmitted signals to detect the foreign objects in the
food. The detection is successfully achieved by comparing
the objects and objects-free in the food and the variety in the
values of the complex permittivity is shown which caused by
foreign objects.

Todoroki et al. [41] construct a copper transmission line
to detect the damage location on the carbon fiber reinforced
polymer (CFRP) plate. The experiment used glass-fiber
reinforced polymer (GFRP) as the insulator layer between
the copper tape and the surface of the CFRP specimen
as shown in Figure 6. Both conductors, copper tape and
CFRP were connected by a coaxial cable at the end of the

FIGURE 6. Exhibition of SRR sensor with pairs of concentric loops [43].

FIGURE 7. TDR connecting diagram based on the MTL sensor [41].

transmission line. The input signals propagate on the trans-
mission line and any surface damage such as the changes of
the distance between the copper tape and CFRP surface will
change the impedance of transmission line at that location.
Therefore, the signal will be reflected in the input terminal
and the time differences between the induced and reflected
signal is measured using Time Domain Reflectometry (TDR)
to obtain the damage location. Approximate transmission
velocity multiplied by the half of time difference is used to
get the defect location. In this technique, the CFRP defect
which is close to the transmission line is successfully detected
and failed to detect the defect away from transmission line
because the lack of capability of far away defects to change
the impedance of transmission line. However, this technique
can be used for near defect detection but using approximate
transmission velocity near to the light speed may lead to
a false defect location and exact measurement is needed.
Practically, this technique is not suitable to inspect large
structures because the copper strip and GFRP are needed to
cover the inspected structure. In addition, MTL based tech-
niques depend on the permittivity of the material to transfer
microwave signals through it. MLT performance is degraded
through low permittivity materials.

A split-ring resonator (SRR) is another microwave sensor
which uses a small structure sensor includes pairs of concen-
tric loops which are equivalent to LC resonant circuit etched
in the lower dielectric substrate with splits them at opposite
ends as demonstrated in Figure 7. The sensor requires a
magnetic field for excitation where on the upper side of
the substrate, a microstrip transmission line is used to feed
the SRR sensor. In case of defect detection, the disturbance
of the field around resonator leads to a shift in the frequency
which indicates the detection of defects. The capability of
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FIGURE 8. Schematic diagram of the CSI sensor [50].

FIGURE 9. A diagram of the reflections from a metal-backed GFRP
(a) without and (b) with delamination [52].

the single sensor is high to detect micro cracks on the metal
surfaces [43], [49].

On the other hand, the SRR array is used to detect sur-
face crack [51]. The proposed method used 9 SRRs together
integrated with a microstrip line to inspect the aluminium
specimen. A spatial image is constructed from the transmis-
sion coefficient by summation the values of the frequency
amplitude which introduced a promising crack representa-
tion. However, the SRR technique depends on the capability
of the transmitted signal to stimulate the SRR sensor. SRR
technique has poor resolution inspecting low permittivity
materials such as GFRP.

Figure 8 illustrates a couple spiral inductors (CSI) sensor.
CSI consists of two spiral inductors which act as primary and
secondary coils. The principle of this sensor based on the
measurement of the transmitted energy from the secondary
coil to the primary coil which is affected by the variations
of the thickness of the inspected specimen. SCI is used to
examine various kinds of CFRP defects such as buried holes,
cracks, and delamination [53]. Li and Meng [50] used the
SCI sensor to construct a spatial image of the CFRP defect.
The sensor connected to the Vector Network Analyzer (VNA)
is used to acquire the magnitude of transmission coefficient
to construct a 2D image. However, the CSI method is not
suitable for geometrical measurements of the defect due to the
diffraction at the defect’s edge which extends to the defect-
free area.

A significant amount of research and development has
taken place using different open-ended rectangular waveg-
uide (OERW) microwave probes for various types of exam-
ination such as delamination evaluation in the layered-

FIGURE 10. Common stages of intelligent NDT.

dielectric slab, thickness variation in a stratified compos-
ite and defect sizing and detection of coated metal. The
shift in the resonant frequency, magnitude and phase of the
microwave signal is used to identify and image the defects.
Akbar et al. [52] proposed a time domain technique using
OERW to detect the delamination in metal-backed dielectric
coatings. The proposed approach assumes that there are two
reflected signals will be obtained from the defect-free sample
at different times. The first reflection is from the coating
surface (e.g. GFRP) which comes early because of the coat-
ing proximity to the waveguide as shown in Figure 9 (a).
The second reflection is from the back metal surface which
comes late because of the distance from the waveguide. The
reflected signals are denoted as t1 and t2 respectively. In the
case of delamination, as shown in Figure 9 (b), there are three
reflected signals will be obtained which are from the coating,
delamination and back metal at three different times denoted
as t1′ , t2′ and t3′ respectively where t2′ comes between t1′
and t3′ . In the delamination presence, the magnitude of t3′
will be reduced compared to t2 reflection from the defect-
free sample. This reduction occurred because the impact of
t2′ on t3′ which means that the signal does not fully reflect
from the back metal and there are some reflections occurred
before. Therefore, any drop in the magnitude of t3′ compared
to t2 can provide information about thickness variations and
delamination detection. The results have shown the ability of
this technique to detect delamination of depth as low as 1mm.

Guorong et al. [54] used OERW to detect a surface crack
on the substrate under a thermal barrier coating (TBC). The
investigation studied the best defect detection and representa-
tion based on the phase andmagnitude of the reflection coeffi-
cient under various thicknesses of the coating. The difference
of amplitude and phase between the defected sample and non-
defected sample is used to plot 2-D spatial images. The result
shows that the amplitude image is more sensitive for defect
detection than the phase image. However, both phase and
amplitude fail to accurately image the exact geometric size
and location depth of the defects.
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As a near field technique, there are several factors influence
the defect detection capability such as frequency point and
stand-off distance which is the distance between the probe
and the specimen to be inspected. Similarly to the previ-
ous method, the differences of amplitude and phase of the
reflection coefficient between the defected area and non-
defected area in [5] are used to investigate appropriate OERW
stand-off distance and frequency point to represent the defect
undercoating. The defect representation using the amplitude
differences with 1 mm stand-off distance is the optimal dis-
tance to detect the defect undercoating compared to 3 mm
and 5 mm distances in this experiment. The study shows that
among the selected frequency points which are 18, 22, 24, and
26 GHz, there is an appropriate frequency point (e.g. 24 GHz)
which provides a better defect representation at 1 mm stand-
off distance. Therefore, selecting optimal stand-off distance
and frequency point is required in each experimental setup
due to the variations of the coating thickness and the experi-
mental conditions.

Firdaus et al. [55] used a correlation approach of the
reflection coefficient at various stand-off distances for each
inspected point. The proposed method eliminates the process
of selecting the optimal frequency points for both phase and
magnitude imaging technique and shows a promising result
for various stand-off distance.

A microwave-based technique for steel pipeline inspection
is proposed in [56]. The technique aims to inspect curvature
surfaces (hyperbola shape) in far standoff distance (40 mm).
Several of microwaves OERWs with different bands are used
to acquire the best spatial image representation. Singular
value decomposition (SVD) is used to reduce the clutter of
the insulation layer as well as to distinguish between the
insulation layer and the pipe layer. SVD decomposes the
signal into singular values and singular vectors. The first
singular vector which is associatedwith a given singular value
represents the insulation subspace and the rest of singular val-
ues are considered as subspace distortion. Thus the insulation
subspace can be separated. However, the output image still
suffers poor resolution due to the high standoff-distance and
the hyperbola shape of the pipeline.

Therefore, the rang-Doppler algorithm (RDA) is used to
refocus the blurred data of SVD and obtain a high-resolution
image. RDA involves three stages which are range compres-
sion, rang cell migration and azimuth or cross-range focusing.
The range compression stage aims to convert the raw data
from the spatial domain into the frequency domain using a
discrete Fourier transform (DFT). The range cell migration
stage aims to correct the migration of the data which is
acquired by the curvature movement of the sensor as a result
hyperbola shape. The last stage is cross-range (azimuth)
focusing; this aims to focus on the target point which is buried
under the insulation layer. Finally, inverse DFT is applied to
construct a high-resolution image in the time domain and the
defects are clearly seen.

Table 2 summarizes a comparison of various conven-
tional MNDT techniques. The MTL sensor shows good

performance for detecting near-surface defects and used to
evaluate the properties of the material. However, MTL is
not reliable to detect the defects in non-conductive materials
because its performance is degraded due to the low permit-
tivity of the non-conductive materials. On the other hand,
the SRR sensor achieves a reliable detection of the near-
surface micro-crakes. However, the performance of the SRR
sensor highly depends on the capability of the transmitted
signal through the inspected material to stimulate the SRR
sensor. This degrades the sensitivity of SRR in the case of low
permittivity of the inspected materials. The CSI inspection
provides a good detection of various types of defects but it
makes the evaluation of the detected defects very complex.
This is because the diffraction at the defects’ edge extends
to the defect-free area which introduces a blurred spatial
image. Therefore, it is difficult to measure the accurate defect
size because of the high intersection between the defected
and defect-free regions. Among microwave sensors, OERW
provides robust signal interaction with multiple layers of
structures. However, the performance of OERW is degraded
because stand-off distance variations and optimal frequency
point to be selected. Therefore, a pre-knowledge of those
variables is needed to achieve the best imaging quality and
reliable inspection.

It can be noted that most of the microwave inspections suf-
fer from the low sensitivity of defect detection and unreliable
defect evaluation. In term of best sensor sensitivity due to
the low signal penetration, hybridizing the signal processing
techniques and artificial intelligence (AI) models is possible
to improve the sensitivity of the sensor. Various attempts are
introduced in section IV demonstrate the capability of the
signal processing and AI to improve the conventional NDT
sensitivity. Also, this will be reflected in the microwave NDT
(MNDT) technique performance due to the lack of studies
to integrate the signal processing and AI in MNDT. The
data complexity is presented due to the stand-off distance
variations and optimal frequency point selection which lead
to unreliable defect evaluation (e.g. defect location, size and
depth). Section V introduces various possible AI approaches
to overcome these challenges.

IV. ARTIFICIAL INTELLIGENCE APPLICATIONS IN
CONVENTIONAL NDT
As described in Section II, the conventional NDT techniques
still face several challenges due to the automation complex-
ity [57], poor quality of the spatial image and blurred defect
shape, extensive data interpretation as well as penetration
limitation which degrade the inspection reliability. Recently,
the development of NDT automation with high reliability has
emerged as an active research area [58] because of the needs
of avoiding the dependence on the skills and experience of
the operators [57]. Therefore, signal processing with intelli-
gent classifier can provide reliable and fast inspection [59]
which could increase the sensibility of defect detection and
automate the monitoring procedure [60]. The nonlinearity of
inspection data is another reason to useAI due to its capability
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TABLE 2. Comparison summary of the conventional MNDT techniques.

to solve the complexity of the acquired data by nonlinear
classification [61].

Commonly, intelligent NDT passes through three stages.
VI illustrates common stages of the intelligent NDT. The first
stage is a preprocessing phase which aims to eliminate the
noise and normalize the acquired signals. The preprocessing
stage in NDT employs signal processing techniques to reduce
the noise effects and eliminate unnecessary data. The second
stage is the features extraction and selection which aims to
extract and select the most significant features for defects
evaluation. Finally, the classification or prediction stage aims
to classify and recognize the defects as well as to estimate
the defects’ characteristics. In this section, the stages of intel-
ligent NDT and various techniques involved in each stage are
reviewed.

A. PREPROCESSING TECHNIQUES
Tiwari et al. [62] performed an analysis of ultrasonic NDT
on wind turbine blades. The study aims to investigate
three types of de-noising algorithms which are the cross-
correlation (CCR), Hilbert-Huang transforms (HHT) and dis-
crete wavelet transform (DWT) methods. The experiment
used two contact transducers in the inspection process as
a transmitter and receiver. The first de-noising algorithm

called cross-correlation technique is based on the similar-
ity measurement between two signals. The cross-correlation
value will be a maximum when the time delay is zero [63].
Therefore, this technique can be used for comparing the time
delay of the acquired signal with the reference signal. The
time delay will be higher in case of the defect presence.
In case of the occurrence noise, the variation of the time
delay will be eliminated for the similar waveforms because
it is considered as a noise delaying. In the experiment, the
A-scan signal is acquired along the scanning distance and
the cross-correlation coefficient is calculated based on the
reference signal of the defect-free to illustrate the variation
of time of flight (ToF). Finally, a simple threshold is applied
which successfully displayed the peaks of the defected areas.
Cross-correlation technique is the easiest method in signal
processing despite having a lot of computation iterations.
This technique depends on the shape of the waveform such
as peaks and fronts of wave pulses to measure the time
shifting for the similar waves. Therefore, it may fail in case
of strong waveform deformation due to the high disrup-
tion which leads to change the exhibition of the waveform.
Moreover, it cannot be used to measure the accurate defect
size when the noise is part of defects because the noise
can be only eliminated from the provided sample which
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is defect-free. In addition, this technique needs defect-free
reference specimen during the inspection process and it is
not practical in the real applications due to the manufacturing
variations. Another technique proposed by [64] used defect-
free regions in the same inspected specimen but still, those
regions are unpredictable in case of the coating.

In the second part of the experiment, Hilbert Haung trans-
form (HHT) is examined for noise suppression. HHT an
empirically based approach is a time-frequency analysis
which is used for nonlinear and non-stationary processes rep-
resentation [65]. The signals can be decomposed using HHT
into several narrow-banded signals which varies in frequency
and amplitude over time. Two stages are involved in HHT
which are empirical mode decomposition (EMD) and Hilbert
transform (HT).

EMD as described in [66] is the essential part of HHT
which aims to identify the proper time scale which can
describe the physical characteristics of the input signal.
Therefore, EMD does not convert the signal from the time
domain to another domain but it produces a nearly orthogonal
basis for the input signal without leaving its domain. The
output of EMD is several intrinsic modes of the signal called
intrinsic mode functions (IMFs) which are the frequency dis-
tribution over time. In this stage, the input signal is smoothly
enveloped based on the maxima and minima of peak signal
to construct upper and lower envelopes in the time domain.
Then, the mean value is calculated which produces zero
difference between upper and lower envelops at each time
point. To produce the first IMF, at each point in the time
domain, the mean value at that point is subtracted from the
original signal value. This process will be repeated several
times by utilizing the produced IMF as input to generate
the next IMF until the number of extrema and zero-crossing
remain the same. Each IMF contains varying frequency and
amplitude from the others and can be used to serve HT.
In some enveloping cases of the signal extrema (e.g. similar
to single digital waveform), there are many contiguous points
in the extrema have similar values with different time points.
In this case, choosing a single enveloping point in EMD
suffers from that at which time point of them to be selected.
Therefore, various shapes of IMF can be produced and give
impacts on the next IMFs behavior.

Basically, the first IMF contains the highest frequency
oscillations which are decreased at the last IMF. Therefore,
the selection of an approbate IMF to be passed to HT analysis
is needed which is done based on the signal amplitudes that
can keep important details of the inspected specimen. Mostly,
the required information is kept in the first few modes. How-
ever, the time of generating the first IMF is more than the
required time to generate the last IMF because the signal
peaks to be enveloped at the first IMF is larger than the
last one. Therefore, the processing time can be reduced by
overcoming the over-enveloping [67] as well as if the nth

IMF can be predictable from the original signal. This is still
challenging because generating the nth IMF basically depends
on its previous IMF.

The last stage of HHT is a Hilbert transform which aims
to interpret the signal with varying frequency and amplitude.
The input signal such as IMFn is converted into the frequency
domain and 90◦ phase shifting is applied at each frequency
component to be converted again into time domain [66]. This
step aims to find the instantaneous frequency and amplitude
representation. Applying HT provides many characteristics
of the processing signal [68]. The first attribute is that the
input signal and its HT have the same amplitude density
spectrum. Secondly, the input signal and its HT have the same
autocorrelation function which indicates they are correlated
to each other. The third attribution is that the input signal
and its HT are mutually orthogonal, thus their integral equals
zero. Finally, applying HT of the input signal will produce
the negative original signal where it is capable to be inverted.
However, HT is limited to be applied for narrow-band signals
because it uses a sinusoid narrow-band [69]. Therefore, it is
not applicable to process broadband signal which is a com-
mon kind of the signal in the real applications.

For defect detection in the experiment, A-scan signal of
the defect and defect-free regions are acquired and passed to
empirical mode decomposition (EMD) stage. In the experi-
ment, HT is applied on the first four IMFs of the defect and
defect-free signals and only the first two IMFs are used for
defect analysis. The two selected IMFs have a higher ampli-
tude as compared to the rest of IMFs as well as less noise and
dispersion. Therefore, the time-variant frequency and instan-
taneous amplitude of the first two IMFs are computed using
HT for both defect and defect-free regions. In defect detec-
tion, the instantaneous amplitude of the defect and defect-free
regions is different which represents the first attribution of the
defect detection. In addition, the study shows that the time
delay is correlated to the defect size because it is increased
by increasing the defect size and vice versa. Thus, HHT can
be used for defect detection. However, the selection of an
IMF to be passed to HT is depended on which signal to be
analyzed because there are several IMFs without prior knowl-
edge about the optimal one. Moreover, HHT is restricted to
be used in time domain signals processing because it does not
convert the signal to another domain. In addition, the time
shifting is used to detect the defects which came after the
defect-free. Therefore, any variation in the time during the
inspection process of the defect and defect-free samples will
lead to false defect detection.

In the final stage of the experiment, discrete wavelet trans-
form (DWT) is used for noise reduction which is a power-
ful technique for signal representation in the time-frequency
domain. Basically, wavelet transform analyzes an input signal
as a sum of wavelet functions called ‘‘wavelets’’ in different
locations and scales [70]. Haar and Daubechies wavelets are
the common types of wavelet transformation functions. The
main difference between them is that Daubechies wavelet
uses a non-linear phase response compared to the linear
phase response of Haar wavelet [71]. Moreover, Daubechies
wavelet involves a large number of vanishing moments com-
pared to the Haar wavelet which its interval between 0 and

VOLUME 7, 2019 110639



N. H. M. M. Shrifan et al.: Prospect of Using Artificial Intelligence for Microwave Nondestructive Testing Technique

TABLE 3. Comparison summary of the preprocessing techniques.

1 unit. Therefore, Daubechies uses few values to represent
the input signal because of its vanishing moments slightly
longer than Haar wavelet. However, the wavelet capability to
represent an input signal depends on the number of vanishing
moments because the high number of vanishing moments
can represent complex high degree polynomials [72]. On the
other hand, the Haar function is discontinuous and not differ-
entiable because it is similar to a square shape of the digital
signal. This property of Haar wavelet can be an advantage to
analyze signals with sudden changes such as defect monitor-
ing [73]. The wavelet function to be selected is moved along
the input signal with a particular shifting period. In this stage,
the input signal is decomposed through high and low pass
filters which perform averages and differences respectively.
The output of low pass filter is an approximate signal which
is down-sampled by 2 while the output of the high pass filter
is the details coefficients and also down-sampled by 2 which
can be used to inverse back the approximated signal to its
organic [74]. This process can be repeated several times to
produce several decomposition levels using the approximate
signal as input for DWT. Therefore, several advantages are
provided using DWT such as higher data compression and
reconstruction [75] as well as de-noising preprocessing.

In the noise reduction, the input signal is decomposed
into a certain level with keeping its details coefficients, fol-
lowed by hard or soft thresholding. The hard thresholding
makes all the details coefficients equals zero while the soft
thresholding only makes particular coefficients equals zero
which are lower than a certain value. Finally, the signal

is reconstructed using inverse discrete wavelet trans-
form (IDWT) by involving approximation coefficients and
the modified details coefficients. The reconstructed signal is
less deformation than the original one but it actually does not
form the original signal [76] because the occurred changes
by thresholding in the details coefficients. In the experi-
ment, A-scan signal is decomposed into several levels using
DWT and it is found that the signal at level 8 contains the
minimal noise and the defects are clearly seen. However, a
pre-knowledge of the certain level of wavelet decomposi-
tion and adequate thresholding value is required instead of
analysis all levels of wavelet decomposition which is time-
consuming. Therefore, the automation to select the optimal
values of those coefficients is a real challenge in DWT based
techniques [77].

Table 3 illustrates a comparison of various preprocessing
techniques. CCR is easy to be implemented in NDT for signal
de-noising purpose. This is applicable if a reference of the
pure signal is available to eliminate the waveforms varia-
tions between the acquired and reference signals. Moreover,
CCR can provide time delay variations for defect detection.
Therefore, it can be used as a feature in post processing
for defect evaluation. In the case of HHT, the technique
is restricted to be used in the time domain for nonlinear
and non-stationary noise suppression of the narrowband sig-
nals. Beside de-noising function, HHT provides various fea-
tures such as the instantaneous amplitude and time shifting
which can be used for defect evaluation too. However, prior
knowledge is required for the optimal IMF to be selected.
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Therefore, putting the optimal IMF selection as an optimiza-
tion problem is possible if the optimal solution is available.
Similarly, in the case of DWT, the selection of a certain
level of wavelet decomposition which is noiseless should be
optimized. Among the abovementioned techniques, DWT is a
powerful technique for signal analysis due to its capability to
analyze the signal in the time-frequency domain. Moreover,
the data compression provided by DWT can be employed
to handle the data storage issue in case of a large structure
inspection. In addition, DWT can provide approximate and
details coefficients as features for further post-processing of
defect evaluation.

B. FEATURES EXTRACTION
Features extraction and selection are important factors for
classification related issues. The appropriate set of features
can improve the classification decision and will be easily pro-
cessed by the classifier [78]. Therefore, the quality of features
is more important than their quantity. In NDT, Liu et al. [64]
used three signal based coefficients to construct a feature vec-
tor. The features are used to recognize various defects’ shapes
of aluminum specimens including arc slots and inclined
cracks. The features’ vector is a combination of the amplitude
of eddy current which is the difference between themaximum
peak value and the corresponding point in the reference line.
The second coefficient is the area between the signal curve
and the reference line. The last feature is the width which is
the number of points between the starting point and the end-
ing point of the defect’s signal. The maximum classification
accuracy of 98.90% is achieved using an optimized support
vector machine (SVM) classifier when the large training
set is used which is 173 samples. In addition, the selected
features achieved an acceptable recognition rate in the case
of small training sample (i.e. 19 samples) which is 82.87%.
The technique provides an effective small feature vector to
automate the recognition of various defect shapes. However,
a clear signal curve of the defected area is used to construct
the features’ vector. Therefore, the peak value, area and width
of the signal’s curve are easily computed. However, it is
difficult to compute those coefficients when the noise is part
of the defect due to the high disruption of the signal’s curve
or waveform. A robust de-noising preprocessing is needed to
clarify the exhibition of the waveform in order to make this
technique effective. In the matter of the reference line, it con-
nects the front and end of the signal wave. The difference in
the amplitudes of the front and end of the signal wave yields
italic reference line. In the case of presence several peaks in
the samemaximum value, the differences between the similar
peaks with their corresponding points on the reference line
will produce different values. Therefore, there is no clear
decision at which point the feature will be calculated.

In other technique [79], several statistical parameters are
used to represent the features of the ultrasonic signal which
are mean value, root means square value, standard deviation
and absolute value as represented by Equations 1, 2, 3 and

4 respectively.

Mean value: AVG=
1
N

∑N

i=1
xi (1)

Root means square value: EFC =

√
1
N

∑N

i=1
x2i (2)

Standard deviation: STD=

√
1

N−1

∑N

i=1
(xi−AVG)2

(3)

Absolute value: ABS =
∑N

i=1
|xi| (4)

whereN is the number of the acquired points and x is the echo
amplitude of the back wall echo at a certain point i.

A-scan signal is obtained from steel and coarse-grained
metallic material and preprocessed using DWT. A hard
threshold is applied to the details coefficients at each decom-
posed level to improve the signal-to-noise ratio. The features
are computed from the echo amplitude of the ultrasonic sig-
nal. The technique proposed that the signal which contains
only the back-wall echo has a smaller average value than the
signals obtained from flaws or welding regions due to the
variations of echos number. The acquired signals are mapped
based on the computed features to three classes which are a
place without flaw, a place with a flaw and in the center of the
weld. Then, the features are classified using SVM classifier
and 100% of classification accuracy is achieved by the feature
of root means square value. Moreover, the statistical param-
eters with different strategies are introduced in [80] to form
the feature vector of the ultrasonic signal. The classification is
achieved using SVM and ANN to recognize various defects
(i.e. void, delamination and debonding) of CFRP and more
than 98% of recognition rate is achieved. However, statistic
features especially average based features aim to reduce the
higher echos and must be considered as a loss of valuable
information in case of data representation.

A comparison of the feature extraction techniques is sum-
marized in Table 4. All the described techniques show high
performance in term of defects recognition and classification.
In [64] only three features are used to automate the defects
recognition. The low features’ dimensionality shows a robust
recognition rate with a small training sample set. Therefore,
the difficulty of collecting the training sample of NDT appli-
cation is considered. On the other hand, the statistical features
in [79], [80], the higher accuracy is achieved in [79] by
hybridizing the signal processing (e.g. DWT) and machine
learning (e.g. SVM). The statistical features acquired after
signal processing and hugely improved the classifier per-
formance with 100% of classification accuracy. Therefore,
the signal preprocessing is needed to improve the features’
quality to be reflected in the classifier performance.

C. NDT MACHINE LEARNING BASED TECHNIQUES
1) ARTIFICIAL NEURAL NETWORK (ANN)
ANN is data processing pattern which simulates a biological
brain through simple computational elements known as neu-
rons (nodes). Basically, ANN is limited to three layers which
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TABLE 4. Comparison summary of the feature extraction techniques.

are input layer, hidden layer and output layer. Several neurons
involved in the hidden layer which is fed by the inputs’ values
that are weighted and summed to be decided whether the
neuron should be activated or not for producing the output
signal [81]. The artificial neurons work in unison which has
a natural behavior to build investigational knowledge to be
used for classification and estimation purposes based on the
learning by actual example. This advantage of ANN as an AI
model can be employed in NDT to recognize and estimate
harmful defects before causing the system failure as well as
improve the safety criteria.

ANN is used in [82] to estimate the strength of con-
crete underwater and provide efficient maintenance process
of construction integrity. The training process used the real
compressive strength values are labeled with corresponding
values of ultrasonic velocities and rebound hardness which
represents the pattern features. The training set used 14 out
of 20 samples and the rest of the sample used for experi-
mental verification. The verification result showed that 98%
of accuracy is achieved which provides a robust estimation
of concrete strength. However, a large sample is needed to
improve the estimation reliability [83] because a small size
of the verification sample in some cases leads to the accuracy
bias.

The automation of defect detection and improving sensor
sensibility are other challenges that are faced by conventional
NDT techniques. These challenges are due to the data com-
plexity produced by sensors which require a long time for
processing and intensive computations. An intelligent model
such as ANN makes it possible to develop real-time NDT
applications and improve defect sensibility. Automatic defect
recognition is developed in [60] based on ultrasonic oscillo-
gram and DWT coefficients. Three defects to be recognized
using ANN which are porosity, lack of fusion, and tungsten

inclusion, as well as the defect-free regions, are considered.
A-scan signals are acquired from the inspected stainless steel
specimen and eight features are extracted from DWT detail
coefficients at each known defect position namelymean, vari-
ance, maximum amplitude, minimum amplitude, maximum
energy sample, average frequency, minimum frequency and
half frequency point. A database from 240 sets is produced
to train and test ANN. A pre-test involves 12 sets of each
class is achieved first. The goal of the pre-test is to acquire
the weight values of ANN at a lesser epoch. The acquired
weights are applied to another untrained network has the
same previous ANN structure which is detailed in the original
article. The pre-test aims to generate adjusted ANN without
long training process or massive training set and capable to
perform reliable defect recognition. The rest of dataset is used
to examine the untrained ANN and 94% of recognition rate
is achieved. The integration between signal processing tech-
nique (DWT) and artificial model (ANN) produces reliable
automatic NDTwhich can achieve a human expert’s function.
Therefore, the proposed method shows the suitability for the
development of a decision support system for nondestruc-
tive evaluation. However, this technique is limited for defect
classification based on the whole specimen under test. It is
not capable of defect localization because it classifies the
specimen into various classes of the defects. This means the
accurate location affected by the defected regions is merged
together with adjacent locations. In addition, the appropriate
weight values of ANN are needed to generalize the defects
classification which depends on the appropriate set of fea-
tures that can improve the classification decision.

2) DEEP NEURAL NETWORK (DNN)
Recently, deep learning achieved astonishing success in
various areas, especially in image processing. DNN is a
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hierarchical structure of ANN which involves nonlinear mul-
tiple layers that aim to create an efficient link between the
input and output layers by adjusting network weight during
the training process [84]. Increasing the hidden layers will
increase the network capability to transform the input data in
more complex manners to its target output through a training
process. In the case of the composed materials inspection,
the inspection produces a complex backscattering due to the
presence of the hidden defect. The complex backscattering
makes difficult to distinguish between the defect and defect-
free regions. Therefore, DNN is well suited to process the
huge data of the complex backscattered signals to find out
the features of the hidden defects to be distinguished from
defect-free regions as well as to recognize various kinds of
defects [81]. This assists to improve NDT performance and
provide a reliable inspection.

DNN-NDT in [58] is performed to detect the presence of
various kinds of defects such as drilled holes and slits with
different depths. The inspection is based on the ultrasonic
images. Massive training sample with 6849 images is used to
train the network to split the sample into the defect and defect-
free sets. The study shows that the deep learning network
outperformed the ANN performance. On the other hand, var-
ious DNN-based techniques are well reviewed in [81] which
are used to inspect the materials degradation. The review
shows that DNN produces encouraging results for detect-
ing materials degradation whether image-based inspection
or signal based inspection. However, deep learning network
still suffers from massive training sample which is needed to
achieve high-performance accuracy. Practically, this massive
sample in NDT is difficult to be acquired for the same sample
under the inspection. Moreover, a large number of hidden
layers and learnable coefficients are needed for accurate clas-
sification which makes DNN suffers from overfitting without
regularization to integrate thismassive structure of DNN [57].
In addition, in case of high noise of ultrasonic NDT, DNN
gives the poor performance of defect detection compared to
the conventional neural network [85].

3) SUPPORT VECTOR MACHINES (SVMS)
SVM is a machine learning technique that aims to analyze
data for classification and estimation purposes. During the
training process, there are two input groups which are v
and c where v is an n-dimensional vector contains set of
properties of an object, and c is a label or a classification of the
features vector. The classification and estimation processes
are achieved by providing only the features vector c without
its label which will be classified or estimated [86].

As a part of AI techniques, SVM can provide reliable and
fast recognition NDT of defects which is an essential task
for structural integrity and health monitoring. SVM aims to
decrease the upper bound of the generalization error, which
enables the SVM to provide better generalization capability
even when dealing with unseen data. SVM is intensively used
in NDT because of its advantages such as performing reliable
classification and handling high-dimensionality features as

well as the perfect generalization capability. SVM is used not
only for defect detection but also for various defects recog-
nition. The capability of SVM to distinguish between two
classes is high due to its advantage as a binary classifier [87]
which performs a robust classification between two classes
(e.g. 0 for defect-free and 1 for the defected region). The
demands of online NDT to obtain satisfactory accuracy with
low time cost are required. An intelligent system is introduced
in [64] to realize an online automatic NDT and recognize
various defects shapes. The proposed system consists of
eddy current sensor, wavelet packet analysis (WPA) for de-
noising processing, defects feature extraction and SVM. The
system is used to identify common defects (i.e. arc slots
and inclined cracks) of aluminium alloys and performance
accuracy of 98.90% is achieved based on three features which
are peak value, area and width of the defect signals. As shown
in the recognition accuracy, the combination of signal pro-
cessing (e.g. WPA) and AI (e.g. SVM) provides high NDT
performance.

Nevertheless, the high performance of SVM as a binary
classifier with the realization of SVM as a multi-class classi-
fier, N of SVM classifiers should be generated. This means
one classifier for every single class. Therefore, during the
training process, it should be considered that the data of the
target class will be labeled as 1 and the rest of the data will
be labeled as 0. This process will be repeated with each class
to produce several classifiers that are capable to classify N
classes. In the testing stage of SVM, the input data will be fed
to all the classifiers to obtain the final result of classification.
Therefore, in some cases, the input data may be classified
into two or more classes which make the classification more
confusion. Moreover, a large number of classes leads to a
large number of classifiers. Therefore, this technique is time
consuming due to high computation cost of a large number
of SVM classifiers compared to the neural networks which
build one network to classify several classes.

The compressive strength of concrete prediction is another
application of AI-NDT to provide reliable inspection because
of its importance in building maintenance and avoiding the
collapse disasters. An approach of NDT is proposed in [83]
to predict the compressive strength of concrete. The approach
used two ultrasonic pulse transducers as transmitter and
receiver to measure the wave velocity through the inspected
materials and rebound hammer which is an elastic mass
depends on the hardness of the surface mass strikes. The com-
bination values of the two approaches are used to train SVM
for estimation purpose. The experiment used a sample from
95 cylinder concrete, while the actual strength of each cylin-
der is used as a target result. The actual strength is measured
in laboratory conditions using destructive compression tests.
Then, ultrasonic pulse velocity and rebound hammer values
are measured for the entire sample and 85 of them are used for
the training process which labeled with their corresponding
actual strength. The rest of the sample is used for a test-
ing process to measure the estimation accuracy of concrete
strength. The estimation result of SVM shows a promising
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result compared to the statistical regression model. However,
this method is not one side inspection and it can only be used
to inspect accessible surfaces. Moreover, the actual strength
of the concrete is measured using destructive compression
tests where the sample is destroyed.

In the conventional NDT especially signal based tech-
niques, the mathematics inversion of the back-scattered sig-
nals to characterize the defects in the inspected specimen still
complicated to be achieved in real time due to the high com-
putations cost of the nonlinear data. Therefore, the AI model
such as support vector regression (SVR) can be proposed
to achieve this task through learning by example even in an
arbitrary form. A learning by example approach is introduced
in [88] which aims to estimate the defect characteristic of a
conductive surface such as position (e.g. x, y and z), length,
depth and width based on SVR and eddy current signals. SVR
is learned by labeling the real and imaginary parts of the
eddy current frequency with a known defect’s properties as an
actual example. Therefore, in the inspection process, the real
and imaginary parts of the eddy current frequency will be
used to estimate unknown defect properties. In this approach,
only the length and x parameters are tested and provide very
good estimation result. This intelligence technique employs
SVR to completely avoid the full mathematical modeling of
the eddy currents for imaging the inspected specimen and
provides real-time NDT.

Several advantages are provided using machine learning
with conventional NDT techniques as shown in Table 5.
In term of NDT automation, machine learning techniques
such as ANN, DNN, SVM and SVR performed automatic
NDT systems. The automation process aims to avoid the
human error which is subjected to the inspector’s individual
experience. Moreover, NDT based on machine learning tech-
niques such as [64] proposed to provide near to the real-time
inspection which can speed up the production time. In addi-
tion, a reliable NDT is needed in reality to inspect the integrity
of a product or structure. Therefore, the high accuracy rate
is clearly achieved with NDT based on machine learning
especially when several NDT techniques are integrated such
as in [83] and [64]. The defect evaluation in [88], the use
of machine learning in NDT provides valuable information
about defect’s position, length, depth and width to estimate
the extent of the damage. On the other hand, two issues
expose the machine learning techniques in NDT which are
feature quality to improve the classifier performance and the
size of the training sample. However, DNN in [58] aimed
to optimize the features’ quality by avoiding the manual
features construction. The capability of ANN in [58] to be
adopted by adjusting its weight hugely reduced the size of
training samples which is difficult to be acquired in the real
applications.

V. ARTIFICIAL INTELLIGENCE APPLICATIONS
IN MICROWAVE NDT
Towards intelligent systems in NDT, AI based on machine
learning approaches play a vital role in term of signal

post-processing for defect detection and evaluation. AI can
address the complexity of the collected data to improve the
detection sensitivity of the defects [11]. In the conventional
NDT techniques, machine learning approaches provide reli-
able and real-time inspection as well as avoiding complex
mathematical modeling. However, the use of AI inmicrowave
NDT (MNDT) still limited nevertheless its success in the
other NDT techniques which high inspection accuracy is
achieved. As mentioned, the microwave-based techniques
have an advantage in inspecting both the conductive and
non-conductive materials. Moreover, the microwave signals
can penetrate the coating surface and interact with the inner
layers which are affected by the variations of the thickness as
well as due to the defect presence. Therefore, it necessitates
enhancing the performance of MNDT techniques not only
at the sensor design but also on the post-processing level.
Therefore, the advanced integration between microwave sig-
nal processing and AI is needed to produce robust MNDT.

The earlier attempt to introduce intelligent MNDT was
in [11] which aims to improve the OERW sensor sensitivity.
The technique used a combination of SVM and ANN classi-
fiers to find the small variations of the reflection coefficient
which are difficult to be observed. Therefore, the high capa-
bility of the AI model to find small variations is used to be
employed for improving the defect detection. The technique
is employed to classify the coated steel specimens into defect
and defect-free. The reflection coefficient is acquired from
the defect and defect-free specimen and split into training
and testing samples which are 46 and 369 samples respec-
tively. The training samples are labeled into defect and defect-
free. The frequency is swept from 12-18 GHz by 30 MHz
increments using Vector Network Analyzer (VNA). As a
result, 201 of frequency points are generated to be used as
features. Each frequency point is normalized to its maximum
value tomitigate the small stand-off variations. The frequency
point vector is classified based on the features of principal
component analysis (PCA). PCA is used to determine the
significant features before they are used as input data for
SVM and ANN. PCA uses a set of orthogonal transforma-
tions to represent the original sample into few uncorrelated
values. Therefore, PCA is used for preprocessing the long
features’ vector to reduce the dimensionality of the features
as well as selecting the most significant features to guide the
classifiers. The higher accuracy rate (i.e. 99.62%) is achieved
when only 13 PCA components are involved in the features
vector. Nevertheless, the technique is limited to classify the
inspected specimen into defect and defect-free without defect
evaluation but the intelligent inspection achieves reliable
defect detection even without considering the complicated
noise preprocessing. Furthermore, the features normalization
significantly improves the defect detection in the case of
small stand-off variations.

An AI model can contribute more to MNDT because it
is not limited to classify the inspected specimen into the
defect and defect-free classes. Intelligent MNDT can achieve
another task in defect evaluation such as defects imaging.
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TABLE 5. Comparison summary of the machine learning techniques.

The classification on the spatial level such as in [89] aims
to classify the acquired signals into the defect and defect-
free positions as well as to illustrate the defect position and
size. The inspection is spatially performed using MTL sensor
with SRR etched on the printed circuit board (PCB). The
inspection is performed on a steel specimen to detect the cor-
rosion underneath. The scanning achieved by 1 mm in x and
y directions along with the inspected specimens. The mag-
nitude of the transmission coefficient (|S21|) is acquired at
each inspected position. Each spatial point contains 191 fre-
quency points through frequency sweeping from 3.25 GHz
to 4.2 GHz by a 5MHz increment which is high dimensional
features. Therefore, PCA is employed to reduce the features
dimensional into 15 components. Each feature is labeled into
the defected (1) and defect-free (0) regions and split into
training and testing samples. The SVM classifier is employed

to construct a 2D binary image by classifying each feature
set into 1 and 0. The constructed image has clearly displayed
the corrosion underneath which makes it capable to recog-
nize the unseen corrosion position as well as to measure the
corrosion size. However, there are several pixels wrongly
represented as corrosion at the edges of corrosion regions.
The false pixel classification is due to the absence of signal
processing to eliminate the diffraction noise. Therefore, the
integration between signal processing and AI model has been
proven to provide reliable inspection as well as better resolu-
tion [59]. However, this technique is limited to evaluate only
the defect location and size, while the defect depth cannot be
estimated which is important to estimate the damage level.
In addition, the features based on frequency sweeping lead
to an increase in storage volume and time-consuming at
the initial stage of the inspection [90]. Therefore, it is not
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suitable for large structure inspection. Furthermore, feature
dimensionality reduction technique such as PCA extracts the
informative features set by mapping the original data set to a
lower space. However, the features in the lower space do not
correspond to the sweeping frequencies [91] which loss the
original frequency points values.

In intelligent MNDT, features selection is another impor-
tant factor to enhance the classifier performance as well as
defect detection and evaluation. Generally, feature vector
contains redundant values which are undesirable because they
lead to an increase in the size of the feature vector and the
processing time as well. Instead of performing the dimen-
sionality reduction using PCA and loss the optimal frequency
points representation as features, AI can be employed to
select the most optimal frequency points to train a classifier
and suppress the least important frequency points.

Two feature selection methods are applied in MNDT [92]
which are Relief and Random Forest to find the most infor-
mative frequency point that can represent defects of ametallic
plate based on the magnitude of the reflection coefficient.
Relief algorithm [93] measures the relevance of a single
feature in the problem space by increasing or decreasing its
weight. On the other hand, the Random Forest algorithm [94]
is recognized as a classifier which orders the importance
of the features based on the classification accuracy [95].
The features are constructed as a tree and the nodes are
randomly replaced to increase the classification accuracy.
Both of the feature selection algorithms gave better classifica-
tion accuracy against using a full features’ vector. However,
these techniques provide the most important features to be
classified based on the analysis of the features first. The
informative set of the features cannot be predictable to be
used at the initial stage of the inspection process. Therefore,
these techniques cannot avoid the storage issues and the long
processing time in the initial stage of the implementation.
Moreover, the classification accuracy based on the selected
set of the frequency points is subject to be changed due to
the stand-off variations which leads to change the optimal
frequency points. Therefore, AI should be employed as a
pattern recognition model to handle this challenge by auto-
detection of the optimal frequency points.

Besides using the signals preprocessing techniques, sta-
tistical features, signal shape features and frequency points’
features in NDT, there are several robust feature extractions
algorithms can be used in MNDT applications in the future.
Histogram of Oriented Gradients (HOG) is one of the best
features extractor; it is widely used to describe edges and local
shape information. It was introduced by Dalal and Triggs [96]
to detect the human body by representing the objects based on
the distribution of gradient intensities and orientations in spa-
tially distributed regions.Moreover, the HOG provides strong
orientation and illumination invariance and it is useful for
recognizing objects’ texture with deformable shapes [97] and
small-scale changes [98]. Therefore, the capability of adapt-
ing HOG to be applied in MNDT should be investigated to
extract defects’ features for defect detection and recognition.

However, HOG is limited to 8 × 8 pixels of the local region
which is unsuitable for individual pixel classification such as
the defected and defect-free pixels but it can be employed to
classify the inspected specimens into the defected and defect-
free. Moreover, HOG can be employed to describe various
defects’ shapes for defects recognition purpose.

Moreover, Local Binary Pattern (LBP) is another important
descriptor introduced in [99] and shows high discriminative
power in pattern recognition challenges. LBP represents a
grey-scale image based on 3 × 3 non-overlapped blocks.
Each block produces a single value based on the correlation
between the center pixel value and its connecting pixels. The
connecting pixels are considered as a binary number, where
any pixel value less than the center pixel value is converted to
0 and otherwise converted to 1. As a result, a feature vector
is constructed which can describe defect features in MNDT
to represent the defected and defect-free regions of a spatial
image. Similarly to HOG, LBP is limited to the local region
with 3× 3 pixels.
In addition, Gabor wavelets in [100] is another features

extractor and have been widely used in image processing
which provides better spatial domain and frequency domain
resolution of 2D Gabor wavelet [101]. Furthermore, the use
of Gabor wavelets has several advantages such as invari-
ant to rotation and dilation with keeping the relationship
among connecting pixels [102]. Therefore, in MNDT imag-
ing, Gabor wavelets can be employed to extract the defect’s
features in various experiments’ conditions to be applied
in the future with regardless to the scaling and orientation
variations of the captured image of the specimen under test.

Furthermore, besides ANN and SVM which are used in
NDT, C4.5/J48 [103] is a statistical classifier which can be
used in MNDT applications. C4.5/J48 builds a decision tree
based on training dataset in both continuous and discrete
features cases. The rules acquired from the generated tree
are used to predict the class of testing data. The capability of
the classifier to analyze huge data is high which used in data
mining applications. J48 is the implementation of C4.5 clas-
sifier in the Weka data mining application. The classifier can
take a decision in MNDT to classify the defected and defect-
free specimens/positions whether for image-based features or
signal based features.

Besides the contribution of AI in the conventional NDT,
Table 6 shows the significant improvement of MNDT tech-
niques based on AI techniques. The reliable defect detection
with 100% of accuracy rate is achieved in [92] even without
signal preprocessing. Moreover, few numbers of the raw
features are involved in the detection process. Therefore, this
result reflects the capability of microwave signals to improve
classifier performance. The high capability of microwave
signal to inspect the coated structure such as [11] provides
a robust classification accuracy with 99.62% of accuracy
rate. The high classification rate is because of the efficiency
of microwave signals to interact with the inner layers of
the compound structure. In addition, the integration between
microwave and AI techniques in [89] provides innovative
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TABLE 6. Comparison summary of AI-MNDT techniques.

defect evaluation in term of the defect size and position.
Despite the modest attempts for integrating the microwave
with AI techniques in NDT it performed encouraging result.
Therefore, a further investigation in the future is required
for full integration between AI and MNDT as well as to
decrease the acquired data at the initial stage of microwave
inspection.

VI. CONCLUSION
NDT techniques play vital roles in the industrial components
during fabrication or in service to ensure the high production
quality of products and early estimate harmful defects before
causing the failure of the system. The performance of the
conventional NDT techniques such as thermography, ultra-
sonic, eddy currents evaluation, X-ray and magnetic particles
inspection is degraded due to the development of material
sciences which produces complex structures of the manufac-
tured material (e.g. composite materials and dielectric coat-
ing). Therefore, the trend of use MNDT for inspecting these
structures rises up because the advantages of microwave-
based techniques to handle conventional techniques’ chal-
lenges. However, the conventional MNDT techniques still
suffer numerous limitations such as blurred spatial images,
intensive computations, and automation complexity.

Among conventional MNDT techniques, OERW is inten-
sively used in the nondestructive inspection and shows a
promising result in term of defects detection, localization and
depth estimation of various materials such as metals, CFRP,
GFRP, TBC and dielectric components. However, OERW
based techniques face several challenges such as stand-off
variations, optimal frequency point and poor quality images
because researchers focus their research toward sensor-based
enhancement with lack of implementation of soft computing
techniques in MNDT applications.

Soft computing techniques such as preprocessing tech-
niques, feature extraction techniques and machine learning
classifiers aim to model and solve real challenges regardless
of the mathematical complexity. Therefore, the prospect of
using AI techniques in MNDT to solve the challenges of
microwave-based techniques is possible to acquire an effec-
tive inspection result. For example, the high interference of
the microwave diffracted waves between the sample surface
and defect’s edges leads to poor quality of OERW imag-
ing and reflected on the measurement accuracy of defect
sizing and depth. Therefore, putting this problem into a
classification challenge using machine learning classifiers
is possible to distinguish between the defected and defect-
free regions. This is due to the high capability of machine
learning techniques to train and solve complex and nonlinear
data.Moreover, the accurate classification of the defected and
defect-free regions will be reflected in themeasurement accu-
racy of the defect evaluation in term of defect position and
size.

In addition, as the capability of statistical machine learning
techniques to estimate unknown value based on training set
examples is high, therefore, statistical machine learning tech-
niques can be employed to predict defect’s depth based on
known defects’ examples. However, the performance of both
classification and estimation of machine learning techniques
are depending on the capability of the extracted features to
describe defect position and its depth. Selecting right and
unique features lead to improvement of the classifier accuracy
and reduce processing time as well as to be suitable for real
environment implementation. In this matter, a deep investi-
gation is needed to transfer conventional feature extraction
algorithms such as HOG and LBP from image processing
domain into signal processing domain and their impact on
MNDT efficiency.
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The prospect of using signal processing techniques with
AI approaches in MNDT is highly possible to enhance the
efficiency of the inspection system because the impact AI
is clearly seen in various fields such as pattern recognition,
data mining and systems automation as well as the conven-
tional NDT techniques. The use of AI in MNDT is not only
restricted to overcome the above-mentioned challenges but
also it can build automation system that capable to improve
the production quality and monitoring during fabrication or
in service and makes a qualitative difference in NDT appli-
cations. Moreover, the automation of MNDT tries avoiding
the dependence on the skills and experience of the operators
which decreases the possibility of the human error.
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