
Received July 14, 2019, accepted August 4, 2019, date of publication August 9, 2019, date of current version August 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934163

Fire Sprite Animation Using Fire-Flake Texture
and Artificial Motion Blur
JONG-HYUN KIM 1 AND JUNG LEE 2
1Division of Software Application, Kangnam University, Yongin 16979, South Korea
2School of Software, Hallym University, Chuncheon 24252, South Korea

Corresponding author: Jung Lee (airjung@hallym.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT & Future Planning (2017R1C1B5074984), and in part by a Hallym University Research Fund
(HRF-201811-013).

ABSTRACT In this paper, we propose a sprite animation synthesis technique that can efficiently represent
the fire-flake effects seen in the natural phenomenon of fire. The proposed method uses the actual fire
video or animated fire video as inputs and performs the following steps: 1) Extraction of feature vectors
that can predict the direction of flame from image, 2) calculation of artificial buoyancy field, 3) creation
and advection of fire-flake texture, 4) calculation of artificial motion blur using buoyancy flow, and 5) high
quality composition. First, we detect the edges from the image and calculate the feature vectors needed to
calculate the artificial buoyancy field. The computed 2D feature vectors are integrated into the Navier-Stokes
equation and used to calculate the buoyancy field, which generates and advects anisotropic fire-flake textures.
Finally, we apply artificial motion blur according to buoyancy direction to improve composition result of
sprite animation. As a result, this method is based on image synthesis, which is faster than the existing 3D
simulation-based approach. Experimental results show that high quality results can be easily and reliably
obtained. In addition, since the final result is a sprite animation format, it can be easily used in existing game
engines.

INDEX TERMS Sprite animation, fire effects, anisotropic fire-flake texture, artificial buoyancy field.

I. INTRODUCTION
Fire visual effects are often used in movies, animations,
games, and image processing. Professional designers fasci-
natingly express fire effects by adjusting the color and style
of the fires in the images or videos. In recent years, fire effects
have been inserted into movies and games using fire style
templates or assets built into the game engine (see Figure 1).

Sprite animation is a commonly used method for express-
ing fire effects, which is often used in game engines to
synthesize fire effects by copying and pasting a fire tem-
plate image into an original images or videos. Professional
designers manually edit and express detailed attributes such
as shape and direction of fire by cutting, pasting, deleting,
rotating, and resizing fire images in layer style. This method
can produce stable and easy results. However, due to the
inherent limitations of the designer’s manual work, it is very
difficult to express the shape and movement of realistic fire,
and a highly skilled designer must work over a long period of
time.

The associate editor coordinating the review of this article and approving
it for publication was Lefei Zhang.

FIGURE 1. Various fire effects in animation and game (a: animation
’ZETMAN’, b: mobile game ’Raising Fire Magician’.

The fire effect based on a still frame can be automatically
generated using a procedural approach [1], [13]. However,
the procedural approach makes it difficult to add or edit
effects other than predefined fire effects. A simulation-
based approach can produce realistic and very detailed flame
effects. The shape and flow of the flame can be intuitively
controlled by placing the fuel to follow the target shape,
burning it, and then inducing the flame in the desired direc-
tion. However, because of the large amount of computation,
simulating fire simulation in low-resolution is required to

110002 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1603-2675
https://orcid.org/0000-0003-0458-1474


J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

perform interactive simulations, and as a result, detail of fire
is degraded. In other words, high-resolution simulation is
required to produce high-quality fire effects, which are not
suitable for interactive systems because of the high computa-
tional complexity.

An important factor when using simulation in video special
effects is the balance of quality and speed, and often they
are in opposition to each other. In this paper, we propose a
new framework that can efficiently represent high quality fire
effects by analyzing images of real fire and high resolution
simulation images. The proposed method analyzes the input
image to compute artificial buoyancy, and uses this field to
generate and advect fire-flake textures. Each step is calculated
in a separate layer, and the final result is made through
composition of all layers. As we analyze and import realistic
shape changes and movements of fire from input video, our
technique can produce high quality fire sprite effects.

II. RELATED WORK
Fluid simulations are a demanding area for a variety of special
effects such as movies, games, and art. Stam proposed a semi-
Lagrangian technique to improve the numerical stability of
fluid simulations [14]. Foster and Fedkiw used the semi-
Lagrangian method and the conjugate gradient method, a sys-
tem that effectively solves linear equations, to calculate the
motion of water, and used a levelset to represent surfaces
of water [15]. Enright et al. have improved the accuracy
of fluid simulation by proposing a particle-levelset method
that minimizes the amount of fluid volume lost during the
simulation [7].

In the field of physically based simulation, smoothed par-
ticle hydrodynamics (SPH) method, which is a technique to
efficiently calculate particle-based water simulation, is also
widely used [16]. Becker and Teschner proposed a weakly
compressible SPH (WCSPH) technique that uses a state
equation to reduce the computational complexity of the SPH
technique [12]. Solenthaler et al. then proposed Predictive
Corrective Incompressible SPH (PCISPH), which uses the
prediction-correction technique to calculate the pressure of
a particle to ensure the incompressibility of the fluid [11].
This technique predicts the density from the velocity and
position of the particle before computing the pressure in
the simulation process, and iteratively calculates the incom-
pressible pressure based on the predicted density value.
Macklin and Müller [17] used a position-based constraint
between neighboring particles to satisfy the incompressibility
of the fluid [18], and the algorithm was simpler than PCISPH
and stably performed at larger time-steps.

Nguyen proposed a level-based fire simulation and
rendering technique using incompressible fluids [10]. This
technique uses fuel, flame, and post-combustion media, and
realistically expresses the motion of fire using the velocity
before and after combustion. Hong combines the detonation
shock dynamics (DSD) technique with the Navier-Stokes
equation to detail the flame wrinkled patterns [4]. Horvath
and Geiger proposed a framework for accelerating hybrid

particle-grid simulations using multi-GPU [8]. This tech-
nique divides the simulation space into a number of 2D slices,
and enables high-resolution fire simulation to be performed
quickly. Kim et al. proposed a method of containing flame
in a target shape by controlling the temperature [3]. In the
field of fire simulation, a technique has been proposed to
express the motion of fire-flake as well as flame according
to the temperature field and velocity field of fluid [5]. The
simulated fire-flake motion in this technique is not sufficient
to represent realistic fire-flake effects because it is a random
walk based, with somewhat noisy motion unlike flame.

In recent years, studies have been made to improve sur-
face details of water simulation based on texture synthesis
techniques. There have been attempts to utilize 2D texture
synthesis techniques for simulation, but problems such as
texture blurring or blending of colors have resulted in the
reduction of detail in the advection process. Gagnon et al. [6]
has improved the details of texture-based water surfaces by
reducing these problems. In another aspect, research has been
conducted to improve simula- tion efficiently using machine
learning and artificial intelligence [19]–[22].

III. OUR FRAMEWORK
The algorithm of the proposed method is performed in the
following order after receiving the sprite image sequence.

1) Calculation of feature vectors to extract the motion of
the flame from the input images.

2) Computation of the buoyancy field based on feature
vectors : This process improves the details of the buoy-
ancy field that changes over time by including buoy-
ancy throughout the advection process as well as the
current time.

3) Creation of anisotropic fire-flake texture and its
advection according to buoyancy flow.

4) Calculation of the artificial motion blur kernel based on
the direction of buoyancy, and improving the quality of
the final composition result using the kernel.

A. EXTRACTION OF FEATURE VECTORS FROM IMAGE
SEQUENCES
To calculate the feature vectors Fv from the input image, its
edges are first extracted and the final feature vector Fv∗ is
calculated using the derivative of the extracted edges. The
overview of the calculation process is shown in Figure 2.

FIGURE 2. Overview of feature vector calculation : (a) one of input image
sequences, (b) extracted edges, (c) calculated feature vectors Fv , (d) final
refined feature vectors Fv∗.

VOLUME 7, 2019 110003



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

First, edges are extracted by using a difference of
Gaussian (DoG) filter based on the second derivative to
perform edge detection. This filter assigns a different variance
value to each Gaussian operation and calculates the edge map
using the difference of the results. The equation is as follows
(see Equation 1).

f DoG(x, y) = Gσ1 − Gσ2

=
1
√
2π

(
1
σ1
e−(x

2
+y2)/2σ 21 −

1
σ2
e−(x

2
+y2)/2σ 22 )

(1)

The edge thickness to be detected can be adjusted by
changing the values of σ1 and σ2 in this equation. The direc-
tion of the artificial buoyancy is calculated using the gradient
of the detected edges (see Equation 2).

Of DoFκ = (
∂f DoG

∂x
,
∂f DoG

∂y
)︸ ︷︷ ︸

Of DoG

(
wy

wheight
)n︸ ︷︷ ︸

κ

(2)

κ is a variable that artificially controls the magnitude
of buoyancy. To extract Fv with motion of large variation,
we calculate Equation 2 only for the region where the fol-
lowing condition is satisfied :

∥∥Of DoF∥∥ > ε, which is set
to 40 in this study. Generally, since the turbulence flow in
the fire effects is strong after combustion, the strength of the
turbulence is controlled using κ based on the Y -axis. In actual
fire, a larger turbulent flow is seen when the flame moves
upward due to buoyancy than when the flame is generated
at the emission position (see Figure 3). Since this flow makes
the motion of the fire-flake more complicated, in this study,
the kappa is adjusted so that the feature vector becomes larger
as the Y coordinate value becomes larger. In Equation 2,wy is
the y coordinate of the image and wheight is the height of the
input image. As a result, the κ value is close to zero at the
bottom, and approaches one at the top. n is a variable for
controlling the size of theFv. As shown in the Figure 4, we set
n to 5 and use the weight function of the curve type so that the
difference of the Fv becomes larger as the size of n increases.

FIGURE 3. Real sparks and flakes of fire.

The Figure 5 shows the calculated Fv according to κ and n.
As shown in the figure, the upper region after burning has
a much larger Fv than the lower region where the fuel is

FIGURE 4. Changes in κ with different n values. (a) Weight curves
according to different n values (orange : 5, blue : 1), (b) Color bars
according to different weight graphs.

FIGURE 5. Controlling Fv by κ .

generated. If there is no κ , buoyancy is the same every-
where, so fire-flakes may move downwards. (see Figure 2c).
Although Fv is controlled by κ , the direction of Fv may
be different from that of buoyancy because it has a first
derivative with respect to the edge, so it looks like a normal
vector (see Figure 2c). In this paper, Fv is refined based on
the default buoyancy force Fbuoyancy to calculate the artifcial
buoyancy field according to the direction and size of Fv (see
Equation 3).

Fv∗ = Fbuoyancy
∥∥∥h f Dof κ

∥∥∥β +h
f Dof κ (3)

Fbuoyancy is a 2D vector whose range is [0,1] and β is set to
0.02 in this paper. As a result, Fv∗ is expressed as a force that
moves according to the direction of the flame (see Figure 6).

FIGURE 6. Visualization of Fv∗ by frames.

B. GENERATION OF BUOYANCY FIELD
In this paper, we model the buoyancy field that changes
with time by integrating Fv∗ and Navier-Stokes equations to
express the natural motion of fire-flakes. First, to compute the
differential form of the momentum equation representing the

110004 VOLUME 7, 2019



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

motion of a fluid, we apply Newton’s second law to a fluid
particle with mass dm (see Equation 4).

F =
P
dt

(4)

The linear momentum P is calculated as follows (see
Equation 5).

P =
∫
mass

udm (5)

Newton’s second law for mass dm in the infinitesimal
system can be written as Equation 6.

dF = dm
du
dt

(6)

After obtaining the acceleration equation from the velocity
field, we can rewrite Newton’s second law as vector equation
as follows (see Equation 7).

dm
Du
Dt
= dm(

∂u
∂t
+ u · u) = dF (7)

Here, the influence of mass dm and volume dV = dxdydz
on the differential element must be considered when calcu-
lating dF . Generally, dF in fluid mechanics is composed of
surface force and body force as follows (see Equation 8).

dF = dFsurface + dFbody (8)

Surface forces acting on the surface can be rewritten
using viscous force and pressure difference as follows (see
Equation 9).

dFsurface = {µO · (Ou)− Op} dV (9)

Body forces are the forces exerted on the whole body of a
finite element. In the classic Navier-Stokes equation, gravity
is the only body force acting on a fluid. Instead of gravity,
we can use the buoyancy described above to rewrite the body
force as follows (see Equation 10).

dFbody = UpotentialdV (10)

Finally, the body force is calculated as follows (see
Equation 11).

Upotential = Ugravity + Ubuoyancy (11)

Here Ubuoyancy is a user defined artificial buoyancy, which
can be used to rewrite Navier-Stokes equations as follows (see
Equation 12).

∂ (ρu)
∂t
+ O · (ρuu) = µO · (Ou)− OP+ρg+Uwind (12)

The only difference between Equation 12 and the general
Navier-Stokes equation is the existence of Ubuoyancy, a user
defined buoyancy. This buoyancy field is computed from the
input images and does not have a large amount of computa-
tion and is easily combined with existing fluid equations as
seen above.

In the Figure 7a, Fv1 has a relatively large value compared
toFv2, and ourmethod stably calculates the buoyancy field by

FIGURE 7. Calculating artificial buoyancy field and candidate position of
fire-flake texture : (a) buoyancy field by Fv∗, (b) candidate positions of
fire-flake textures.

automatically adjusting the size of Fv. The Figure 7b shows
the candidate position Cpos where the fire-flake texture is to
be created, where the size of its Fv∗ is larger than the user-
defined threshold value : ‖Fv∗‖ > α, where alpha is set to
0.03 in this paper.

Extracting buoyancy from images without using two
parameters, κ and n, presented when refining Fv∗, often
results in fields containing errors (see Figure 8). In physics-
based simulation, it is rare that errors accumulate because
velocity is recalculated from the physics equation every
frame, but when analyzing from image, a new problem arises
that is not present in the simulation approach. As mentioned
earlier, the gradients calculated from the edges (see Figure 2b)
are mostly similar in size to each other(see Figure 8a). This
feature does not disappear even with the addition of the
advection process, the buoyancy field flows downward as
shown in the Figure 8b. The following section describes in
detail how to generate fire-flake textures in candidate posi-
tions and advect them.

FIGURE 8. Wrong buoyancy field by cumulative error when using Fv
without κ .

C. GENERATION OF ANISOTROPIC FIRE-FLAKE TEXTURES
In this paper, texture is created at Cpos to represent fire-flake.
Texture is created in circle form at Cpos, and it is scaled
and rotated with a vector uCpos sampled from the buoyancy
field Bv (see Figure 9). Bilinear interpolation was used to
calculate uCpos , and the color of fire-flake was determined
according to

∥∥uCpos∥∥. Anisotropy of fire-flake texture is also
calculated using uCpos . In addition, to compute the detailed
motion of the fire-flake effects, we apply the jitter value τ
to the velocity of the fire-flake particle using the stochastic
solver used in the dispersed bubble flow [2] (see Equation 13).

τ = cosθ = (2ξ + k − 1)/(2kξ − k + 1) (13)

VOLUME 7, 2019 110005



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

FIGURE 9. Overview of fire-flake flow. θ indicates the altered direction
(color table of fire-flakes: ).

where θ, ξ ∈ [0, 1], and k ∈ [−1, 1] represent the altered
direction, a uniform random number, and the scattering coef-
ficient, respectively. Here, k = 0 gives isotropic scattering,
k > 0 is forward scattering, and k < 0 is backward scattering.

D. ARTIFICIAL MOTION BLUR
After the generation of fire-flake texture, we apply buoyancy
field-based motion blur for high-quality composition. The
basic principle of motion blur is to add up the radiance
contributions over time, which can be expressed as

Lp =
∫
ts

∫
A
L(x ′, Eω, t)s(x ′, Eω, t)g(x ′)dA(x ′)dt, (14)

where g is the filter function, s is the shutter exposure,
L is the radiance contribution from the ray [9]. The above
principle applies to both Lagrangian and Eulerian motion
blurs. In Equation 14, x is the place where the movement of
objects jumps into the motion blur; for the evaluation of x ′,
the locations of the objects at arbitrary moments need to
esimated, which forms a core part of motion blur.

The Lagrangian motion blur technique is commonly used
to render explicit surfaces such as rigid bodies, deformable
solids, and clothes. The core part of the Lagrangian motion
blur approach is to compute ray-object intersection at arbi-
trary super-sampled instants from the given 3D data of each
frame. In Lagrangian motion blur, the estimation is done
by taking the time-interpolation of the vertices of the two
involved frames. When the position x(tn) and x(tn+1) of the
vertices at tn and tn+1 are given, the estimated position xL(δ)
at super-sampled time δ is calculated by

xL(δ) =
δ − tn

tn+1 − tn
x(tn+1)+

tn+1 − δ
tn+1 − tn

x(tn). (15)

We now briefly consider the physical meaning of the esti-
mation given by rearranging Equation 15 into the form

xL(δ) = x(tn)+ (δ − tn)
x(tn+1)− x(tn)
tn+1 − tn

. (16)

This equation is the result of assuming that movement is
made of constant velocity : (x(tn+1)− x(tn))/(tn+1 − tn).
In this paper, to improve the composition result, we exag-

gerate the motion of the fire effect and calculate the motion

blur considering the buoyancy field Bv rather than the con-
stant velocity (see Figure 10).

xA(δ) = x(tn)+ (δ − tn)Bv(tn)κ. (17)

κ controls the intensity of the motion blur and is the
weight used to model the Fv (see Equation 2). As a result,
the direction of the velocity is varied by Bv for each position
of the image space, and the magnitude of the velocity is
variously scaled by κ (see Figure 10). In the proposed artifi-
cial motion blur, the blur effects are expressed more strongly
by κ value, which becomes larger as it goes up, so that the
fire-flake effects similar to the real ones can be expressed.
Figure 11 compares the results before and after applying
motion blur, and shows some more visually pleasing fire
effects when motion blur is applied. κ is also used efficiently
in the composition process, and our image-based framework
produces motion blur effects similar to those using physics-
based simulation techniques.

FIGURE 10. Motion vectors with sampled velocity on buoyancy field.

FIGURE 11. Comparison of artificial motion blur.

IV. RESULTS
In this paper, we compare 9 different scenarios to analyze
the proposed fire sprite animation in various aspects. Various
experiments based on real fire video, animated fire video,
and sprite animation produced by the designer show that this
method produces stable fire-flake effects.

Figures 12 and 13 show the result of experiment by
inputting fire video produced by level-set simulation [4].
Fire-flake textures were generated and advected to flame
motion without calculating Eulerian grid-based fluid simu-
lation. Generally, plug-in type particle effects assets are awk-
ward because they do not consider flame motion but simply
paste particle effects by layer. But our results have produced

110006 VOLUME 7, 2019



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

FIGURE 12. Fireball effects (input : simulated video by Hong et al. [4]).

FIGURE 13. Zoom-in results (red box in Figure 12).

fire-flake effects of natural motion as if obtained by flame
simulation.

Figures 14 and 15 show the result of applying this method
to actual fire video. As shown in the figure, fire-flake effects
are generated in accordance with the flame direction, result-
ing in natural movement. In general, generating such fire-
flake effects is more difficult and time-consuming to express
than flame, because the number of particles to represent fire-
flake is very high and the influence of flame motion on the
fire-flake must be considered. However, since this method is
an image-based framework, it can produce fire-flake anima-
tion results with good quality in a short period of time.

Figures 16∼18 are the results of experiment with ani-
mated images made by designer. Like the previous results,
our method produces natural motion as calculated by the
simulation approach, and fire-flake effects are synthesized
naturally on the image space.

Figure 19 shows that the flame with an artificial shape
produces a fire-flake effect well. Despite the small amount
of computation, the proposed method has well extracted the
feature vectors, fire-flake effects, buoyancy fields, etc.

We also applied our method to various cartoon style ani-
mated fire images (see Figure 20∼23). Because our technique
is a 2D image-based framework, it is more flexible than the
physics-based simulation approach without numerical insta-
bility, so we can easily produce all of these scenes using the
same parameters except for Figure 23.

Figure 22 shows the results of adjusting the quantity of fire-
flakes effects according to the different parameter values, α.
The smaller the α value, the wider the region of the candi-
date position where the fire-flake texture is to be created,
thereby increasing the quantity of fire-flake effects. Rather
than merely increasing quantity, textures are advected by Bv,
so the designer can flexibly use the appropriate fire-flake
effects for the situation.

Unlike the previous results, Figure 23 shows that fire
effects are expressed in a closed space such as a drum. In the

FIGURE 14. Campfire effects (input : real fire video).

VOLUME 7, 2019 110007



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

FIGURE 15. Zoom-in results (red box in Figure 14).

FIGURE 16. Cartoon fire effects1.

FIGURE 17. Cartoon torchlight effects.

process of calculating feature vectors, Fv∗ is extracted not
only from the flame but also from the drum. Therefore, since
fire-flake textures are generated from the drum during the
calculation ofCpos, the following clamping function was used
in this scene : ‖Fv∗‖ ← ‖Fv∗‖ < 2.0 ? 0 : ‖Fv∗‖.
Generally, in order to express fire-flake effects in simula-

tion approach, 3D grid-based simulation must be calculated
and various parameters (grid resolution, time-step, viscosity,
etc.) should be set. In addition, in order to get the desired
result in this process, many trial and error must be done.

However, the proposed method is much faster and stable
than the simulation approach because it uses the motion
analyzed from the fire video which is already made with
high-quality. In addition, it is possible to animate more
frames than the number of input images, and 2D simulation
technique is added in the process of creating Bv, so that a
natural buoyancy field can be created even if the number
of input images is small. The table summarizes the envi-
ronment and performance for the results presented in this
paper.

110008 VOLUME 7, 2019



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

FIGURE 18. Cartoon fireball effects.

FIGURE 19. Fire-flake effects generated in the A-shaped flame.

FIGURE 20. Cartoon fire effects 2.

FIGURE 21. Cartoon campfire effects.

V. DISCUSSION
In this paper, we propose a novel framework to efficiently
capture high quality fire flake effects by receiving videos.

The fire flake effects required in the CG/VFX industry
are often expressed as secondary effects of fire, and are
generally calculated based on the motion of the underlying

VOLUME 7, 2019 110009



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

FIGURE 22. Controlling of the quantity of fire-flake effects with differents parameters.

FIGURE 23. Cartoon fire effect3.

TABLE 1. Computation time and size of our example scenes (avg. num. : average number).

fire simulation. In general, the cost of calculating secondary
effects is expensive. In water simulation, foam, bubbles,
and splash particles are typical [23], while fire simulation
is a typical secondary effect. Recently, Kim et al. proposed
the fire flake simulation technique for the first time in
CG field [5]. This technique also calculates the motion of
fire flake particles based on the underlaying simulation.
This production pipeline is computationally expensive due
to more than two simulations (for underlying simulation
and secondary effects), and it is cumbersome to modify
the underlying simulation in order to express the fire flake

effects in accordance with the intention of the creator, and to
recreate secondary effects after the simulation. Because our
framework can quickly and easily express fire flake effects
by receiving only generated fire videos, it can be applied to
various industries such as game, VR/AR as well as VFX.

Although we did not apply the optimization method in
the process of implementing the proposed algorithm, we can
apply various video optimization algorithms to input video
to improve the output : 1) By using a pyramid filter such
as Gaussian pyramid, the resolution of the input image can
be reduced and the computation can be processed quickly,

110010 VOLUME 7, 2019



J.-H. Kim, J. Lee: Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion Blur

which can be utilized in the calculation of Fv∗ and Cpos
[24], [25]. 2) Similar to the pyramid method, the downsam-
pling technique can be used to calculate Bv. Since it is impor-
tant to extract the motion of fire from video, we do not have
to worry about divergence-free or momentum-conservation
conditions when calculating Bv. As a result, downsampling
the grid resolution is not a problem for advecting fire flake
particles. By optimizing the proposed method using the two
methods mentioned above, we can express fire flake effects
more quickly and efficiently.

VI. CONCLUSION
This paper proposes an image-based framework that can
efficiently and realistically represent fire sprite animation.
The force applied to the buoyancy field is modeled based on
the feature vector of the image and its influence on the Y-axis
direction, and the buoyancy vector field, which changes with
time, is expressed by adding the buoyancy advection term.
Based on this field, anisotropic fire-flake textures and motion
blur were modeled to efficiently improve the visual detail of
sprite animation.

Since there is no depth information in the input data of
the proposed method, the interaction between the fire-flake
particles and the object appears awkward. In addition, since
it allows only videos and images as input data, it is diffi-
cult to perform scene editing such as changing viewpoint in
scene or adding external forces. In the future, we plan to study
how to improve the visual detail of fire-flakes effects using
depth information and enable scene editing.

REFERENCES
[1] R. Fernando, E. Haines, and T. Sweeney, ‘‘GPU gems: Programming

techniques, tips and tricks for real-time graphics,’’ Dimensions, vol. 7,
no. 4, p. 816, 2001.

[2] D. Kim, O.-Y. Song, and H.-S. Ko, ‘‘A practical simulation of dispersed
bubble flow,’’ ACM Trans. Graph., vol. 29, no. 4, Jul. 2010, Art. no. 70.

[3] T. Kim, J. Lee, and C.-H. Kim, ‘‘Physics-inspired controllable flame
animation,’’ Vis. Comput., vol. 32, pp. 871–880, Jun. 2016.

[4] J.-M. Hong, T. Shinar, and R. Fedkiw, ‘‘Wrinkled flames and cellular
patterns,’’ ACM Trans. Graph., vol. 26, no. 3, Jul. 2007, Art. no. 47.

[5] T. Kim, E. Hong, J. Im, D. Yang, Y. Kim, and C.-H. Kim, ‘‘Visual
simulation of fire-flakes synchronized with flame,’’ Vis. Comput., vol. 33,
pp. 6–8, Jun. 2017.

[6] J. Gagnon, F. Dagenais, and E. Paquette, ‘‘Dynamic lapped texture for fluid
simulations,’’ Vis. Comput., vol. 32, pp. 6–8, Jun. 2016.

[7] D. Enright, F. Losasso, and R. Fedkiw, ‘‘A fast and accurate semi-
Lagrangian particle level set method,’’ Comput. Struct., vol. 83, pp. 6–7,
Feb. 2005.

[8] C. Horvath and W. Geiger, ‘‘Directable, high-resolution simulation of fire
on the GPU,’’ ACM Trans. Graph., vol. 28, no. 3, Aug. 2009, Art. no. 41.

[9] M. Cammarano and H. W. Jensen, ‘‘Time dependent photon mapping,’’ in
Proc. 13th Eurograph. Workshop Rendering, Jun. 2002, pp. 135–144.

[10] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen, ‘‘Physically based modeling
and animation of fire,’’ ACM Trans. Graph., vol. 21, no. 3, pp. 721–728,
Jul. 2002.

[11] B. Solenthaler and R. Pajarola, ‘‘Predictive-corrective incompressible
SPH,’’ ACM Trans. Graph., vol. 28, no. 3, Aug. 2009, Art. no. 40.

[12] M. Becker and M. Teschner, ‘‘Weakly compressible SPH for free surface
flows,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp. Comput. Animation,
Aug. 2007, pp. 209–217.

[13] A. R. Fuller, H. Krishnan, K. Mahrous, B. Hamann, and K. I. Joy, ‘‘Real-
time procedural volumetric fire,’’ in Proc. Symp. Interact. 3D Graph.
Games, May 2007, pp. 175–180.

[14] J. Stam, ‘‘Stable fluids,’’ in Proc. 26th Annu. Conf. Comput. Graph.
Interact. Techn., Jul. 1999, pp. 121–128.

[15] N. Foster and R. Fedkiw, ‘‘Practical animation of liquids,’’ in Proc. 28th
Annu. Conf. Comput. Graph. Interact. Techn., Aug. 2001, pp. 23–30.

[16] M. Müller, D. Charypar, and M. Gross, ‘‘Particle-based fluid simulation
for interactive applications,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp.
Comput. Animation, Jul. 2003, pp. 154–159.

[17] M. Macklin and M. Müller, ‘‘Practical animation of liquids,’’ ACM Trans.
Graph., vol. 32, pp. 104:1–104:12, 2013.

[18] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, ‘‘Position based
dynamics,’’ J. Vis. Commun. Image Represent., vol. 18, pp. 109–118,
Apr. 2007.

[19] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, ‘‘Accelerating
eulerian fluid simulation with convolutional networks,’’ in Proc. 34th Int.
Conf. Mach. Learn., vol. 70, Aug. 2017, pp. 3424–3433.

[20] M. Chu andN. Thuerey, ‘‘Data-driven synthesis of smoke flowswith CNN-
based feature descriptors,’’ ACM Trans. Graph., vol. 36, no. 4, Jul. 2017,
Art. no. 69.

[21] B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler,
‘‘Deep fluids: A generative network for parameterized fluid simu-
lations,’’ Jun. 2018, arXiv:1806.02071. [Online]. Available: https://
arxiv.org/abs/1806.02071

[22] Y. Xie, E. Franz, M. Chu, and N. Thuerey, ‘‘tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow,’’ Jan. 2018,
arXiv:1801.09710. [Online]. Available: https://arxiv.org/abs/1801.09710

[23] J.-H. Kim, J. Lee, S. Cha, and C.-H. Kim, ‘‘Efficient representation of
detailed foam waves by incorporating projective space,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 23, no. 9, pp. 2056–2068, Sep. 2017.

[24] P. J. Burt, ‘‘Fast filter transform for image processing,’’ Comput. Graph.
Image Process., vol. 16, no. 1, pp. 20–51, 1981.

[25] J. L. Crowley, ‘‘A representation for visual information,’’
Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-RI-TR-82-07, 1981.

JONG-HYUN KIM received the B.A. degree from
the Department of Digital Contents, Sejong Uni-
versity, in 2008, and the M.S. and Ph.D. degrees
from the Department of Computer Science and
Engineering, Korea University, in 2010 and 2016,
respectively.

He is currently an Assistant Professor with the
Department of Software Application, Kangnam
University. His current research interests include
fluid animation and virtual reality.

JUNG LEE is currently an Assistant Professor
with the Department of Convergence Software,
Hallym University. His current research interests
include augmented/virtual reality, fluid animation,
and computer graphics.

VOLUME 7, 2019 110011


