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ABSTRACT Sleep stage classification is a fundamental but cumbersome task in sleep analysis. To score
the sleep stage automatically, this study presents a stage classification method based on a two-stage neural
network. The feature learning stage as the first stage can fuse network trained features with traditional
hand-crafted features. A recurrent neural network (RNN) in the second stage is fully utilized for learning
temporal information between sleep epochs and obtaining classification results. To solve serious sample
imbalance problem, a novel pre-training process combined with data augmentation was introduced. The
proposed method was evaluated by two public databases, the Sleep-EDF and Sleep Apnea (SA). The
proposed method can achieve the Fl-score and Kappa coefficient of 0.806 and 0.80 for healthy subjects,
respectively, and achieve 0.790 and 0.74 for the subjects with suspect sleep disorders, respectively. The
results show that the method can achieve better performance compared to the state-of-the-art methods for
the same databases. Model analysis displayed that the combination of the hand-crafted features and network
trained features can improve the classification performance via the comparison experiments. In addition,
the RNN is a good choice for learning temporal information in sleep epochs. Besides, the pre-training process
with data augmentation is verified that can reduce the impact of sample imbalance. The proposed model has

potential to exploit sleep information comprehensively.

INDEX TERMS Sleep stage classification, feature learning, sequence learning, EEG signal.

I. INTRODUCTION

Sleep is considered as an important state which exerts signifi-
cant effects on human health. Analyzing people’s sleep archi-
tectures and evaluating their sleep qualities are important.
The sleep architecture and sleep qualities can be expressed
by sleep stages. Sleep stages usually include nighttime
wakefulness (Wake), rapid-eye movement (REM) stage and
non-REM (NREM) stage. The NREM stage can be further
divided into N1, N2 and N3 stage according to the American
Academy of Sleep Medicine (AASM) rule that is a novel
standard [1]. The Rechtschaffen and Kales (R&K) rule as an
old standard divides the N3 stage into S3 and S4 [2].
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Each sleep stage has its own characteristics, which can
be reflected by electroencephalogram (EEG), electroocu-
logram (EOG) and electromyography (EMG). In sleep
medicine, for simultaneously recording these physiological
signals, a standard method called polysomnography (PSG) is
utilized. The whole night sleep recording is divided into 30-
second epochs, and each sleep epoch can be scored by sleep
experts as different sleep stages through visually inspecting
those multiple signals. PSG system often records more than
6 hours’ data for the full night sleep, in order to exactly
determine the sleep stage of an epoch, the sleep experts
generally require checking at least EEG channels, EOG chan-
nels and chin EMG channels. One full night sleep recording
commonly needs more than two hours to be reliably assessed
by proficient experts. The sleep staging is the fundamental
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context in sleep medicine, so it’s an unavoidable and cumber-
some work to examine each epoch. Besides, those recorded
signals are commonly collected in a specialized sleep labo-
ratory, and it is inevitable to interfere with the natural sleep
quality due to the complexity and inconvenience of deploying
the PSG on the subject’s body in the sleep laboratory. Indeed,
the multi-channel sensors attached to the subject’s body may
cause mental stress and discomfort, which is not conducive
to sleep monitoring.

To alleviate the subjects’ pressure and save medical
resources, a lot of studies attempt to develop machine learning
methods to score sleep stage automatically based on several
EEG channels [3]-[6]. Those machine learning methods are
mainly classified into two categories: traditional machine
learning methods and deep learning methods. The tradi-
tional machine learning methods used different classifiers to
stage the sleep based on many designed hand-crafted fea-
tures [7]-[9]. Those hand-crafted features commonly have
obvious physical significance, like component of frequency
spectrum. Those features are proved to have acceptable per-
formance on classification, but they are hard to be understood
by clinicians and not closer to the way of sleep staging.
The sleep experts usually score the sleep stage by observing
the morphology of signals. Besides, the feature extraction
and selection process are complex and it is very difficult to
extract new and effective features that exceed the existing
features. If the characteristic of one specific stage is hard
to be described by the provided hand-crafted features, this
stage may be not easily identified based on the traditional
methods. More importantly, classifiers in traditional meth-
ods are commonly not good at dealing with time series
signals.

Recently, deep learning methods have attracted much
attention in machine learning field. Deep learning methods
have provided new ideas and achieved great success in many
research directions [10]-[12]. For example, the convolu-
tional neural network (CNN) and deep belief network (DBN)
exhibit powerful effects on feature extraction [10], [13],
the recurrent neural network (RNN) has been proved to have
good capacity in time series signal processing [14], [15].
Thus, many researchers gradually turned to use those deep
networks to process the physiological signals and achieve
good performances [16], [17].

The sleep stage classification can be simply divided into
two parts: feature extraction and sequential signal classifi-
cation. Thus, the sleep data as the time series signals can
be processed by various deep neural networks. For example,
Tsinalis et al. [18] employed a two-layer CNN architecture
to realize the sleep stage classification. Supratak et al. [19]
proposed a deep learning model which utilized the CNN
combined with bidirectional RNN for automatic sleep staging
based EEG and EOG signals. Those studies have achieved
promising performances and represented that deep learning
method is competent for sleep stage classification. How-
ever, those studies utilized only the network to independently
exploit the sleep information, rather than use the existing
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effective hand-crafted features. In addition, those studies can-
not explain the effectiveness of the network. Hence, many
studies attempt to use the deep learning methods to pro-
cess the hand-crafted features for improving the model inter-
pretability. Dong et al. [20] utilized a rectifier neural network
to detect hierarchical features from hand-crafted features,
and then use Long Short-Term Memory network (LSTM)
to learn sequential information to improve the classification
performance with EEG and EOG signals. Tsinalis et al. [21]
used stacked sparse autoencoders to process the hand-crafted
features for sleep staging. Similarly, Langkvist et al. [22]
proposed a sleep stage classification method which used
the DBN to process the hand-crafted features and hidden
markov model (HMM) to capture sleep stage switching rules.
Those deep learning structures only process the hand-crafted
features without extracting the network trained features.
A preferable method should fully utilize prior knowledge of
sleep and network. Namely, the feature extraction process
should both consider the hand-crafted features and network
trained features.

Besides, most of those deep learning methods are tested
on the healthy subjects, while the sleep architecture in
the subjects with sleep disorders is more disordered than
that of healthy people. Consequently, the classification
work for people with sleep disorders is relatively difficult.
Therefore, we should pay more attention to the improve-
ment of the sleep staging algorithm for people with sleep
disorders.

Hence, we introduce a novel two-stage network model for
sleep stage classification based on single-channel EEG. The
first stage aims to build an automatic process for extracting
hand-crafted features and network trained features, following
by fusing them. The second stage can realize the classification
process by exploring the temporal information from the fused
features obtained by previous stage. The main contributions
of this work are as follows:

1) A new network architecture consisting of two stages
is developed. In the first stage, a window-DBN (WDBN) is
designed to learn filters for generating trained features which
are combined with the hand-crafted features. The second
stage uses bidirectional LSTM (BLSTM) to further exploit
the temporal information for improving the classification
performance.

2) To solve the serious imbalance of the samples and
improve the generalization ability of the model, a novel
pre-training process combined with data augmentation strat-
egy was proposed.

3) The proposed method was estimated on two differ-
ent databases. The data in the first database were obtained
from healthy people, and the data in the second database
were obtained from the subjects with suspect sleep disorders.
Through these two experiments, we can estimate the general-
ization of the model.

The main context of this study is organized as follows.
In Section II, a detailed description of the methodology is
introduced. In Section III, the experimental procedure and
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TABLE 1. The employed hand-crafted feature of EEG.

:rrelztl:.lrfs Feature description Window size
5 Power spectral density (PSD) of 6 (0.5-4 Hz), 6 (4-8 Hz), o (8-13 Hz), § (13-20 Hz) and y (> 20 Hz) band Ss
3 Energy, Nonlinear energy and curve length [23] S5s
4 Peak power and its corresponding frequency, mean, and median in PSD Ss
1 Spectral entropy [23] 5s
2 Hurst and fractal exponent [24], [25] Ss
1 Kurtosis [26] S5s
20 Multiscale sample entropy with length m of 1 and 2, coarse-graining scales of 1-10 [27] 30s
4 Detrended fluctuation analysis (DFA) scaling exponent [28] 155,20s,255,30s
! from EEG signal can express the differences between those
TW,E.“‘,’:?, E sleep stages. In this study, a total of 40 EEG features are
Features ! extracted after pre-processing as shown in Table 1. Those
Raw Data — ,,ml::::i,,g Feature —E~ iﬁ.‘;‘:ﬁ?:; — Trained features were automatically extracted using sliding windows
Hand- ! for each epoch with strides of 5 s, the feature amounts,
ratted Stage 1 E Stage 2 feature descriptions and window sizes are provided. After
|
|

FIGURE 1. The architecture of the proposed network.

training parameters are described. The results that can reflect
the performance of the model are presented in Section IV.
In Section V, the discussion with regard to the experimental
results and the model analysis are put forward. In the last
section, we summarize this paper.

Il. METHODOLOGY

A. ARCHITECTURE

The architecture of the proposed network consists of two
main stages: the feature learning stage (Stage 1) and the
sequence learning stage (Stage 2). The feature learning stage
is used to provide fused feature matrix, and the sequence
learning stage can learn the temporal information between
successive epochs. Finally, the trained model can be obtained
as shown in Fig. 1.

In Stage 1, the single-channel EEG as the raw data will be
firstly pre-processed, then we extract features from the pre-
processed signals by two different ways, one for extracting
the hand-crafted features, and another is to obtain the network
trained features by the WDBN. The two different feature
matrices are fused to become the new feature matrix. Then
the fused features from the Stage 1 is delivered to the Stage
2 with time order for capturing the temporal information.
After the sequence learning process, the proposed model is
trained, then the predicted sleep stages can be obtained by
sending the testing data into the trained model.

B. FEATURE LEARNING STAGE

1) HAND-CRAFTED FEATURES

Each stage has its own characteristics for EEG signal. Those
specific characteristics can be reflected by hand-crafted fea-
tures to some extent. Hence extracting the specific features
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obtaining the 40 features, a z-score normalization procedure
is performed to reduce the impact of physiological differences
and equipment-related variations from subject to subject. The
feature vectors extracted from same sleep epoch would be
concatenated for subsequent process. Although deep learning
methods can extract useful features, completely abandoning
those hand-crafted features is overcorrecting in the sleep
medicine, because the design of those features respects the
characteristics of the sleep stages in a certain degree.

2) NETWORK FEATURE LEARNING

The performance of classification methods based on the
hand-crafted features is subject to the selection of features.
However, finding novel and effective features is difficult.
Besides, simply increasing number of features does not facil-
itate the classification process. So the deep learning approach
for extracting and selecting useful features should be investi-
gated.

DBN is a probabilistic generative model composed of mul-
tiple layers of stochastic, latent variables, and it’s one of most
popular networks used in feature learning. Each layer in DBN
can be regard as a restricted Boltzmann machine (RBM) [29].
We can stack any number of RBMs to form the DBN, which
is superior in feature extraction tasks [30].

Since the sampling rate of the EEG signals is commonly
high, 30s-length signal contains thousands of points. How-
ever, a large proportion of downsampling may lose lots of
information. Directly put such high-dimensional input into
the DBN will increase computational complexity. Further-
more, many characteristics of the sleep stages can be reflected
by a few second data, so we designed a WDBN to suit our
scenario, as shown in Fig. 2. In this study, a 2-layer WDBN
was adopted to handle the pre-processed EEG signal and
obtain the network trained features, because the previous
experiments found that two layers can take both accuracy and
computational complexity into account.
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FIGURE 2. The diagram of WDBN. The WDBN only process the signal with
the length of window size, which is shorter than 30 s. The WDBN can go
forward with a certain stride along the time direction, and each time it
stays, DBN training will be performed. The obtained short network
trained feature vector will be concatenated to form a 30 s epoch network
trained feature.

Input rq Input r,
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Features l Feaiures l
Dropout  Dropout Dropout  Dropout
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FIGURE 3. The two-stage network structure which mainly contains the
WDBN, hand-crafted feature extraction, and BLSTM. One dropout layer
and dense layer are used for adjusting the hand-crafted features and
network trained features before the fusion process. The fusion process
firstly concatenate the two kinds of features, then utilizes one dropout
layer and dense layer to select and fuse the concatenated features for
obtaining the fused features. Then the fused features are transmitted to
the sequence learning stage for training. The batch normalization (BN)
operation and the rectified linear unit (ReLU) activation are added to each
dense layer employed in this study.

C. SEQUENCE LEARNING STAGE

The sleep stages in one full night have obvious temporal cor-
relation and stage transition rules [31]. Sleep experts often use
those rules to determine the current possible sleep stage based
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FIGURE 4. The proposed oversampling approach combined with data
augmentation.

on the previous and next stages. For example, the REM stage
typically follows epochs of stages N2 and, less commonly,
stage Wake or N1 [31].

It is an important task to grasp those time series infor-
mation and use them to adjust the results from the feature
learning stage. LSTM is a good selection to complete this
task, which is one kind of RNN module that has the advantage
to explore dependencies between sequence inputs [32], [33].
It can selectively deliver the important information to next
unit instead of all information which may contain useless
message [34]. Besides, the LSTM has been already used for
sleep staging [19], [20], whose effectiveness has been proved.
But the LSTM architecture can only get information from
the previous unit so that further improvements are introduced
by BLSTM [35]. BLSTM is a two-direction LSTM struc-
ture, which means the current output can be simultaneously
influenced by the forward and backward information. By
this structure, the BLSTM can handle information both from
the forward and backward direction, which makes BLSTM
superior.

The two-stage model that combines the hand-crafted fea-
ture extraction, WDBN feature learning, and sequence learn-
ing is shown in Fig. 3. This procedure can be defined as
following formulas:

x!' = WDBN(r;) M
x[h = Hand_crafted(r;) @)
x{ = Fusion(x;" || xth) 3
hy = BLSTM;(x!) “)
R; = softmax(h;) (5

suppose a total of M 30-s epochs {r, ..., ryy} with time
order were generated after pre-processing, for t = 1 to M
denotes the index of epochs. The WDBN and Hand_crafted
represent the process of the WDBN and hand-crafted feature
extraction, respectively. Thus x;' denotes the network trained
features after the WDBN at th epoch, and x/ means the
hand-crafted features after network process at 7th epoch. The
Fusion and || express the feature fusion process and
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FIGURE 5. An example of morphological operation for one epoch EEG signal which contains two suspected spindle waves. The upper waveform
is the original EEG signal, the lower one suffers one horizontal movements with displacement of 15s, and added the white noise with the SNR

of 12 dB.

a concatenation operation, respectively. So the fused feature
matrix x; is the result obtained from the feature learning stage
at rth epoch. The BLSTM represent the BLSTM process.
The notation 4, express the output from BLSTM layer at tth
epoch. The output of the BLSTM are then transmitted to the
softmax layer, finally, the probability for five classes can be
obtained.

D. PRE-TRAINING PROCESS WITH OVERSAMPLING

1) OVERSAMPLING

To prevent the class imbalance problem, the oversampling
approach is commonly used to balance the samples in sleep
staging. Traditional oversampling approach is to copy the
samples from the minor classes in the training set until all
the classes have the same number of samples [19]. Although
this method can balance the weights in the network, it cannot
let the network learn new patterns. So we designed a novel
oversampling approach with data augmentation as shown in
Fig. 4. This approach firstly identifies a sleep stage with
maximum number of epochs, then create the same num-
ber of epochs from the minor sleep stages in the training
set, such that all sleep stages have the same number of
samples.

The data creation is realized by the SMOTE algorithm [36]
and signal morphological change. Before transferring to the
feature learning stage, the SMOTE algorithm is used to create
the synthetic hand-crafted features for the minor epochs in the
training dataset, simultaneously, the morphological operation
which contains horizontal movement and noise addition is
conducted on the EEG signal of the same epoch. The SMOTE
algorithm can prevent the overfitting problem by improving
the sample distribution. Horizontal movement represents an
operation that the EEG signal is translated along the time
axis with one random time period, in this study, we ran-
domly select a time period between 5-25 s as the translation
length. The noise addition means the signals randomly add
a white noise with the signal to noise ratio (SNR) between
8-14 dB. An example of morphological operation for one
epoch EEG signal that contains two suspected spindle waves
is shown in Fig. 5. The lower EEG signal which suffers the
morphological operation can be considered as a created data
for augmentation.
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FIGURE 6. An example of a series of sleep epochs before and after the
oversampling approach. (a) represents an original series of sleep epochs.
(b) is the series (a) after the oversampling process whose temporal
information is changed.
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FIGURE 7. The whole training process which can both consider the
sample balance and sequence information learning.

2) PRE-TRAINING PROCESS
Since we introduced the oversampling approach, the temporal
information in series of sleep epochs was destroyed as shown
in Fig. 6. Therefore, we need to introduce a pre-training pro-
cess to protect the temporal relation and ensure the BLSTM
can learn the sequence information under the premise of using
the oversampling approach to learn comprehensive features.
The proposed model with designed pre-training process
is shown in Fig. 7. It shows the structure from a temporal
perspective. The feature pre-training is used to preliminar-
ily train the feature learning stage with oversampling. After
obtaining the pre-trained model, it would be reloaded and
fine-tuned in the sequence learning stage, and the BLSTM
layer is simultaneously trained to learn the sleep stage switch
rules.

VOLUME 7, 2019



C. Sun et al.: Two-Stage Neural Network for Sleep Stage Classification

IEEE Access

Ill. EXPERIMENT

A. DATA

A total of 63 full night recordings from two public databases:
Sleep-EDF and Sleep Apnea (SA) Database were used to
evaluate the proposed model [37]. The Sleep-EDF database
has two subsets from two different studies: age effect in
healthy subjects and Temazepam effects on sleep, which can
be downloaded from PhysioNet [37]. We used all 20 healthy
subjects from the first subset, which has total 39 full overnight
recordings (one subject had only one night record and 19
subjects had two). Each recording contained 2 EEG channels
(Fpz-Cz and Pz-Cz), 1 horizontal EOG and 1 chin EMG.
Among them, the Fpz-Cz EEG was used in this study, whose
sampling rate is 100 Hz. The SA database has been provided
by St. Vincent’s University Hospital and University College
Dublin, which can also be downloaded from PhysioNet [37].
This database contains 25 full overnight recordings, from
25 adult subjects with suspected sleep disorder, for possible
diagnosis of obstructive sleep apnea, central sleep apnea or
primary snoring. Each record consists of 2 EEG channels
(C3-A2 and C4-A1), 2 EOG channels, and 1 chin EMG chan-
nel. The C3-A2 EEG is used in this study, whose sampling
rate is 128 Hz. One record has been removed due to the
extremely abnormal annotation.

These recordings were manually scored into one of the six
classes (Wake, S1, S2, S3, S4, and REM) by a sleep expert
according to the R&K standard. Hence, the S3 and S4 stages
were merged into the N3 stage to match the AASM standard.
It’s worth noting that if movement occurs in one sleep epoch
and influences classification seriously, this epoch would be
labeled as Movement or Artifact, one epoch would be labeled
as Unknown if the sleep experts cannot estimate the stage of
this epoch. We get rid of the epochs labeled without normal
stages (Wake, N1, N2, N3, and REM) to improve the learning
performance, because abnormal stages, such as Unknown,
Artifacts, and Movement, do not contain learning objectives
in the full night recording. After obtaining the raw data,
it needs a de-noising process. A notch filter is applied to
eliminate the 50 Hz or 60 Hz power frequency interference,
and a band-pass filter of 0.3 to 35 Hz is used for the EEG
signal.

The demographics, the percentages for five sleep stages
and the total number of test epochs from the two databases are
summarized in Table 2. It can be seen that the two databases
have different sample distribution. The SA database has more
Wake and N1 stages which indicates that the subjects with
suspected sleep disorder have irregular sleep and bad sleep
efficiency. The Leave One Subject Out (LOSO) approach was
used to estimate the model performance for the two databases.
The ratio of training subjects: validation subject: test subject
is k-2: 1: 1, where the k is the number of subjects. The
validation data is used to judge whether to store the trained
model.

The experiments were performed on a Dell server with
two Intel Xeon E5-2687W 3.0 GHz CPUs and four NVIDIA
GeForce GTX1080Ti GPUs. The training process was
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TABLE 2. The percentage for five sleep stages from the two databases.

Databases Sleep-EDF Sleep Apnea
Subject Number (k) 39 24
Age (y) 29+3 50£10
Wake (%) 18.9 22.9
N1 (%) 6.7 15.9
N2 (%) 424 34.0
N3 (%) 13.6 12.9
REM (%) 18.4 14.3
Total Test Epochs 41950 20025

implemented by utilizing Python3.6 with Tensorflow1.8
which is a deep learning library [38]. After the model is
trained, it takes only tens of milliseconds to get one subject
results.

To assess the performance of the proposed model, we com-
puted the accuracy, F1-score and Cohen’s Kappa coefficient
for the overall results and calculated the precision, recall and
F1-score for each class. Thus, a total of five indices were used
to assess the proposed model.

B. TRAINING PAREMETERS

During the feature pre-training process, a 2-layer WDBN was
self-trained with the balanced samples via greedy layer-wise
method, and then fine-turned by the labels. The weight matrix
of hidden units was initialized to the normal distribution
whose mean and variance is 0 and 1, respectively. During
the WDBN training process, the stop mechanism was set
to prevent overfitting, which would stop the WDBN train-
ing when the model cannot get better for more than con-
tinuous 10 training epochs. After the WDBN convergence,
the network trained features are fused with the processed
hand-crafted features. The cross-entropy loss was utilized to
quantify the consistency between the predicted results and
the groundtruth. The hyperparameters of network are shown
in Table 3, which are chosen based on the previous experi-
ments and literature reports [19], [22].

After the pre-training process, the input without the over-
sampling process, which preserves the time order informa-
tion can be transmitted to the pre-trained model. One layer
BLSTM is then utilized to learn the sequence informa-
tion between tensors exported from the pre-trained model.
We adopted ‘sequence to sequence’ LSTM structure, which
can handle a certain number of input and obtain the same
number outputs. This number is called sequence length which
is set to 25 in this study. The cell and the hidden states in the
BLSTM were reset in the beginning of each subject data. Ten
sequences from the same subject data were simultaneously
transferred to the BLSTM layer. The dropout technique was
also employed in the BLSTM layer. The cross-entropy loss
function was also utilized in the sequence learning stage.
Besides, a heuristic gradient clipping technique is used to
prevent the exploding gradients phenomenon. The model
with best performance on the validation set is saved. After the
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TABLE 3. The description of the network hyperparameters.

The description of hyperparameters Value
Feature Learning Stage
Batch size 100
Layer number of the WDBN 2
Hidden size of each layer in the WDBN 200
Number of training epochs of the WDBN 300
Window size of the WDBN 5s
Strides of the WDBN 5s
Initial biases of hidden units in the WDBN 0
Hidden size of the dense layers 400
Dropout probability 0.5
Learning rate of the dense layers 10
Number of training epochs of the dense layers 200
Optimizer of the dense layers Adam [39]
Sequence Learning Stage

Sequence length 25
Batch size 10
Layer number of BLSTM 1
Hidden size of the BLSTM 500
Dropout probability 0.5
Learning rate for fine-tuning the pre-trained model 10
Learning rate for sequence learning 10
Clipping value of heuristic gradient clipping technique 5
Number of training epochs 200
Optimizer Adam [39]

SLEEP-EDF SA
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FIGURE 8. Normalized confusion matrices obtained by the proposed
model from the Sleep-EDF database and SA database. The numbers in the
main diagonal indicate the normalized epochs which were correctly
classified in the corresponding stages. The darker the blue color in the
blocks means the greater of the data.

whole training process, the results can be obtained by putting
the test dataset into the trained model.

IV. RESULTS
A. SLEEP STAGE CLASSIFICATION PERFORMANCE
Fig. 8 shows the normalized confusion matrix obtained by
the proposed model via LOSO from the Sleep-EDF database
and SA database. It can be seen that the classification perfor-
mance for the Wake, N2, N3 and REM stages are great, except
that a small number stages were incorrectly classified to the
N2 stages. For the N1 stages, most of them were correctly
predicted, but many N1 stages are misclassified as the Wake,
N2 and REM stages.

The precision, recall, and F1-score for each stage and the
overall accuracy, F1-score, Kappa coefficient were calculated
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TABLE 4. Per-class and overall indices obtained from the Sleep-EDF and
SA database by the proposed model.

Sleep-EDF (healthy) SA (patients)
Pre Recall F1 Pre Recall F1
Wake 0.881  0.846 0.863 0.825 0.800 0.812
N1 0.538  0.525 0.532 0.719 0.482 0.577
N2 0.909  0.878 0.893 0.770 0.911 0.835
N3 0.861 0.929 0.894 0.903 0.866 0.884
REM 0.819  0.876 0.846 0.836 0.852 0.844
Acc F1 Kappa Acc F1
0.855  0.806 0.80 0.803 0.790 0.74

Pre=Precision, F1 = Fl-score, Acc = Accuracy.

Kappa

Overall

and provided in Table 4. From the per-class classification
performance for the two databases, it represents that the
proposed method has good ability to identify the Wake, N2,
N3, and REM stages whose worst Fl-score is 0.812 for
classifying the Wake stages in the SA database. The poorest
performance occurred in classifying the N1 stage, in which
the best Fl-score is 0.577 for the SA subset. With the small
training samples and few characteristics of the N1 stage,
the N1 stage is the most undistinguishable stage in the five
classes. The overall accuracy, Fl-score and Kappa coefti-
cient for the Sleep-EDF database are 0.855, 0.806, and 0.80,
respectively, while are 0.803, 0.790, and 0.74 for the SA
database, respectively. The Kappa coefficients showed that
our proposed method had a substantial agreement with the
sleep expert, and the accuracies are promising and stable
for the two databases with different characteristics. Besides,
the F1-scores indicated that the proposed model can take into
account both the precision and recall.

From the classification performance obtained from the
two different databases, it can be seen that the Sleep-EDF
database has better performance. This maybe because the data
in the Sleep-EDF database is collected from healthy people,
while the data in the SA database is collected from subjects
with sleep disorders. The hypnogram of subjects with sleep
disorders is more disordered than that of healthy people,
consequently, the classification work for the SA database is
relatively difficult. In addition, the differences of acquisition
equipment and other environment would also lead to different
classification results. Even though our model displayed dif-
ferent results on the two databases whose subject conditions,
acquisition equipment and environment are various, the tests
of two databases still show promising results.

An example of hypnogram for Subject-1 from the Sleep-
EDF database for more than 800 epochs at one night is
demonstrated in Fig. 9. We can see that most REM stages
follow the epochs of stage N2 instead of other stages by
the prediction of our proposed model, which is consistent
with the stage switch rules as mentioned before. Besides,
most misclassified stages appeared in the transitions between
N1 and other stages. This phenomenon is similar with the
information provided by Fig. 8 and Table 4 in a certain degree.
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FIGURE 9. An example of hypnogram which is manually scored by a sleep expert and automatically
scored by our model for Subject-1 from the Sleep-EDF database. The red solid line and the blue solid
line represent the sleep stage interpreted by the sleep expert and our model, respectively, for more

than 800 epochs at one night.

B. THE PERFORMANCE OF MODEL COMPONENTS

The proposed model has four important components: WDBN,
hand-crafted features, BLSTM and novel pre-training pro-
cess. To evaluate the benefits of different parts in the proposed
model to the classification performance, we separated the
proposed method and use other approaches to replace the
components in our proposed method. To clarify the improve-
ment brought by the BLSTM, support vector machine (SVM)
and Hidden Markov Model (HMM) were used to replace the
BLSTM to train the model. The SVM and HMM are widely
used traditional machine learning methods which can be used
as two comparison methods [40], [41]. Six methods were
then derived from the proposed two-stage model as described
below:

1) Method 1: Hand-crafted features + SVM. This method
extracted 40 hand-crafted features, these features are then
transmitted to the SVM with RBF-kernel for training. Finally,
the trained model can obtain the classification results. The
parameters of the SVM is selected automatically via the
validation set.

2) Method 2: Hand-crafted features + BLSTM. This
method transmitted 40 hand-crafted features to the BLSTM
for training. The trained BLSTM can obtain the classifica-
tion results. The architecture and the training parameters of
BLSTM are the same as the proposed model.

3) Method 3: WDBN + BLSTM. This method utilized
the EEG signal to train WDBN for obtaining the net-
work trained features, then using the features to train the
BLSTM. It’s a two stage process without extracting the hand-
crafted features. The architecture and the training parame-
ters of the remaining parts are the same as the proposed
model.

4) Method 4: WDBN + hand-crafted features + HMM.
The WDBN combined hand-crafted features is the feature
learning stage (Stage 1) in our proposed model, the fused
features are then transferred to the HMM for training. Finally,
the data is sent into the trained model for sleep stages classifi-
cation. The architecture and the training parameters of Stage
1 are the same as the proposed model.
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5) Method 5: WDBN + hand-crafted features + BLSTM.
This method is our final proposed method without the novel
pre-training process as shown in Fig. 3. The architecture and
the training parameters of the remaining part are the same as
the proposed model.

6) Method 6: WDBN + hand-crafted features + BLSTM +
pre-training process. The method is actually our final pro-
posed method as shown in Fig. 7.

The Sleep-EDF database was employed to test the six
methods, the employed channel is Fpz-Cz EEG and the
number of test epochs is 41950. The LOSO was performed
to estimate the performance. Table 5 shows the comparison
between the six methods across total accuracy, Fl-score,
Kappa coefficient and F1-score for each class. The confusion
matrices obtained by Method 1 to Method 5 are demonstrated
in Fig. 10. The confusion matrix and the results of Method 6
is already given in Fig. 8 and Table IV, respectively. When
using the SVM to train the hand-crafted features (Method 1),
it got the worst performance in the classification compar-
ison. Only used the hand-crafted features (Method 2) or
WDBN (Method 3) as the feature learning process, the clas-
sification performance cannot exceed Method 5, which com-
bined the WDBN with the hand-crafted features. Almost all
indices in Method 5 achieve the better performance than
those indices in Method 2 or Method 3. It indicates that
network trained features can provide effective information for
the sleep staging. Besides, the hand-crafted features provide
supplementary information for the network trained features.
However, when using the HMM to replace the BLSTM
(Method 4), the performance decreases sharply. The results
demonstrated that the BLSTM in the sequence learning stage
is superior to the HMM for sleep staging. The employ-
ment of the BLSTM for sequence learning would gain more
than 5% increasing in total accuracy. The Method 6 as our
final proposed model has the novel pre-training process,
it achieved the best effects in most all indices which proved
that the pre-training process combined with data augmenta-
tion can make the feature learning more comprehensive and
robust.
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TABLE 5. Comparison of performance of different model components via loso from the sleep-edf database.

Overall results F1-score for each class

Methods

Acc F1 Kappa Wake N1 N2 N3 REM
Hand-crafted features + SVM 0.695 0.621 0.59 0.724 0.213 0.745 0.714 0.711
Hand-crafted features + BLSTM 0.795 0.740 0.72 0.843 0.458  0.823  0.800 0.776
WDBN + BLSTM 0.822 0.752 0.76 0.869 0.385 0.858  0.834  0.817
WDBN + hand-crafted features + HMM 0.790 0.738 0.72 0.828 0.422 0.834 0.836 0.769
WDBN + hand-crafted features + BLSTM 0.846 0.792 0.79 0.886 0.511 0.873 0.855 0.832
WDBN + hand-crafted features + BLSTM + pre-training process 0.855 0.806 0.80 0.863 0.512 0.893 0.894  0.846

Acc = Accuracy, F1 = Fl1-score.
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FIGURE 10. Normalized confusion matrix obtained by the Method 1-5 with different model components from the Sleep-EDF database.

TABLE 6. comparison of performance of different methods using the same signals from the same databases.

Test Overall results F1-score for each class
Databases Methods Employed Channels
epochs Acc F1 Kappa  Wake N1 N2 N3 REM
Ref [21] Fpz-Cz 37022 0.748 0.698 0.65 0.654 0.437 0.806 0.849 0.745
Sleep- Ref [18] Fpz-Cz 37022 0.789 0.737 0.71 0.716 0.470 0.846 0.840 0.814
EDF Ref[19] Fpz-Cz 41950 0.820 0.769 0.76 0.847 0.466 0.859 0.848 0.824
Our model Fpz-Cz 41950 0.855 0.806 0.80 0.863 0.532 0.893 0.894 0.846
Ref[22]  C3-A2,EOG,EMG 20789 0.722 0.705 0.64 0.780 0.370 0.760 0.840 0.780
SA Ref [9] C3-A2, C4-Al 15000 0.810 - - - - - - -
Our model C3-A2 20025 0.803 0.790 0.74 0.812 0.577 0.835 0.884 0.844

Acc = Accuracy, F1 =F1-score.

C. COMPARISON WITH OTHER APPROACHES

To further understand the performance of the model, we com-
pared it with other related studies which used the same
databases for testing [9], [18], [19], [21], [22]. Those state-
of-the-art methods are introduced in Section I. Table 6 shows
a comparison between our method and other sleep stage
classification methods across total accuracy, F1-score, Kappa
coefficient and F1-score for each class. Those studies also
conducted the subject independent verification. From Table
6, it can be seen that our method has advantages compared
to those state-of-the-art methods. The [18], [19], [21] and our
study used single-channel EEG (Fpz-Cz) in the Sleep-EDF
database to train the models. The results represent that our
proposed model generated higher performance. For the SA
database, the [22] and [9] utilized multiple signals to train
their model, while we employed only the C3-A2 EEG to
train our model and get the results. For the comparison by
using the SA database, our proposed model achieved higher
accuracy, F1-score, and Kappa coefficient than the [22] which
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used C3-A2, EOG, and EMG channels, and obtained similar
performance with the [9] which employed two EEG channels
with highly screening the test data.

D. NETWORK TRAINED FEATURES

The hand-crafted features with obvious physical significance
have clear interpretability, which can be proved to effective
in theory. However, the hand-crafted features greatly com-
press the information of the signal, while the morphological
characteristics of the signal might be ignored. So we use the
WDBN to extract the network trained features which can pre-
serve the morphological information, because the length of
network trained features is equal to the window size, and the
network trained features could be considered as many filters
for match the specific patterns in the sleep medicine. The
combination of the network trained features and hand-crafted
features showed better effects on classification which indi-
cated that these two kinds of features have complementary
information. Hence, the network trained features are worth
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FIGURE 11. Network trained features extracted by the WDBN. It can be
observed that the learned features are of various forms and some
waveforms are suspected of sleep events such as spindle wave,
K-complex or slow wave. Only the first 30 features are shown here.

exploring. We plot the network trained features extracted
from the WDBN, which are shown in Fig. 11.

From Fig. 11, we can see that the network trained features
reflect different forms of signal characteristics. To verify the
diverse and complementary of these features, we validated
them with the sleep experts. High similarities in the morphol-
ogy between network trained features and the sleep events
defined by AASM were found. To illustrate, the features
denoted by red boxes and blue boxes have high coherence
with sleep spindle and K-complex, respectively [31]. Many
features with slow changes are similar to the slow waves
that were denoted by greed boxes [31]. These different fea-
tures are complemented to distinguish between different sleep
stages. For example, in N2 stage, one of the typical sleep
events is K-complex that can be presented as negative, sharp
wave immediately followed by a positive component on the
morphology of the EEG signal; The spindle wave and slow
wave in the EEG signal are the characteristics of the N2 stage
and N3 stage, respectively [31]. In the following layers, those
features can be further selected and mapped to the most
relevant stage. Namely, these features serve as significant
characteristics of the morphology in distinguishing different
stages, which is similar to the sleep medicine experts.

V. DISCUSSION AND FUTURE WORK

This study provides a novel sleep stage classification method
which combined WDBN, hand-crafted features, BLSTM
and novel pre-training process. Those important components
compose the two-stage network, which has become the pop-
ular structure in dealing with physiological signals [19], [20].
The experimental results show that the proposed method has
promising performance for the sleep stage classification with
single-channel EEG.

As shown in the Fig. 8 and Table 4, the error rate of stage
N1 is obviously higher than other stages, and the error mainly
occurs when the real N1 epochs are misclassified to other
major stages such as Wake, N2, and REM epochs. This may
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be caused by the features for distinguishing the stage N1 are
relatively less than other stages, and the number of stage
N1 epochs is also less than other stages which leads to poor
learning. From a technical point of view, the lack of powerful
features and temporal information to identify the N1 stage
could be the reason for this phenomenon. Hence, dig out
novel and valid features and networks, further explore the
temporal information of N1 stage, to improve the classifica-
tion model will be the next mission. Transfer learning [42]
may solve the problem of insufficient learning in the N1 stage.
For example, we can extract the network layer related to the
N1 stage from the trained networks of other databases, then
put those layers into our network to assist the N1 classifica-
tion.

It can be speculated that if we change the parameters of
WDBN, for example, adopt a variety of window sizes and
strides, the obtained network trained features can contain
more information in theory, but this will greatly increase
calculation complexity, so novel network structure which can
extract more information while reducing the computational
complexity is worth exploring. In addition, the hand-crafted
features extracted from single-channel EEG expressed lim-
ited information for sleep analysis, the performance of clas-
sification maybe improved by exploiting new and effective
features which can characterize additional discriminating
information.

In Section IV-B, Method 1 (Hand-crafted features + SVM)
and Method 2 (Hand-crafted features + BLSTM) sent only
the hand-crafted features into the SVM model and BLSTM
for classification, respectively. The results show that only
the hand-crafted features cannot provide enough informa-
tion for the classification. In addition, the performance of
Method 2 is better than Method 1, which indicated that the
sequence learning is effective. If we only use the WDBN for
feature learning as applied in Method 3 (WDBN + BLSTM),
the results demonstrated that the WDBN is superior to the
hand-crafted features for sleep staging. When combining the
WDBN with the hand-crafted features (Method 5), the clas-
sification performance would be further improved, the phe-
nomenon indicates that the information obtained from the
hand-crafted features and the network trained features are
mutual complementation. Besides, the BLSTM outperforms
the traditional approach for the sequence learning in this
study.

For comparison with traditional methods, the deep learn-
ing approaches have advantages in sleep staging. From the
perspective of feature extraction of the proposed model,
the WDBN successfully extracted different morphological
features, which is consistent with the way of sleep experts
for judging the sleep stage according to observation. Besides,
the classification is conducted by the BLSTM based on the
time series information in the successive sleep epochs. While
the traditional methods are usually weak in exploring the
relations between sleep epochs. For comparison with other
deep learning approaches. The traditional feature extraction
approaches (hand-crafted) are combined with our proposed
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model, to extract the comprehensive characteristics of the
employed signals. Besides, we employed the pre-training
strategy to make the model have better generalization.

Finally, we need to highlight the limitations and the future
directions of this study. Although we analyzed the network
trained features in a certain degree and found that this
approach based on the deep learning is similar to the sleep
expert, the deep learning framework has relatively poor inter-
pretability compared with the traditional machine learning
methods. Besides, extract the hand-crafted features requires
prior knowledge of sleep medicine to estimate the effect
of the features. Furthermore, the sleep staging performance
for the subjects with sleep disorders is worse than that of
healthy people. Therefore, we should pay more attention to
the improvement of the sleep classification algorithm for
patients with sleep disorders, and the detection of events
related to sleep diseases in the future. In addition, the pro-
posed data augmentation strategy may just increase the recep-
tive field of the WDBN instead of creating new patterns for
the minor sleep epochs. Hence, explore novel data augmenta-
tion strategy to solve the serious sample unbalance problem
is one of our research directions. For example, generative
adversarial network (GAN) [43] is currently the most pop-
ular data generation tool which can be used to artificially
synthesize sleep epochs of minor stages for balancing the
samples. In addition, it’s significant to explore which is the
most relevant hand-crafted and network trained features to
different stages by decoding the mapping of the network.
But it’s still extraordinarily difficult in deep learning field
due to the complex network structure and large number of
parameters. Maybe we can solve this problem by the study of
model interpretability in the future.

VI. CONCLUSION

This paper presents a novel sleep stage classification method
based on a two-stage neural network. In the first stage,
the proposed model used WDBN to extract network trained
features from single-channel EEG, and the network trained
features can be fused with hand-crafted features by the model.
The fused features are then transferred to the second stage
for obtaining the sequential results. The evaluation of the
proposed model was conducted on two public databases,
and the performance is promising. The combination of the
hand-crafted features and the network trained features can
improve the classification performance via the model com-
parison experiments. The BLSTM can achieve good perfor-
mance for learning the temporal information. In addition,
the novel pre-training process combined with data augmen-
tation strategy was verified that it can improve the accuracy
and generalization of the model. We believe that our proposed
model can be a good choice for sleep stage classification.
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