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ABSTRACT In the field of knowledge representation, negation has been introduced so that practical issues
can be modelled more effectively. The negation of probability was first formally determined by Zadeh, with
its basic properties proposed by Yager. Recent studies have extended the negation of probability to that of
basic probability assignment (BPA) by introducingDempster-Shafer theorywhich is believed to performwell
in dealing with uncertainty problems. Besides, the negation model has been proved to have the maximum
entropy allocation, which attracts studies on uncertainty measures that can be applied in the negation process.
In this paper, we have mainly investigated the trend of dissimilarity between two BPAs in the negation
process. In particular, an evidence distance proposed by Jousselme et al. is used to serve as a dissimilarity
measure to help quantify the variation trends. Moreover, standard deviation is used in this study to represent
the dispersion in a BPA. Through our analysis, we obtained some interesting properties finally with their
generalizations discussed in a proposed framework of negation methods.

INDEX TERMS Dempster-Shafer Theory, negation, evidence distance, belief function, knowledge repre-
sentation.

I. INTRODUCTION
Knowledge representation has always been an attractive topic
in history, and now it has become a crucial issue since the
emergence of artificial intelligence. A considerable number
of approaches have been proposed and applied to address
issues of representing knowledge in multiple sources of infor-
mation, such as belief function theory [1]–[3], D number
theory [4]–[7], Z number theory [8], [9], soft set theory
[10]–[12] and grey prediction model [13].

However, the inherent uncertainty attached to heteroge-
nous sources of information increases the difficulty in
handling with knowledge representation. Uncertainty has
been taken into consideration in many fields like medical
diagnosis [14], pattern classification [15]–[17], and man-
agement science [18]–[21]. With people’s attention raised,
many approaches have been subsequently developed spe-
cially for the inevitable uncertainty in the real world, such
as belief entropy [22]–[24], evidential reasoning [25]–[28],
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intuitionistic fuzzy set theory [29]–[31], and ordered
weighted aggregation (OWA) theory [32], [33].

Dempster-Shafer theory [34], [35], as an important
and widely used reasoning method, assigns probabilities
to the power set of events and performs well in deal-
ing with epistemic uncertainty [36]–[38]. Dempster-Shafer
theory has been applied in many fields, such as decision
making [39]–[41], fault diagnosis [42], [43], and pattern
classification [44].

Besides, how to represent the knowledge effectively is still
an open issue [45]–[48]. In some circumstances, to answer
What it is directly is likely more difficult than to say What it
is not. Sometimes it is difficult to prove whether a theorem
is correct or not, however, a state can be proved wrong easily
by a counterexample. The concept of negation of events, first
formally proposed by Zadeh, provides people with a new
perspective on probability theory. The properties of negation
of a probability distribution recently proposed by Yager are
receiving increasing attention, with the final state proved to
have the maximum entropy allocation [49].

Owing to its advantages, Dempster-Shafer theory has
been introduced to generalize the theory of negation

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 111315

https://orcid.org/0000-0002-6303-895X


D. Xie, F. Xiao: Negation of BPA: Trends of Dissimilarity and Dispersion

of probability [50]. Negation has thus been studied on
power sets rather than sets with singleton elements only.
Since the negation is proved to increase the entropy of the
system, several uncertainty measures have been introduced
to serve as math tools to quantify the effects caused by
negation [49]–[52].

The uncertainty measures originating from quantifying the
entropy provide different velocities of increase in entropy for
different sensitivities [53]–[56]. However, what interests us is
the trend of the dissimilarity between a BPA and its negation
in the negation process. An evidence distance proposed by
Jousselme et al. is an effective tool to detect similar sets and
quantify the dissimilarity between two sets [57]–[59]. With
the increase in dissimilarity between two sets, the correspond-
ing evidence distance will also increase accordingly. Thus we
believe that evidence distance will help quantify the trend of
dissimilarity in the negation process. Also, we try to capture
some relations between the dissimilarity of two BPAs and
the disorder of a single BPA in the process, so the standard
deviation has been introduced to represent the dispersion in
a BPA.

The paper is structured as follows: in Section 2, some basic
definitions associated with Dempster-Shafer theory, evidence
distance, Yager’s negation method and BPA’s negation are
presented. Section 3 details some new properties of negation
viewed from the trend of dissimilarity between the current
BPA and its negation, as well as the trend of dispersion in the
current BPA, with a discussion about a general framework
of negation methods. In Section 4, some numerical examples
are provided to illustrate changes after negation and finally in
section 5, we have a brief summary.

II. PRELIMINARIES
A. DEMPSTER-SHAFER THEORY
Uncertainty is inevitable in real applications [60]–[62].
Dempster-Shafer theory, serving as an efficient math tool
to deal with uncertain information, was first proposed by
Dempster and later developed by his student Shafer. Com-
pared with Bayesian theory of probability, Dempster-Shafer
theory satisfies weaker conditions and has a stronger ability
to model uncertain knowledge [63]. Dempster-Shafer theory
has played a significant role in many applications, such as
decision making [64]–[66], fault diagnosis [67]–[69], target
recognition and data fusion [70]–[72].

Let 2 be a set with mutually exclusive and exhaustive
hypotheses. It is called the frame of discernment, namely,

2 = {H1,H2, · · · ,Hn} (1)

The power set of 2 is denoted by 22, which contains all
subsets of 2, namely

22 = {φ, {H1}, {H2}, · · · , {H1,H2}, · · · ,2} (2)

The basic probability assignment (BPA), also called the mass
function, is a mapping from 2N to [0, 1], defined as

m : 2N → [0, 1] (3)

which satisfies:

m(φ) = 0∑
A⊆2

m(A) = 1

m(A) measures the belief assigned to subset A and repre-
sents the strength to support A. A is called a focal element
if m(A) > 0.
The belief function theory has been studied and applied in

many fields [73]–[75]. While based on BPA, the plausibility
function Pl and the belief function Bel are defined as follows:

Pl(A) =
∑

B∩A 6=φ

m(B) (4)

Bel(A) =
∑
B⊆A

m(B) (5)

The Pl(A) represents the potential support to A while the
Bel(A) represents the justified total belief to A. Bel(A)and
Pl(A) serve as the lower and upper bounds of a limit
interval, namely [Bel(A),Pl(A)]. The length of the interval
[Bel(A),Pl(A)] measures the degree of imprecision of A.

B. EVIDENCE DISTANCE
An evidence distance was proposed by Anne-Laure
Jousselme et al. aiming at quantifying the dissimilarity
between two sets and particularly the conflict between two
BPAs in Dempster-Shafer theory [57]–[59]. The associated
definitions are as follows:

Let m1 and m2 be two BPAs on the same frame of discern-
ment2, which contains N mutually exclusive and exhaustive
hypotheses. The evidence distance between BPA m1 and m2
is defined as

dBPA(ma,mb) =

√
1
2
( Ema − Emb)TD( Ema − Emb) (6)

where Em1 and Em2 are BPAs defined above. Notice that BPAs
here are written as vectors, i.e.,

Em = (m1,m2, · · · ,m2N )
T

The vector has exactly 2N elements and mi = 0 if the
corresponding element Ai is a non-focal element.
D is a 2N × 2N matrix whose elements are

D(i, j) =
|Ai ∩ Aj|
|Ai ∪ Aj|

Ai,Aj ∈ 22

D also called Jaccard index, is used for gauging the similarity
and diversity of sample sets. Jousselme et al. make full use of
Jaccard index here to serve as a similarity measure between
sets. Obviously, the evidence distance will be exactly 0 if the
two sets bear enough similarities. To quantify some trends in
the negation process, evidence distance is introduced as a dis-
similarity measure used to describe the degree of difference
between two sets.
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C. YAGER’S NEGATION
Assume a frame of reference

X = {x1, x2, · · · , xn}

Let

P = {p1, p2, · · · , pn}

be a probability distribution on X with
n∑
i=1

pi = 1

0 ≤ pi ≤ 1

The negation of the probability distribution is defined as
follows [49]:

P̄ = {p̄1, p̄2, · · · , p̄n} (7)

with
n∑
i=1

p̄i = 1

0 ≤ p̄i ≤ 1

where

p̄i =
1− pi∑n
i=1(1− pi)

=
1− pi
n− 1

(8)

and n is the number of elements in X . The term∑n
i=1(1 − pi) is used to normalize the complementary prob-

ability (i.e., 1 − pi) in order to keep the basic assumptions
of a probability distribution that the sum of the probabilities
equals 1.

Viewed from Dempster-Shafer theory, for an single event
Ai with probability pi in a set containing only singleton focal
elements as X = {A1,A2, · · · ,An}, the complement ¬Ai is
supposed to take probability 1 − pi regardless of normaliza-
tion. ¬Ai is the whole event space less Ai, i.e., ¬Ai = X −Ai.
Yager has provided an interesting and intuitive deduc-

tion [49]. Let m be a BPA which contains n singleton
focal elements only, i.e., {A1,A2, · · · ,An} with probabilities
p1, p2, · · · , pn. Assume that the negation yields a new BPA
m∗ which contains focal elements as {¬A1,¬A2, · · · ,¬An}
with probabilities p1, p2, · · · , pn, i.e., m∗(¬Ai) = m(Ai). Let
m̄ denote the negation of m. The Bel and Pl for m̄ have been
derived by Yager with reference to m∗:

Bel(m̄(Ai)) =
n∑
j=1

¬Aj∈{Ai}

m∗(¬Aj) = 0 (9)

Pl(m̄(Ai)) =
n∑
j=1

Ai∈¬Aj

m∗(¬Aj) = 1− pi (10)

Then we have 0 ≤ m̄(Ai) ≤ 1− m(Ai).
Intuitively the probability of a focal element is assigned

to its complement. For instance, the probability p1 will be
assigned to the set ¬A1, i.e., {A2,A3, · · · ,An}. In essence,

we are clear about the probabilities assigned to the comple-
ments after negation, but what can be provided here is just a
probability interval for each original singleton element. Thus
Yager concluded that the negation probabilities (i.e., m̄(Ai))
are not uniquely determined, which indicates that different
negation methods yield different negation results. However,
the negation probabilities are constrained in some interval
(i.e., [0, 1−m(Ai)]).

D. NEGATION OF BPA
The negation of BPA has been derived earlier with Dempster-
Shafer theory taken into consideration [50].

Letm0 be the initial probability assigned to a focal element
in a power set while mi denotes the relative probability after
ith negation. The general form of negation of a BPA is pre-
sented as

mi =
1− mi−1
n− 1

where n denotes the number of the focal element here instead
of the number of elements in Yager’s definition. From the
formula above, 1

n can be easily identified as a fixed point.
A little change to the form yields an obvious geometric
progression relationship:

mi −
1
n
=

1− mi−1
n− 1

−
1
n

=
1

1− n
(mi−1 −

1
n
) (11)

The general formula of the probability assigned to an
element after ith negation can be derived according to the
common ratio 1

1−n derived above:

mi = (
1

1− n
)
i
(m0 −

1
n
)+

1
n

=
nm0 − 1

n(1− n)i
+

1
n

(12)

The convergence can be obtained by taking the limitation:

lim
i→∞

mi = lim
i→∞

nm0 − 1

n(1− n)i
+

1
n

(13)

We have

lim
i→∞

mi =
1
n

(14)

while |n − 1| > 1. The condition is held in the following
context that n is more than 2 without specifying that again.
The situation where |n−1| ≤ 1 will be discussed as a special
case later.

III. TRENDS OF DISSIMILARITY AND DISPERSION
IN BPA’S NEGATION
A. PROPERTIES OF BPA’S NEGATION
Several uncertainty measures have been applied to prove
that negation will increase the entropy of the system
[50], [76], [77]. A BPA will get to an evenly distributed state
after negation finally, which raises our interest in exploring
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the regularity in the negation process, especially in the rela-
tion between a BPA and its negation. A dissimilarity measure
is introduced here, namely Jousselme et al.’s evidence dis-
tance, to obtain some new properties of the dissimilarity of
BPA in the negation process.
Definition I: If a BPA mi has been converted into its

negationmi+1 according to the negation rule of BPA specified
above, mi+1 will be called the current BPA, and mi+2 will be
the current BPA if mi+1 has been converted into mi+2.
Essentially we focus on the trend of dissimilarity between

the current BPA and its negation measured by evidence dis-
tance and have derived the theorem below:
Theorem I: Let mi be the BPA derived from the initial

BPA m0 after ith negation. The evidence distance between
the current BPA and its negation will decrease with a constant
ratio in the iterative negation process. Namely

dBPA(mi,mi+1)
dBPA(mi+1,mi+2)

= n− 1 (15)

where n is the number of focal elements in the power set
associated to the BPA. Taking iterative negation, the evidence
distance converges to 0 finally.
Proof: Assume a set 2 with exclusive and mutually

exhaustive hypotheses {x1, x2, · · · , xN } and the correspond-
ing power set 2N : {A1,A2, · · · ,A2N }. As the evidence
distance between BPA mA and mB with frame of discernment
is defined as

dBPA(mA,mB) =

√
1
2
( EmA − EmB)TD( EmA − EmB)

where

D =



|A1 ∩ A1|
|A1 ∪ A1|

|A1 ∩ A2|
|A1 ∪ A2|

. . .
|A1 ∩ A2N |
|A1 ∪ A2N |

|A2 ∩ A1|
|A2 ∪ A1|

|A2 ∩ A2|
|A2 ∪ A2|

. . .
|A2 ∩ A2N |
|A2 ∪ A2N |

...
...

. . .
...

|A2N ∩ A1|
|A2N ∪ A1|

|A2N ∩ A2|
|A2N ∪ A2|

. . .
|A2N ∩ A2N |
|A2N ∪ A2N |


the formula can be expanded as follows:

dBPA(mA,mB)

=

√√√√√1
2

2N∑
p=1

2N∑
q=1

(mA(Ap)−mB(Ap))(mA(Aq)−mB(Aq))
|Ap∩Aq|
|Ap∪Aq|

(16)

where Ap and Aq are focal elements of 22.
Let m0 be a BPA on the N -element set above. Then

mi denotes the current BPA derived from m0 after ith
negation and mi+1 denotes the negation of mi, namely
mi+1 = mi, while mi+2 denotes the negation of mi+1, namely
mi+2 = mi+1 = mi. Thus we have

mi+1(Ap) =
1− mi(Ap)
n− 1

(17)

and

mi+2(Ap) =
1− mi+1(Ap)

n− 1

=
mi(Ap)+ n− 2

(n− 1)2
(18)

For distance between mi and mi+1,

mi(Ap)− mi+1(Ap) = mi(Ap)−
1− mi(Ap)
n− 1

=
nmi(Ap)− 1

n− 1
(19)

Similarly,

mi(Aq)− mi+1(Aq) =
nmi(Aq)− 1

n− 1
(20)

Then we have

dBPA(mi,mi+1)

=

√√√√√1
2

2N∑
p=1

2N∑
q=1

(nmi(Ap)− 1)(nmi(Aq)− 1)

(n− 1)2
|Ap ∩ Aq|
|Ap ∪ Aq|

(21)

For distance between mi+1 and mi+2,

mi+1(Ap)− mi+2(Ap) = mi+1(Ap)−
1− mi+1(Ap)

n− 1

=
1− mi(Ap)
n− 1

−
mi(Ap)+ n− 2

(n− 1)2

=
1− nmi(Ap)

(n− 1)2
(22)

Similarly,

mi+1(Aq)− mi+2(Aq) =
1− nmi(Aq)

(n− 1)2
(23)

Then we have

dBPA(mi+1,mi+2)

=

√√√√√1
2

2N∑
p=1

2N∑
q=1

(1− nmi(Ap))(1− nmi(Aq))

(n− 1)4
|Ap ∩ Aq|
|Ap ∪ Aq|

(24)

Obviously,

dBPA(mi,mi+1)
dBPA(mi+1,mi+2)

= n− 1

Since n−1 is a common ratio, we have the evidence distance
between mi and mi+1 simplified as

Disi =
Dis0

(n− 1)i
(25)

where Dis0 denotes the distance between m0 and its
negation m1.
The convergence can be obtained by taking the limitation:

lim
i→∞

Disi = lim
i→∞

Dis0
(n− 1)i

(26)

111318 VOLUME 7, 2019



D. Xie, F. Xiao: Negation of BPA: Trends of Dissimilarity and Dispersion

We have

lim
i→∞

Disi = 0 (27)

�
Standard deviation is a widely used statistic which mea-

sures the dispersion of data. We have standard deviation to
quantify the dispersion in the current BPA in the negation
process. Based on the introduction of standard deviation,
we have the theorem below.
Theorem II: Assume a set 2 with exclusive and mutually

exhaustive hypotheses {x1, x2, · · · , xN } and the correspond-
ing power set 2N : {A1,A2, · · · ,A2N }.
The standard deviation of a BPA m is defined as follows:

Sd(m) =

√∑n
p=1 (m(Ap)−

1
n )

2

n
(28)

where n is the number of the focal elements in the BPA.
Let mi be the BPA derived from m0 after ith negation. The

standard deviation of mi is (n − 1) times that of its negation
mi+1, namely

Sd(mi)
Sd(mi+1)

= n− 1 (29)

The standard deviation of the current BPA converges to 0
finally with iterative negation.
Proof: Since the standard deviation is defined as

Sd(m) =

√∑n
p=1 (m(Ap)−

1
n )

2

n
the formula can be expanded as

Sd(mi) =

√∑n
p=1 (mi(Ap)−

1
n )

2

n

=

√√√√∑n
p=1 mi(Ap)

2
−

2×
∑n

p=1 mi(Ap)
n + n× 1

n2

n

=

√∑n
p=1 mi(Ap)

2
−

1
n

n
(30)

Recall that the negation of mi for each focal element is

mi+1(Ap) =
1− mi(Ap)
n− 1

Similarly, we have

Sd(mi+1) =

√√√√∑n
p=1 (

1−mi(Ap)
n−1 −

1
n )

2

n

=

√√√√∑n
p=1 (

n−nmi(Ap)−n+1
n(n−1) )

2

n

=

√√√√ n2
∑n

p=1 mi(Ap)
2
−n

n2(n−1)2

n

=

√∑n
p=1 mi(Ap)

2
−

1
n

n(n− 1)2
(31)

Obviously,
Sd(mi)
Sd(mi+1)

= n− 1

Thus the standard deviation of the current BPA can be sim-
plified as follows:

Sd(mi) =
Sd0

(n− 1)i

where Sd0 denotes the standard deviation of the original
BPA m0.
The convergence can be obtained by taking the limitation:

lim
i→∞

Sdi = lim
i→∞

Sd0
(n− 1)i

(32)

We have

lim
i→∞

Sdi = 0 (33)

�

B. SPECIAL CASES
1) Assume that a BPA m0 contains only one focal element
(e.g., m0(A) = 1 where A is the only focal element). Let mi
be the BPA derived from m0 after ith negation. Then we have{

mi(A) = 0, mi(φ) = 1, if i is odd
mi(A) = 1, mi(φ) = 0, if i is even

(34)

Notice that φ is not a focal element, and we usually do
not assign probabilities to such a non-focal element in the
negation process. In this case, however, it is suggested that
the empty set φ should also act as a focal element due to the
lack of complete knowledge in the system. φ is often used
to model the open-world system [78]–[80] and it represents a
collection of other unknown focal elements.

In this case, the evidence distance between the current
BPA and its negation will not change nor does the standard
deviation of the current BPA.

2) Assume that a BPA m0 contains two focal element,
i.e., m0(A) = p and m0(B) = 1 − p where A and B are the
only focal elements. Let mi be the BPA derived from m0 after
ith negation. Then we have{

mi(A) = 1− p, mi(B) = p, if i is odd
mi(A) = p, mi(B) = 1− p, if i is even

(35)

Actually this case is less special, for it just suggests that the
common ratio (n− 1) in theorem I and II becomes 1.
Also, the evidence distance between the current BPA and

its negation will not change in this case nor does the standard
deviation in the current BPA.

3) Assume a BPA m0 with probabilities equally assigned,
i.e., m0(Ap) = 1

n where n is the number of the focal elements.
Let mi be the BPA derived from m0 after ith negation. Then
we have

mi(Ap) =
1
n

The evidence distance between the current BPA and its nega-
tion keeps 0 so does the standard deviation as the BPA has
already reached its final state.
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C. EXTENSION AND DISCUSSION
From the perspective of the dissimilarity between two sets,
it can be concluded that BPA will be more and more similar
to its negation in the negation process. Meanwhile, with
the increasing similarity between the current BPA and its
negation, the system suffers an information loss due to the
irreversibility of negation [50]. Besides, the dispersion in
the current BPA decreases with the increasing frequency of
negation. Those trends end in a state where the probabilities
are equally assigned.

Notice that the evidence distance between a BPA m and its
negation m̄ shares the same discount ratio with the standard
deviation of m(i.e., n − 1). We are interested in what n − 1
is special about. What will happen if we take other negation
methods? Some studies have already shown that other nega-
tion methods also apply well in some circumstances [51].

Motivated by questions raised above, we discuss a gen-
eral framework of negation here. Assume a BPA m0 :

{m0(A1),m0(A2), · · · ,m0(A2N )} on the frame of discernment
{x1, x2, · · · , xN }. m0(Ap) = 0 if the corresponding element
Ap is a non-focal element. The constraint is released here that
non-focal elements cannot take values in the whole negation
process. Letmi be the BPA derived fromm0 after ith negation.
Then the negation formula will be

mi+1(Ap) =
1− mi(Ap)
2N − 1

(36)

Particularly those non-focal elements will be assigned with

mi+1(Ap) =
1− 0
2N − 1

=
1

2N − 1
(37)

Instead, if we take the negation method in [51], the negation
formula will be

mi+1(Ap) =
1− mi(Ap)
2N − 2

(38)

This method declares that the probability assigned to the
empty set φ remains 0 in the whole negation process. In this
case, all elements participate in the negation less φ.
No matter what exactly the normalization term is (n−1,

2N−1, 2N−2 or other terms), we can denote this term with
an integer constant C , i.e.,

mi+1(Ap) =
1− mi(Ap)

C
(39)

with C + 1 denoting the number of elements participating
in the negation process. It must be specified that we have
C ∈ [n−1, 2N−1] where n is the number of focal elements.
Thus the number of elements participating in the negation
process ranges from n to 2N , i.e., C+1 ∈ [n, 2N ]. The reason
why we have such a constraint will be specified later.

Keeping the assumptions and notations in
Theorem I and II, we have
dBPA(mi,mi+1)

=

√√√√√1
2

2N∑
p=1

2N∑
q=1

((C+1)mi(Ap)−1)((C+1)mi(Aq)−1)
C2

|Ap∩Aq|
|Ap∪Aq|

(40)

and

dBPA(mi+1,mi+2)

=

√√√√√1
2

2N∑
p=1

2N∑
q=1

(1−(C+1)mi(Ap))(1−(C+1)mi(Aq))
C4

|Ap∩Aq|
|Ap∪Aq|

(41)

Thus
dBPA(mi,mi+1)
dBPA(mi+1,mi+2)

= C (42)

For the standard deviation, we have

Sd(mi) =

√∑C+1
p=1 mi(Ap)

2
−

1
C+1

C + 1
(43)

and

Sd(mi+1) =

√∑C+1
p=1 mi(Ap)

2
−

1
C+1

C2(C + 1)
(44)

Thus
Sd(mi)
Sd(mi+1)

= C (45)

Here comes the reason why C cannot be less than n − 1 or
more than 2N − 1. Recall that the original definition of the
negation of probability is as follows [49]:

p̄i =
1− pi∑n
i=1(1− pi)

where n denotes the number of focal elements. However,
the ’1’ in the formula is essentially

∑n
i=1 pi, which indicates

that the collection of focal elements is the minimum subset of
elements participating in the negation process.

Thus the negation formula for BPA m is essentially as
follows:

m̄a =
1− ma∑x

i=1(1− mi)+
∑y

j=1(1− mj)

=
1− ma
x − 1+ y

(46)

where x and y denote the number of focal elements and that
of selected non-focal elements respectively, with mi 6= 0 and
mj = 0. y ranges from 0 to 2N−x here, i.e., y ∈ [0, 2N−x].
Besides, a can be a focal element, or a non-focal element from
those selected for the negation.

It is interesting that this general framework verifies
what Yager has derived. From Yager’s deduction, we have
0 ≤ mi+1(Ap) ≤ 1−mi(Ap) according to Bel and Pl in
Dempster-Shafer theory. While based on our general frame-
work, for a certain BPA we have

1− mi(Ap)
2N − 1

≤
1− mi(Ap)

C
≤

1− mi(Ap)
n− 1

Obviously,[
1− mi(Ap)
2N − 1

,
1− mi(Ap)
n− 1

]
⊆ [0, 1−mi(Ap)]
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TABLE 1. Indices’ trends in the negation process.

It can be concluded that the general negation termmi+1(Ap) is
constrained in [0, 1−mi(Ap)] while more precisely, a certain
negation term mi+1(Ap) is constrained in[

1− mi(Ap)
2N − 1

,
1− mi(Ap)
n− 1

]
Up to now, a brief conclusion can be drawn that for the
same set, negation methods differ in the trends of evidence
distance and standard deviation due to different numbers of
elements selected for the negation. This indicates that if we
use different negation methods, the evidence distance as a
similarity measure, will show different sensitivities as well
as the standard deviation.

IV. NUMERICAL EXAMPLES
Assume a set with mutually exclusive and exhaustive
hypotheses 2 : {a, b, c}. A BPA m0 with reference to 22

contains focal elements {m0(a),m0(b),m0(c),m0({a, b})} and
we have m0(a) = 0.2, m0(b) = 0.3, m0(c) = 0.4, and
m0({a, b}) = 0.1 respectively. mi denotes the BPA derived
from m0 after ith negation
Freq. denotes the frequency of negation, i.e., Freq. = i

if the current BPA is mi. m(a), m(b), m(c), and m({a, b})
are the probabilities assigned to the focal elements in the
current BPA. Dis. denotes the evidence distance between the
current BPA and its negation while Dev. denotes the standard
deviation of the current BPA.

We use the negation method in [50] and have the results
in Table 1. It can be seen clearly that the probabilities approx-
imately got to their mean while the evidence distance and the
standard deviation reached 0 finally.

V. CONCLUSION
In this paper we presented some new properties of the
negation of BPA. Instead of entropy-based measures used
in other studies [50], [77], we view the negation from a

perspective of dissimilarity and dispersion, which has driven
us to introduce evidence distance and standard deviation to
quantify the variation trends in the negation process. Other
than increases in entropy, the degree of similarity between a
BPA and its negation is now also proved to increase. More
specifically, the dissimilarity between a BPA and its negation
decreases with a constant ratio, also shared by the decrease
of the dispersion of the current BPA. Besides, we discussed
a general framework of negation methods which proves to be
consistent with Yager’s theorem. However, how to make full
use of different negation methods based on the framework
becomes an open issue, which calls for further study as well
as applications of the proposed properties.
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