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ABSTRACT With the rapid development of Internet of Things, hand gesture recognition has drawn wide
attention in the field of ubiquitous computing because it provides us with simple and natural human-computer
interaction mode. Among these various implementations, hand gesture recognition using ultrasonic signals
of smartphone has become a hot research topic due to its various advantages. In this paper, we consider the
smartphone as an active sonar sensing system to identify hand movements. Specifically, the speakers emit
ultrasonic signal and the microphone on the same phone receives the changed echo affected by hand move-
ments. This paper investigates the state-of-the-art hand gesture applications and presents a comprehensive
survey on the characteristics of studies using the active sonar sensing system. Firstly, we review the existing
research of hand gesture recognition based on acoustic signals. After that, we introduce the characteristics
of ultrasonic signal and describe the fundamental principle of hand gesture recognition. Then, we focus
on the typical methods used in these studies and present a detailed analysis on signal generation, feature
extraction, preprocessing, and recognition methods. Next, we investigate the state-of-the-art ultrasonic-based
applications of hand gesture recognition using smartphone and analyze them in detail from dynamic
gesture recognition and hand tracking. Afterwards, we make a discussion about these systems from signal
acquisition, signal processing, and performance evaluation to obtain some insight into development of the
ultrasonic hand gesture recognition system. Finally, we conclude by discussing the challenges, insight, and

open issues involved in hand gesture recognition based on ultrasonic signal of the smartphone.

INDEX TERMS Doppler effect, hand gesture recognition, smartphone, ultrasonic signal.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT),
the demand for pervasive sensing is continually increasing
because it can provide us with more information and facilitate
the development of ubiquitous applications. These applica-
tions usually measure and amass the sensing data by using
various signals, such as video [1], sound [2], radio frequency
(RF) [3], and light [4]. These signals have distinct character-
istics and can be leveraged according to the requirements of
applications. We can categorize these applications into two
groups: environment sensing and target sensing. The aim of
the former is to collect and assess environmental information
such as temperature of environment or weather information,
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etc. and the purpose of the latter is to measure and monitor the
target state, such as crowdsensing, elderly health monitoring,
human activity recognition, etc. In this paper, we concentrate
on the sound signal and its applications for sensing active
target. The acoustic sensing techniques have been extensively
studied and applied in various scenarios because sound sig-
nal has many advantages, such as simple waveform, good
physical features, low deployment cost. Recently, many novel
features of sound signal have been explored and quite a
number of the acoustic signal-based applications have been
developed in various aspects. We can categorize these appli-
cations into quite a number of groups based on their purposes,
such as speech recognition [5], activity recognition [6]-[13],
health monitoring [14]-[29], lip reading [30], identity authen-
tication [31]-[38], attack and defense [39]-[43], finger
tapping detection [44], localization [45]-[53], indoor
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mapping [54], [55], acoustic imaging [56], context aware-
ness [57]-[60], touch detection [61]-[63], speed measure-
ment [64], multi-device interaction [65]-[68], safe driving
and walking [69]-[72], fault detection [73], [74], indoor
navigation [75], and motion tracking [76]—[80], etc.

Among the current acoustic signal-based recognition
applications, human hand gesture recognition has become a
hot research topic and attracted more attention because it can
provide many wonderful applications such as game control,
device unlocking, identity authentication, and information
input, etc. The basic idea of these approaches is that hand
movement may disturb the sound signal propagation and
lead to signal changes. The receiver can capture the changed
signal caused by hand movement and the system can identify
the changes by comparing the echo with the original signal.
Then the signal changes could be analyzed to recognize
hand motions. In recent years, quite a number of studies of
hand gesture recognition have increasingly emerged. Based
on their purposes, these applications usually employ differ-
ent hardware equipment to emit and receive sound signal,
including smartwatch [81]-[83], computer [84]-[90], spe-
cially designed device [91]-[96], and transceiver in environ-
ment [97], [98].

Among these applications, some systems require partic-
ipants to wear sensors and some systems depend on the
specific sensors, which can be inconvenient under many sce-
narios and lead to extra deployment cost. Meanwhile, some
applications use the sound devices of laptops or desktops,
which brings some difficulties when deploying in some small
space. Besides, some systems apply smartwatches to recog-
nize hand postures. These methods have some disadvantages,
such as extra deployment cost, inconvenience of wearing
a device, requirements for customized devices, etc., which
limits the application area of sound sensing.

Fortunately, with the rapid development of smartphone, its
capabilities of computation and environment sensing have
been strengthened increasingly. Moreover, due to the power-
ful function of smartphone, it has become an indispensable
electronic device. As a result, we can utilize their built-in
sensors, such as speakers and microphones, to develop many
interesting applications using sound signals of the smart-
phone. The systems using smartphone as signal sensing
sensor have the natural advantages, such as zero deploy-
ment cost, ubiquitously available devices, and powerful com-
puting capability. Furthermore, these systems benefit from
the good development pattern because we can implement
sensing functions by deploying application programs on the
smartphone. Currently, a host of studies and applications for
hand recognition based on acoustic signal of smartphone
have emerged. We classify these applications into two types:
passive sensing system and active sensing system. To be
specific, we can record the ambient sound signal using the
microphone of the smartphone and recognize hand gesture
using the changed signal. We call these applications as pas-
sive sensing systems because the smartphone solely captures
the sound signal. Besides, the smartphone can serve as an
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active sonar system to emit and receive sound signal, which
enables us to explore the active sonar by modulating the
signal and generating appropriate waveform. We call these
applications as active sensing systems because the smart-
phone first emits sound signal and then records the signal
variation. Both two types of applications greatly extend the
application range of sound signal due to the popularity of
smartphones.

A. PASSIVE ACOUSTIC SENSING

The aim of passive sensing is to capture the ambient
sound signals or the sound signal transmitted by other
devices. Therefore, the microphones embedded in the
smartphone serve as a sound input device in this sce-
nario [78], [79], [99]-[110]. For instance, UbiK [100] lever-
ages the dual-microphone embedded in the smartphone to
collect signals and extracts the multipath fading as features.
It can recognize the text inputting from the keyboard out-
line printed on the conventional surfaces (e.g., wood table).
SoundWrite [102] and SoundWrite II [103] recognize the
stroke according to the sound signal generated by moving the
finger on the surface (e.g., table, paper). They leverage the
microphone to capture the acoustic signal, extract frequency
and time features, and recognize stroking by pattern classifi-
cation. SoundWave II adds two threshold values and exploits
the Mel frequency cepstral coefficient (MFCC) to extract
stable features and improve noise tolerance. UbiWriter [104]
utilizes the microphones built in smartphone to record the
audio signal generated by handwriting and analyzes the audio
signal to realize the text input.

B. ACTIVE ACOUSTIC SENSING
The meaning of active sensing is that the sound signal is
emitted and received by the same smartphone. The speaker
built in smartphone transmits ultrasonic signal at a given
frequency and the microphone embedded in the same smart-
phone captures the changed ultrasonic signal affected by the
hand movement around the mobile. The signal changes are
leveraged to recognize hand gesture based on the pattern rules
or geometric models [111]-[132]. From this view, the smart-
phone can be treated as an active sonar. For example, Audio-
Gest [112] is a fine-grained hand motion recognizing system
based on smartphone. This system can not only classify
hand postures but also identify the speed of hand movement,
the range of hand motion, and the duration of hand in the air.
Specifically, AudioGest expands the number of hand gestures
by taking these three factors into consideration. Different
from AudioGest, R. Nandakumar et al. propose a finger
tracking system called FingerIO [111]. This system can track
the finger by using the microphone and speaker embedded
in smartphone. It utilizes the orthogonal frequency division
multiplexing (OFDM) technology to obtain the transmitted
sound signal. Moreover, FingerlO enables finger tracking
available even the mobile in a pocket.

Currently, although many acoustic-based human gesture
recognition applications have been developed and applied
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FIGURE 1. The common hand gesture scenarios based on active acoustic
sensing. (a) Dynamic gesture recognition [116]; (b) Hand trajectory tracking.
in various scenarios using commodity hardware, the com-
prehensive survey on acoustic sensing is still very deficient.
Reference [2] is the latest review on acoustic sensing based
on commodity devices. However, it focuses on the application
layer, processing layer, and physical layer. There is no sur-
vey on hand gesture recognition using the ultrasonic signal
from smartphone. This paper concentrates on the system
framework, processing techniques, and applications using
ultrasonic signal from smartphone. Specifically, in this paper,
we focus on the applications of hand gesture recognition
which leverage the speakers built in smartphone to trans-
mit ultrasonic signals and utilize the microphones embedded
on the same smartphone to record the echoes, including
dynamic hand gesture recognition and hand trajectory track-
ing, as shown in Fig. 1. The former focuses on the specific
gestures and labels the unknown movement according to
collected data. The latter tracks the movement trajectory of
the hand, such as drawing the shape or alphabet. Therefore,
these two applications have distinct characteristics and we
will analyze them in application part. We investigate these
applications and analyze their features to facilitate the devel-
opment of natural and novel human-computer interface (HCI)
methods.

The contributions of this paper can be summarized as
follows. Firstly, we present the review of recent progress
in hand gesture recognition based on ultrasonic signal of
smartphone. To our best of knowledge, this paper is the
first survey on the hand gesture recognition by an ultrasonic
signal based on smartphones. Secondly, we give the typical
framework to recognize hand gesture using the built-in speak-
ers and microphones of smartphone. We illustrate the signal
processing procedure from signal measurement to behavior
recognition. It comprises ultrasonic signal collection, prepro-
cessing, and hand gesture identification. We describe each
step in detail and analyze the corresponding algorithms.
Finally, we investigate the existing applications and classify
them into two types according to the purpose of applications:
dynamic gesture recognition and hand trajectory tracking.
We make a comprehensive comparison of these applications
and evaluate their performance from several aspects, e.g.,
experiment devices, extracted features, signal preprocessing,
classification approaches.

The rest of this paper is organized as follows: we first
introduce the fundamental principle and the basic system
framework of the hand gesture recognition using ultrasonic
signal of smartphone in Section II. Then, we analyze some
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essential techniques about hand gesture recognition using
ultrasonic signal in Section III, including signal generation,
signal analysis, signal preprocessing, and the recognition
methods. After that, we present some existing applications
of gesture recognition based on ultrasonic signal and eval-
uate their system performance from several aspects, such
as experimental scenarios, conducted actions, findings, and
dimensions, etc. in Section IV. We make a comprehensive
discussion about these applications from signal acquisition,
signal processing, and performance evaluation in Section V.
At last, we present the limitations, challenges, and future
directions in Section VI. Section VII is our conclusion.

Il. OVERVIEW OF HAND GESTURE RECOGNITION

In this section, we present an overview of hand gesture recog-
nition based on ultrasonic signal of smartphone, including the
fundamental principle and the basic system framework. The
fundamental principle describes how to the system recognize
hand gesture using the changed ultrasonic signal affected by
hand movement and the system framework depicts the main
components of the system and interprets their functions.

A. FUNDAMENTAL PRINCIPLE

As shown in Fig. 1, it illustrates the common hand gesture
recognition scenarios using smartphone. The speakers of a
smartphone emit the ultrasonic signal and the microphones
from the same smartphone receive the changed signal affected
by human hand movement. When the scenario is empty,
the received signal is similar to the emitted signal except for
some effects from ambient noise. If the hand keeps station-
ary at a specific distance from the phone in the scenario,
the received signal is blocked or reflected by hand. We can
calculate the distance between the hand and the phone by
leveraging the signal attenuation or reflection rules. When
the hand moves, waves, draws a shape, or writes a letter,
hand movements will change the signal propagation and
reflection path continuously. If we want to recognize hand
gesture, we can exploit the pattern classification techniques.
If we want to track hand movement, we usually explore
the mathematical and geometric models because we need
to continuously determine the hand position with low error.
Otherwise, the features of letter or shape may be destroyed,
leading to the failure of recognition.

These recognition systems adopt an ultrasonic signal from
smartphone because the inaudible sound can provide us with
many advantages. Because of the popularity of the smart-
phone, we can easily utilize it as a signal measurement device,
which helps us to develop widespread and daily applications
without any extra deployment cost. Besides, the ultrasonic
signal has been studied thoroughly and has been success-
fully applied in various environments. For gesture recognition
applications, these systems adopt the sound signal with a
frequency more than 16 kHz as the emitted signal. Since the
sound signal with a frequency more than 16 kHz is generally
beyond the average human’s audibility [133], we can call
these signals as the ultrasonic signal. And the ultrasound
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FIGURE 2. The system framework of hand gesture recognition based on
active ultrasonic sensing of smartphone.

signal has drawn more attention in hand posture recognition
applications due to the following reasons. Firstly, ultrasound
signal has been studied thoroughly and has been widely
applied to localization and other applications due to its good
ranging accuracy and low-cost deployment. Secondly, ultra-
sound is beyond humans’ hearing. Therefore, it can be used
to monitor participants without disturbing his/her normal life,
which enables long-term monitoring available. Thirdly, it can
work well under many scenarios without light even through
the wall, which provides evident benefits compared with
other signals.

The features of the received sound signal include ampli-
tude, frequency, initial phase, and propagation time. When
we utilize the sound signal to recognize hand gesture, we can
use the above information or their modification forms, such as
channel impulse response (CIR), phase, frequency, and time
of flight (ToF). Because we consider the smartphone as an
active sonar system, we can develop different signal coding
patterns, such as sine wave, orthogonal frequency division
multiplexing (OFDM) signal, chirp signal, and binary phase
shift keying (BPSK) signal. These different types of signals
effectively improve recognition accuracy because they can
enhance signal synchronization, suppress noise, increase res-
olution and sensitivity, and improve signal-noise ratio (SNR).
The introduction about signal is presented in Section IIL.A.

B. SYSTEM FRAMEWORK

In this section, we present a typical framework of hand
gesture recognition based on active ultrasonic sensing of
smartphone. As shown in Fig. 2, it comprises four parts:
signal collection, signal preprocessing, recognition methods,
and gesture recognition. We first interpret the procedures
of hand gesture identification using inaudible signal from
smartphone. Then, we illustrate the specific function of each
component.

Based on the requirements of design, the system first
selects a suitable sound signal, including continuous wave,
OFDM signal, BPSK signal, and chirp signal. Then the speak-
ers transmit the sound, which can be implemented by playing
the recorded sound file. At the same time, participants wave
his/her hand to conduct some gestures or draw a shape or
letter. The microphones receive the transformed signal and
store it in memory.

After collecting signals, we need to analyze the com-
ponent and extract useful information to identify the hand
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movement. The received signal comprises useful ultrasonic
signal and various noises from environment and hardware
which severely affect the precision of measurement data.
Therefore, we must first eliminate noises and abnormal val-
ues. The simple and effective ways of noise removal are to
adopt filter techniques, including low-pass filter and band-
pass filter. After that, we get clear data which is used to
determine movement procedure. Next, we need to obtain the
start and end time of the movement to divide the data stream
into segments. These segments can be fed into a classifier
to recognize gestures or be used to locate hand position to
implement finger tracking.

After signal preprocessing, we obtain sound segments. For
dynamic gesture recognition, we consider it as a classifica-
tion problem as we evaluate algorithm performance based
on predefined gestures. Therefore, we can utilize machine
learning algorithm and deep learning algorithm to identify
hand movement because they are general classifiers and can
be used at our studies. For hand tracking, we usually con-
sider it from two aspects: localization and trajectory tracking.
The former involves a distance measurement between hand
and smartphone while the latter contains continuous position
calculation. The hand tracking can be implemented using
model-based methods, such as ToF and geometric model.
Besides, if we can effectively utilize the feature of the speed
of the target, the tracking accuracy can be improved because
the speed of hand motion cannot change sharply. And we
usually exploit geometric model to calculate distance and
track hand position using phase and ToF.

IIl. PROCESSING TECHNIQUES

In this section, we analyze the implementation of systems
from signal processing view. Specifically, we first present
the signal collection, signal preprocessing, and then illustrate
the gesture identification methods. The signal collection part
discusses the signal waveform, modulation parameters, and
signal components. The signal preprocessing part analyzes
the essential approaches for obtaining the effective data. And
the last part presents the implementation algorithms of ges-
ture recognition and hand trajectory tracking.

A. SIGNAL COLLECTION
1) SIGNAL GENERATION
The human hand gesture recognition applications based on
ultrasonic signal of smartphone apply the ultrasound signal to
recognize the hand postures. Speaker transmits the ultrasonic
signal and microphone receives the sound signal reflected
by human hand movements, then the received signals are
processed with some algorithms to identify hand postures.
Because we develop and deploy the recognition systems
based on active sonar pattern, we can exert more con-
trol to sound signal. The characteristics of the sound sig-
nal are important criteria for designing the types of audio
signals. A good sound signal can bring about a satisfac-
tory result in noise removal and feature extraction. As a
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TABLE 1. Comparison of systems, including adopted signal, extracted signal, sensors, devices, number of devices, additional sensors, and device-free.

Number .
System Adopted signal ExFracted Sensors Devices of Additional Device-free
signal devices Sensors
AudioGest [112] 19 kHz Doppler shift  one speaker, Samsung 1 No Yes
sine acoustic wave one microphone Galaxy S4
Dolphin [113] 21 kHz Doppler shift one speaker, MI One, 1 No Yes
continuous tone one microphone Samsung S3
SonicOperator 21 kHz Doppler shift  one speaker, MI Note, 1 No Yes
[117] sine acoustic wave one microphone Vivo X7, MI 5,
HTC One
UltraGesture 20 kHz CIR two speakers, Samsung S5, 1 No Yes
[118] five microphones microphone-speaker
kit
AirLink [119] 18.8 kHz Doppler shift  speakers, Samsung 3 No Yes
pilot tone microphones Galaxy Nexus,
Samsung
Galaxy S3
VSkin [120] 17-23 kHz Phase, one speaker, Samsung S5, 1 No No
ZC sequence Amplitude two microphones Huawei Mate7,
Samsung S7,
Samsung Note3
ForcePhone 18-24 kHz Vibration one speaker, Galaxy Note 4, 1 Accelerom-  Yes
[121] linear chirp signal amplitude, one microphone iPhone 6s eter, touch
Signal change screen,
ratio gyroscope
N. Kim et al. 16-24 kHz Amplitude of  one speaker, Samsung Galaxy 1 No No
[122] linear chirp signal frequency one microphone Note 5
AGRS [123] 20 kHz Doppler shift ~ one speaker, Mi3, 1 gyroscope Both
continuous tone one microphone Samsung S4,
Sony M51w
PatternListener 18-20 kHz Phase speakers, Samsung C9 Pro, 1 motion No
[124] continuous wave one microphone Huawei P9 Plus sensors
AcouDigits 19 kHz Frequency one speaker, Samsung Galaxy 1 No Yes
[125] sin wave modulated shift one microphone Note 5
signal
EchoWrite [126] 20 kHz Doppler shift ~ one speaker, Huawei Mate 9 1 No Yes
sinusoidal modulated one microphone
audio signal
C. Yiallourides earpiece: 21 kHz; - two speakers, Samsung 1 No Yes
etal. [127] loudspeaker: 22.8 two microphones Galaxy S6
kHz;
sinusoidal modulated
audio signal
LLAP [128] 17-23 kHz Phase one speaker, Samsung 1 No Yes
CW sound signal two microphones Galaxy S5
FingerlIO [111] 18-20 kHz Phase, Time one speaker, Samsung 1 No Both
OFDM signal of arrival two microphones Galaxy S4
Strata [129] 18-22 kHz CIR, Phase one speaker, Samsung 1 No Yes
BPSK signal two microphones Galaxy S4
EchoTrack [130]  16-23 kHz ToF, Two speakers, Nexus 6P 1 No Yes
chirp signal Doppler shift  one microphone
BatTracker 17 kHz Doppler shift,  one speaker, Huawei P9, 1 inertial No
[132] Echo one microphone Samsung Note3 sensor
amplitude
SteerTrack [131] 20 kHz ToA one speaker, Google Pixel, HTC 1 No Yes
sinusoidal signal (Time of two microphones U Ultra, Samsung
arrival) Galaxy S6, LG G4,

Huawei Mate8

result, we can achieve good identification accuracy. There-
fore, the original sound signal generation plays a vital role in
ultrasound sensing systems. According to the hand gesture
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recognition applications, many types of sound signals are
adopted based on their characteristics, such as continu-
ous wave (CW) signal [128], chirp signal [112], OFDM
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signal [111], Zadoff-Chu (ZC) sequence [120]. All of them
have advantages and limitations. CW signal is generally used
to improve SNR; however, the spatial resolution needs to be
improved. OFDM signal is adopted due to its low processing
complexity and good synchronicity. Table 1 shows the sound
signals used in human hand gesture recognition systems.
From this table, we can observe that all these applications
adopt 16 kHz - 24 kHz sound signal, which is inaudible to
most people [133].

Besides, Table 1 also exhibits and compares the present
systems in six aspects, and we will interpret them in the
following. “Extracted signal”” means that which signal will
be extracted and analyzed to recognize hand gestures. The
column “Sensors” indicates the number of speakers and
microphones used in each system. “Devices” provides us
with information about experimental devices. The “Number
of devices” refers to how many devices work simultaneously
to realize hand gesture recognition. And the ‘““Additional
sensors’” shows if there are extra smartphone’s built-in sen-
sors used as auxiliary tools (e.g., accelerometer, gyroscope,
compass). The selection of scheme depends on the aim of the
system and can affect recognition accuracy. Therefore, before
developing the system, we need to design system parame-
ters and choose suitable hardware. Remarkably, we consider
holding or touching the smartphone as a device-based pattern
and placing the smartphone on the table or somewhere as
the device-free pattern. This category can clarify the research
contents of our paper.

2) SIGNAL ANALYSIS

Hand gestures performed by users would affect the ultrasonic
signal propagation and change the sound signal waveform.
Therefore, the echo signal is different from the original signal.
We can identify hand gestures by analyzing the difference
between the echo signal and the original signal. After cap-
turing the sound signals, the changed signals are analyzed
to detect hand gestures by using recognition algorithm. Gen-
erally, the hand gestures would change the frequency of the
received signal, which is described as Doppler effect. And
the hand movements also change the phase information and
CIR observed at the received signal. Besides, we can localize
the hand position by calculating the ToF. In this section,
we introduce the basic recognition principles by using the
echo signal. The types of extracted signals in human hand
gesture recognition applications are shown as Table 1.

Doppler Effect: Christian Johann Doppler proposed
Doppler effect in 1842. The main content of the Doppler
effect is that the relative movement between source and
observer will change the frequency of the signal received at
the observer.

Specifically, when an object moving toward the audio
source, the observed frequency will increase. Otherwise,
the frequency will decrease if the object moves away from
the sound source. SoundWave [87] confirms that wav-
ing the hand around the smartphone could lead to fre-
quency changes, which can be used to detect hand motions.
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FIGURE 3. Time-frequency diagram of different hand motions [123].
(a) Moving towards the smartphone; (b) Moving away from smartphone.
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FIGURE 4. CIR information of different hand movements [118].
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FIGURE 5. The basic I/Q demodulation structure.

Therefore, we can calculate the human hand speed by ana-
lyzing the frequency changes, described by Doppler shift.
Fig. 3 depicts the time-frequency diagram of different hand
motions. From Fig. 3, we can find that different hand move-
ments lead to distinct frequency changes, which results in a
specific pattern of the time-frequency diagram.

We can calculate hand velocity using the difference of the
frequency between the received signal and the transmitted
signal based on (1) and (2).

f/ _ <V+V0>f (1)

V=
A =f —f @

where f " and f are the frequency of the received sound
signal from microphone and the original signal from speaker,
respectively; v and vq refer to the speed of sound in air and
the velocity of the hand, respectively.

CIR Information: CIR describes the relationship between
output and input. In other words, for linear and time-invariant
(LTT) system, the output can be completely calculated using
CIR. When user’s hand moves around the smartphone,
the CIR will change based on different gestures. Specifically,
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various hand movements will produce distinct CIR infor-
mation. Fig. 4 depicts CIR characteristics of different hand
motions. From Fig. 4, we can find that different hand ges-
tures correspond to specific patterns of the CIR information.
Therefore, we can leverage the CIR information to recognize
the hand gestures.

We can obtain the CIR information as follows according
to [118]. Based on the theory of wireless communication,
we can get (3).

R (n) = S (n)  h(n) A3)

where S (n) refers to the transmit signal; R (n) is the received
signal; * represents the convolution calculation; h(n) refers to
the CIR information.

Then we can obtain h(n) by using the Least Square (LS)
equation which is expressed as (4) [118].

51 52 . SL hl rrL+1
52 53 . SL+1 h2 rrp42

: = ) “
Sp Spy1 SpyL—1 hr rL+P

where the matrix of s is the training matrix; vector & refers to
the CIR information which is the data we intend to get; vector
r is the received data; L is the crucial parameter to determine
the channel impulse response length in discrete time; P can
be calculated using P + L = d, where d is the length of data
section in the training sequence.

Phase Information: The phase information is another fea-
ture to be utilized for hand gesture recognition. Since the
sound signal will be reflected by the objects, the phase of
the captured signal will reflect the propagation path changes.
Therefore, it is usually utilized to track the hand trajectory and
calculate the moving distance of user’s hand. According to
the presented hand gesture recognition systems in Section IV,
the I/Q demodulation is a common method of extracting
phase information from the received data. The received data
are demodulated into In-phase (I) component and Quadrature
(Q) component by I/Q demodulation algorithm. Specifically,
the I component represents the component with the same
direction of the captured signal while the Q component is
orthogonal to the captured signal. And the basic demodula-
tion structure is shown in Fig. 5.

We can obtain the I and Q components as follows according
to Fig. 5. Supposing that the transmitted signal is Acos(27xft)
and the signal would generate multiple path propagation,
the captured signal from path p can be expressed as the
following formula [128].

Rp (1) = 2Apcos2uft — 2xfdp (1) [ — 6p) 5)

where ZA;, represents the amplitude of the captured sound
signal; dp (t) refers to the time-varying path length; ¢ and
f are the speed of sound in air and the frequency of the
emitted signal, respectively; 6p is the initial phase lag caused
by hardware delay.
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After obtaining the sound signals, they are multiplied with
cos(2mft) and —sin(2rft) respectively. Then, we can get the
I and Q components by using filters to eliminate the high
frequency components. The I component and Q component
are expressed as (6) and (7) [128].

Ip (t) = Apcos(—2xfdp (1) /c — 6p) (6)
Op (1) = Apsin(=2sfdp (1) [ — 0p) (7)

Finally, these two components are combined into a com-
plex signal to obtain the phase information in path p.

op (1) = — ) ®)

(27deP (1) +op
c

where ¢p () and dp (¢) represent the phase information of

path p and the time-varying path length, respectively; c refers

to the speed of sound in air; f means the frequency of the

original signal; 6p is the initial phase lag caused by hardware

delay.

Time Information: Time information refers to the flight
time of sound signals, such as time of arrival and time dif-
ference of arrival, etc. It is significant for distance measure-
ment and localization due to its simplicity and precision. For
human hand gesture recognition, we calculate the distance
between hand and smartphone and realize the hand move-
ment tracking using the time of flight. As shown in Fig. 6,
the fundamental idea of this technique is that speakers emit
the original sound signal and the microphones capture the
echo signal reflected by hand motions. Then the time of
flight between speakers and microphones could be used to
calculate the distance between them. Finally, we can exploit
the obtained distance information to locate hand position to
achieve hand tracking. Assuming that the speaker transmits
an ultrasonic signal at time fg, the microphone receives the
echo signal reflected by hand motions at time 7, then the
distance between speaker and microphone across hand can
be expressed by formula (9).

Dgyy = (11 —t9) x ¢ 9

where Dgpy represents the distance between speaker and
microphone across hand; S, H, M represent the speaker,
hand, and microphone respectively; c is the sound speed in
air.
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B. PREPROCESSING

Preprocessing algorithms are employed to obtain clean data
and more effective information for feature extraction. Since
there are plenty of noises contained in the sound signal
captured by microphone, they need to be eliminated at first.
Besides the environment noises such as other human behav-
iors and interference sound, the influence of signal drift stem-
ming from the time elapses and device diversity also need to
be removed. According to the characteristics of hand gesture
recognition systems, we can adopt some effective processing
approaches to eliminate interference and improve recognition
accuracy.

Generally, filters can be used to remove ambient noise
and reduce computation complexity. When we are inter-
ested in the data of a certain frequency range, we can
utilize some filters and set thresholds to eliminate the
high-frequency or low-frequency noises and keep favorite
frequency range. Specifically, in hand posture recognition
systems, the received signals from microphone contain
plenty of environment noises (e.g., ambient sound signal,
human activities, etc.) which can change signal waveform
and reduce the quality of data. Thereby, to get valid data,
the noises should be identified and then removed. For-
tunately, we can use filters to achieve this goal. Many
researchers have adopted various filters on their applications.
Some researchers set threshold vector to remove environment
noise [113], [123]. Besides, LLAP [128] uses a cascaded inte-
grator comb (CIC) filter to enhance computational efficiency.

C. HAND GESTURE RECOGNITION METHODS

We divide the hand gesture recognition applications into two
groups, including dynamic gestures and hand tracking based
on different application requirements. The former usually
serves as operation command and the latter can serve as
data input. Since the dynamic gesture recognition can be
considered as a classification problem, we can employ some
machine learning and deep learning algorithms to identify
hand postures. While hand tracking can be deemed as con-
tinuous and fine-grained localization. Therefore, the iden-
tification methods of tracking are very different from the
gesture recognition. Rather than general machine learning
algorithms, we usually exploit accurate mathematical models
to calculate the trajectory of hand or to determine shapes
or letters drawn by hand. In this part, we will concentrate
on these recognition methods from two aspects, machine
learning and deep learning for dynamic hand pose recognition
and tracking methods for hand trajectory tracking.

Based on the dynamic hand gesture recognition applica-
tions in Table 2, we can apply various classification methods
to recognize hand postures, e.g., HMM, SVM. Before using
these classifiers, we must extract features from the original
data to feed them into classifiers, such as frequency shift,
amplitude, etc. From these presented applications, we notice
that distinct systems generally extract specific features as the
input data. For example, Dolphin [113] adopts manual ges-
ture recognition and machine learning classifier. For manual
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classification, the system extracts F; sequence (a weighted
value of frequency shift, which denotes the frequency center
changes caused by user at time t) of a complete gesture in
chronological order as features. Then, the system employs
support vector machine (SVM) and utilizes feature vector V
(a value after interpolating for the ultrasonic data vector of a
complete gesture) to train the classifier. UltraGesture [118]
establishes a convolutional neural networks (CNN) model
to identify hand gestures. It uses a complex CIR matrix
calculated by LS algorithm as the features for CNN model
training. As for hand tracking, it usually exploits geometric
models rather than pattern-based methods. Therefore, these
applications do not need the procedure of feature extraction.

After feature extraction, we obtain a feature vector that
represents the input data. Next, we select classifier to rec-
ognize unknown gestures. Machine learning algorithms have
been widely studied and adopted in various scenarios due
to their satisfactory performance. For dynamic hand gesture
recognition, we can exploit these algorithms to identify a
specific action. As shown in Table 2, these systems adopt
many machine learning methods including hidden markov
model (HMM) and SVM to identify the different hand pos-
tures. Besides that, with the advance of deep learning algo-
rithm, it has been widely adopted in various scenarios such
as image processing, video retrieval, speech recognition, and
natural language processing because it can discover and
extract complex features automatically and achieve excel-
lent recognition accuracy. For dynamic gesture recognition,
we can convert sound data into an image and explore the
capability of deep learning to classify the gestures. In this
section, we concentrate on some common recognition meth-
ods, including some machine learning methods, deep learning
methods, and tracking methods.

1) MACHINE LEARNING
Machine learning is usually used to solve classification prob-
lems. Since the gesture recognition can be considered as
a classification problem, some systems utilize the machine
learning methods to realize the hand gesture recognition.
HMM and SVM are commonly used in hand gesture recog-
nition applications. We introduce these methods as follows.
HMM: HMM is a kind of statistical analysis model and has
become an essential method of signal processing. It describes
a Markov process with unknown parameters and solves the
problem based on time sequence and state sequence. Since
the HMM can effectively process the time-varying sequence
and achieves satisfying performance for the signal feature
analysis, some researchers utilize the HMM model to rec-
ognize hand gestures. For example, AGRS [123] uses the
HMM algorithm to realize the recognition of hand gestures.
It first builds an HMM model for each kind of gesture and
then calculates the similarity between the gesture data. Thus,
we can establish HMM model to recognize the hand postures.
Although the HMM classifier achieves better recognition
accuracy, it takes a long time to train models and recognize
gestures.
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TABLE 2. Dynamic gestures recognition.
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System Preprocessing E);Eg:;?ic(?;al Behaviors RC;(;%}?:(;OH Accuracy Findings

AudioGest [112] Fast Fourier Living Room, 6 gestures, Direction: 95.1% It could theoretically
Transform (FFT) Bus, 5 users, spectrogram provide 162 control hand
normalization, Cafe, HDR 3900 samples analysis; postures for applications
Audio signal Office, Lab Duration: direct by combining three
segmentation measurement; waving factors.

Speed: using
speed-ratio;
Range: using
range-ratio

Dolphin [113] Noise elimination, Quiet 24 gestures, Manual 94% Combining manual and

Data normalization environment, 3 users, recognition, native machine learning
Outdoor, bayes (NB), classification method can
Noisy k-nearest neighbor detect more gestures with
environment classifier, bayes high accuracy.
net (BN), SVM,
Liblinear,
random tree (RT),
SonicOperator Noise elimination, Subway station, 24 gestures, RNN, SVM, 95% Five classification
[117] Data normalization Restaurant, 10 users, Multi-layer methods are adopted and
Indoor 36000 samples perception (MLP), the designed RNN
NB network performs well
and can improve the
accuracy.

AGRS [123] Noise reduction, Quiet, 8 gestures, HMM, SVM 95% It uses gyroscope sensor
Gyroscope Normal, 5 users, auxiliary equipment and
calibration and Noisy 2000 samples CFAR algorithm to
Data normalization environments reduce error recognition

rate.

UltraGesture [118]  Down-conversion, Different noise 12 gestures, CNN >97% Using CIR information
Lowpass filter, level, left hand, 10 users, and adding extra audio

new user, with 12000 samples Sensors can recognize

gloves on, etc. fine-gained gestures and
distinguish similar
gestures.

AirLink [119] Noise reduction Laboratory 6 gestures, Mathematical 96.8% It enables multi-devices

11 users, calculation to share files and device
1260 samples pairing by using Doppler
shift.

VSkin [120] Cross-correlation, Typical office 3 gestures, Estimation Tapping It leverages the
Extended Kalman and home 10 users, algorithm events: structure-borne sound
Filter, environments 3200 99.65%; and the air-borne sounds
Upsampling, samples Finger to achieve smartphone
Low-pass filter movem-ent  back surface tapping

s:3.59mm  events and finger motions
detection.

ForcePhone [121]  Calibration, Café 2 gestures, Linear regression Touch It utilizes the
Noise elimination, 27 users model, Setting force structure-borne sound
Normalization thresholds sensing: propagation property to

>97%; measure the touch force
Squeeze and detect the predefined
phone squeeze behavior.
body: 90%
N. Kim et al. - An office 6 gestures, SVM 93% It combines the
[122] environment 10 users, structure-borne sound
1800 and the air-borne sound
samples to recognize different
types of hand grips.

PatternListener Coherent detection, Café, Office 130 patterns, Pattern tree >90% It uses the phase

[124] Static components 5 users patterns information of the
removal within 5 reflected signals to infer

attempts the unlock patterns.

AcouDigits [125] Band-pass filter, -— 10 basic digits, 26 k-nearest neighbor ~ Basic It utilizes the frequency
Setting threshold English letters, classifier (KNN), digits: shift caused by hand

10 users, SVM, artificial 91.7%, movement to recognize
59600 samples neural network English the 10 basic digits and 26
(ANN) letters: English letters.
87.4%

EchoWrite [126] Median filter, Meeting room, Stroke, dynamic time Entering It leverages the Doppler
Setting threshold, Lab area, Words; warping (DTW), texts at a shift caused by hand
Gaussian filter Resting zone 6 users; Bayesian speed of motion to recognize
Zero-one 8640 language model 7.5 WPM in-air text inputs without
normalization, samples without training and enables users
Binarization practice to input texts at a

and 16.6 comparable speed.
WPM with
practice

C. Yiallourides et Matched filter, A quiet room, 4 gestures, SVM 77.5% It uses two speakers to

al. [127] Direct path removel A noisy room, 9 users, emit sound signal with

A noisy office

400 samples

different frequency and
controls the start and end
of recording signals by a
computer.
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SVM: SVM is a supervised learning model in the field of
machine learning and is widely used in classification sce-
narios. It can effectively solve two-class classification and
multi-class classification problems and has good classifica-
tion performance. At the same time, SVM can transform the
linear non-separable problem into a linear separable problem
by extending the dimension of feature space. Therefore, it can
be utilized to recognize hand gestures based on ultrasonic
signal of smartphone (e.g., AGRS [123], Dolphin [113], Son-
icOperator [117]). However, it is difficult to be implemented
when the sample size is large.

2) DEEP LEARNING

With the rapid development of computation capability, deep
learning has attracted more attention in artificial intelligence
area because it can discover many latent and complex fea-
tures representing the original data. Deep learning origi-
nates from the study of artificial neural networks. It builds
a neural network which simulates human brain to learn and
analyze data. Especially, it can learn features from dataset
automatically without the need for feature extraction. Since
the methods of deep learning have high recognition accuracy
and can learn features automatically, some teams adopt deep
learning approaches to identify human hand gestures. These
systems utilize the conventional model to recognize hand
gestures, including recurrent neural network (RNN), CNN,
etc.

RNN: RNN is a type of neural network for processing
sequence data. Generally, it can be utilized to process the
data with different sequence lengths. For example, some
sequences (e.g., a continuous speech, continuous handwritten
text) based on time are relatively long and their lengths are
different. Moreover, they are difficult to be split into single
samples for training deep neural networks (DNN) or CNN
neural network because these sequences have time infor-
mation. Fortunately, RNN provides a powerful capability to
solve the problem of time sequence. In human hand gesture
recognition systems, SonicOperator [117] considers that the
hand gestures are comprised of many postures sequence in
chronological order. Thus, it utilizes the RNN neural network
to identify hand gestures due to the good performance of
RNN in processing time series and classifying the sequential
data.

CNN: CNN is the most common neural network model
with deep structure and convolution computation. It uses
the backward algorithm to train model parameters and Soft-
Max function to classify targets. Since CNN has favorite
characteristics including local perception, weight sharing,
and multi-convolution kernel, the computation cost is sig-
nificantly reduced. Thereby, many researchers utilize CNN
model to classify hand gestures. For example, UltraGes-
ture [118], a system of human hand gesture recognition,
establishes a CNN neural network to identify 12 hand pos-
tures. Its experimental results show that this system can
recognize 12 postures with an average accuracy greater
than 97%.
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3) TRACKING METHODS
According to the hand tracking systems in Table 3,
researchers usually employ some algorithms based on phase
or establish some geometric models such as time-based
model to track the hand movements. In this section, we con-
centrate on some commonly used methods for hand tracking
in systems based on ultrasonic signal of smartphone.
Time-Based Model: Time information is usually utilized to
track the hand trajectory. Specifically, the time of flight can
be used to establish time model for hand trajectory tracking
in systems based on smartphone-based ultrasound signal.
According to the related studies, two models are usually
established for calculating time difference. One is that two
speakers emit ultrasound signal, one microphone receives the
reflected signal to locate the hand [130]. The other is that one
speaker emits ultrasound signal, two microphones receive the
reflected signal, and the position of hand could be obtained
by utilizing the time arrived at two microphones [131].
Phase-Based: Since the hand movements can influence the
sound signal propagation and change phase of the signal,
researchers leverage these changes to realize hand localiza-
tion and tracking. Specifically, the phase changes of signal
can be utilized to track the location of the hand because
the changes effectively depict the change of hand position,
which describes the path length changes. For 1-dimension,
the hand movement distance can be estimated by transform-
ing the phase change information into distance changes. For
2-dimension, the hand motion can be tracked by combining
the movement path length changes and an initial position. For
example, LLAP [128] first utilizes the phase changes to cal-
culate the hand motion path length changes and then obtains
an initial position based on the delay profile. It then achieves
hand tracking by continuously updating hand location using
these measurement results. Strata [129] calculates the dis-
tance changes of hand based on phase change information
and estimates the absolute distance based on CIR informa-
tion changes to obtain the initial position. It then combines
the distance changes and the initial position to realize hand
tracking.

IV. APPLICATIONS

With the development of technology and the improved per-
formance of smartphone, quite a number of applications
based on smartphone are emerging increasingly. Specifically,
the hand gesture recognition systems based on ultrasonic
signal of smartphone attract more attention due to their good
performance, low deployment cost, and no-intrusive work
pattern. In recent years, many human hand gesture recogni-
tion systems based on ultrasonic signal of smartphone have
been proposed, bringing us with natural and novel methods
of HCIL.

In this section, we concentrate on the active sonar sys-
tem based on smartphone. A smartphone can be treated
as an active sonar system because it sends and receives
ultrasonic signal. The received signal is changed by hand
movement and can be exploited to recognize hand gesture
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TABLE 3. Hand tracking.

. Experimental . Dimen Mic/
Work Preprocessing . Behaviors Accuracy . Range speaker
scenarios sion .
separation
LLAP [128] 1/Q demodulation, Normal, 26 letters, 1D: 3.5 mm, 1D, 1D: 20 cm -
CIC filtering Music, 11 words, 2D: 4.6 mm 2D 2D:
Speech, 5 users 10 cm X 10 cm
Speaker
environments
FingerlO Set distance Office All kinds of Median error: § mm 2D 10cmx10cm  13.5cm
[111] threshold, shapes,
Fine-tune distance 10
estimate participants
Strata [129] Bandpass filtering, Student office ~ Diamond, 0.3 cm distance tracking 1D, 1D: 40 cm 14 cm
Frame detection Triangle, error, 2D 2D:31.1 cm
Circle, 1 cm 2D tracking error,
5 users 0.6 cm 2D drawing error
EchoTrack Bandpass filtering, Laboratory Straight line, 76% within 3 cm error, 3D 80 cm 14 cm
[130] Multipath Triangles, 48% within 2 cm error
elimination 20 users
Battracker Bandpass filtering Cluttered Diamond, 3D: 90% within lcm error 3D, 3mx3 x3m -
[132] Laboratory, Triangle, 2D:<1lcm 2D
Typical Word, etc.
bedroom
SteerTrack Eliminating symbol Real driving Track the 4.61 degrees error 3D - -
[131] time offset environments:  rotation angle
local road and  of steering
highway wheel, 5
volunteers

or trajectory. We first review the state-of-the-art applica-
tions of hand gesture recognition based on ultrasonic sig-
nal of smartphone. Then, we divide them into two groups:
dynamic gesture recognition and hand tracking. The dynamic
gesture recognition systems identify specific hand postures,
such as flick, push, and pull, etc. We introduce these sys-
tems from preprocessing techniques, experimental scenar-
ios, recognized behaviors, participants, samples, recognition
methods, their findings, and performance (see in Table 2).
The hand tracking systems refer to hand trajectory tracking,
such as writing letters and drawing circles or rectangles, etc.
We analyze these systems in several aspects, including pre-
processing techniques, experimental scenarios, recognized
behaviors, participants, samples, performance, dimension,
moving range, and the distance between speaker and micro-
phone (see in Table 3).

A. DYNAMIC GESTURE

Currently, hand gesture recognition using ultrasonic signal of
smartphone has drawn more attention and quite a number of
studies are continuously emerging because they bring a new
way to interact with computer and improve the quality of
HCI. In this section, we concentrate on some dynamic gesture
recognition applications, introduce their main idea and major
processing work, analyze the performance of these systems,
and point out some useful findings, as shown in Table 2. Then,
we present future research directions.

1) AUDIOGEST [112]
In 2016, W. Ruan et al propose a device-free and
training-free hand gesture recognition system based on
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ultrasonic signal of smartphone, called AudioGest [112]. The
fundamental idea of this system is that Doppler shift can be
calculated based on the received ultrasonic signal and the
speed of hand can be deduced. In AudioGest, authors transmit
19 kHz audio signal and adopt denoising pipeline to suppress
signal drifting and extract the weak echo signal. In the test
phase, extensive experiments are conducted to evaluate the
performance of this system. Three distinct mobile devices
including laptop, tablet, and smartphone are deployed to
evaluate this system with 5 participants performing 6 hand
gestures in 5 environments.

The experiment at lab shows that AudioGest can recognize
6 gestures with an average accuracy of 94.15%. What’s more,
the authors verify the influence of different factors on the
classification accuracy, such as the orientation angle of device
and the distance between device and hand. AudioGest also
evaluates system performance in other four environments.
The experimental results prove that this system exhibits
good robustness to real-world places. Especially, AudioGest
can estimate many hand movement states including hand
moving directions by using audio spectrogram, hand mov-
ing time in air (long, normal, short) by using direct time
interval measurement, hand moving speed (slow, medium,
fast) by using speed-ratio and waving range (wide, middle,
small) by using range-ratio with high accuracy. Based on
the combination of these states, authors argue this system
can achieve more fine-grained hand gesture recognition by
considering various factors. Theoretically, AudioGest could
provide 6 x 3 x 3 x 3 = 162 control hand postures for appli-
cations by combing these waving factors (see in Fig. 7).
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FIGURE 7. The overview of hand gestures with waving factors [112].

In their future work, they will consider extracting more fea-
tures from the spectrogram to recognize more hand pos-
tures. Many other methods can be applied to address the
influence of environmental movements, such as combining
other smartphone’s built-in sensors, or emitting modulated
sound signal (e.g., multiple frequency shift keying sound
signal).

2) DOLPHIN [113]

In 2014, Q. Yang et al. present an in-air hand gesture recog-
nition system called Dolphin [113]. This system uses the
speaker and microphone built in smartphone to emit and
receive ultrasonic signal. Specifically, the speakers transmit
a 21 kHz continuous tone and the microphone captures the
echo signal reflected by hand movements. Then this sys-
tem extracts the Doppler shift information caused by hand
motions from the echo signal and utilizes the Doppler shift
information to identify hand gestures. Different from other
applications, the authors propose a method that combin-
ing the manual recognition algorithm and machine learning
algorithm to classify more hand postures. To be specific,
Dolphin predefines many gesture groups. When recogniz-
ing a gesture, it first divides the gesture into a correspond-
ing gesture group using the proposed manual recognition
method, and then classifies the gesture into a finer ges-
ture label by conducting machine learning algorithms to the
group.

In the experimental phase, two smartphones and one tablet
are deployed to test the performance of Dolphin with 3 partic-
ipants. The authors first use manual recognition approaches
to classify the hand postures into 10 groups and then employ
7 machine learning algorithms to recognize the similar hand
gestures and compare the algorithm performance. The exper-
imental results show that Dolphin can recognize 24 pre-
defined hand gestures with an average accuracy of 94%.
Furthermore, the authors evaluate Dolphin by establishing an
Android plugin (see in Fig. 8(a)) and designing two games
(see in Fig. 8(b)), and the results prove that Dolphin can
perform game control accurately. The future work of Dolphin
will focus on improving the performance in some compli-
cated scenarios and optimizing the energy consumption of the
smartphone.
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FIGURE 8. (a) Android plugin interface; (b) Two games developed by
using Dolphin [113].

3) SONICOPERATOR [117]

In 2017, X. Li et al. present an in-air hand gesture recog-
nition system called SonicOperator [117]. This system uti-
lizes the speaker and microphone built in smartphone as the
transceiver and analyzes the Doppler shift caused by hand
motions to recognize multiple hand gestures. The speaker
first emits a 21 kHz ultrasonic signal and the microphone
captures the reflected signal. Then, the captured sound signal
in time domain is transformed into frequency domain by
conducting FFT. After eliminating noise, normalization is
performed to keep the data into same scale. The authors
deem that the gestures are comprised of a series postures in
chronological order; therefore, they choose RNN network as
the classifier to recognize hand gestures and use the transfer
learning algorithm to transfer the knowledge of feedforward
neural network to the RNN.

In the experimental phase, four different smartphones are
used to evaluate system performance with 10 participants.
Specifically, the authors collect a total of 36000 samples
in three environments and compare RNN with other four
machine learning methods (see in Fig. 9). Extensive exper-
iment results show that SonicOperator can increase identifi-
cation precision and recognize 24 pre-defined gestures with
an average accuracy of 95%. Furthermore, the experiments
demonstrate that the proposed RNN method has good per-
formance when the number of hand posture types increases,
while the other methods obtain bad recognition accuracy.

4) AGRS [123]

In 2018, Z. Xu et al. propose a gesture recognition sys-
tem called AGRS [123]. This system utilizes smartphone to
implement gesture recognition. The principle of the system
can be described as follows. The speaker built in smartphone
transmits a 20 kHz ultrasonic signal and the microphone in
the same mobile phone receives the echo signal reflected
by hand movements. And this system extracts the Doppler
shift from echo signals as the recognition information to
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FIGURE 9. The comparison results of five classifiers [117].

Gestures Average
< > 1 4 N N pd ' accurac y
Table 9727 9845 9963 9973 97.09 9790 9754 97.72 98.17

Hand 9635 9767 9931 9916 9689 9675 9687 9653 9745

Table 9695 9813 9921 9868 9695 9654 9675 9676 9750

Hand 9524 9636 9866 9824 9543 9465 9412 9384 9582

Table 9512 9654 9921 9954 9625 9538 9664 9432 9678

Hand 9367 9484 9879 9836 9329 9397 9323 9256 9520

Table 9489 9548 9545 9867 9556 9468 9545 9376 9587

Hand 9021 9046 9635 9628 9086 9045 9031 6934 8928

Table 6856 7023 8435 8135 7133 7264 7313 6927 7386

Yes
Hand 6545 6398 7362 7043 6987 7062 6998 6645 6880

Table 6754 6831 8386 8121 7045 7132 7184 6846 7287

No
Hand 5567 6023 6852 6547 6476 6512 6657 6421 6419

FIGURE 10. The average recognition accuracy of hand gestures in three
environments (%) [123].

identify hand gestures. In addition, the authors leverage the
gyroscope sensor built in smartphone as an auxiliary tool
to detect the placement state of the phone and employ the
constant false-alarm rate (CFAR) algorithm to reduce the
error recognition rate. Specifically, the FFT algorithm is
first conducted to transform the captured sound signals into
frequency domain and then the noise removal method is
deployed to eliminate the noise interference. After extracting
the frequency change information and performing data nor-
malization algorithm, HMM and SVM classifiers are utilized
to classify hand gesture samples.

In the experimental phase, the authors test the perfor-
mance of AGRS on three smartphones with 5 volunteers
performing 8 kinds of hand gestures. They collect a total
of 2000 samples in 3 environments, and the experimental
results are shown in Fig. 10. Experiments show that AGRS
achieves a recognition accuracy more than 95% in quiet and
normal environments. The recognition accuracy is severely
influenced by environmental noise. The future work of AGRS
will concentrate on the system power consumption reduction
and the classification precision improvement under the noisy
scenarios.

5) ULTRAGESTURE [118]

In 2018, K. Ling et al. present UltraGesture [118], a gesture
recognition system using more microphones in smartphone.
The characteristics of this system are that it uses the CIR
information instead of Doppler shift to recognize gestures
and exploits more microphones to resolve the problem that
similar gestures are difficult to be classified. The authors use
the LS estimation algorithm to calculate CIR after performing
down conversion and low pass filtering. Then they conduct a
differential operation to obtain the dCIR information and take
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FIGURE 11. (a) 12 types of hand gestures; (b) The confusion matrix of
using smartphone only [118].

the dCIR information as the input data due to the obvious
feature of gesture in dCIR image. Finally, they design a CNN
model to recognize finger motions.

In the experimental phase, the authors use a smart-
phone and a designed speaker-microphone kit to conduct
their experiments. They require 10 participants performing
12 types of gestures (see in Fig. 11(a)) under some different
environments. The experimental result (see in Fig. 11(b))
by using only speaker and microphone built in smart-
phone shows that UltraGesture can achieve an average accu-
racy up to 97.92%. The authors also use an additional
speaker-microphone kit to assess the influence of microphone
number. The experimental accuracies are 92.75%, 95.00%,
96.83%, and 98.58% for 1 to 4 microphones, respectively,
which proves that the increase of microphone number could
improve the recognition accuracy and help to classify similar
gestures.

6) AIRLINK [119]

In 2014, K.-Y. Chen et al. [119] propose a device-free system
called AirLink. This system utilizes the Doppler shift caused
by hand movement to recognize gestures and then shares files
between devices. AirLink requires each smartphone in the
experiment to transmit the ultrasound signal at 18.8 kHz,
and the microphone built in smartphone captures the echo
signals. Each smartphone analyzes the echo signal and detects
the hand gestures. Then the smartphones send the detection
results to the central server to enable files sharing. Besides
that, this system can identify the hand motion direction by
combining the detection results of all the smartphones. For
example, T and A refer to toward/away from the smartphone
respectively, and X represents toward and then away from
the smartphone. Thus, the M2R gesture can be represented as
A-A-T under a three-smartphone scenario as shown
in Fig. 12.

In the experimental phase, two different smartphones
are used to evaluate the system in a laboratory scenario.
Specifically, 11 persons perform 6 hand gestures in a
three-smartphone environment. The experimental results
show that the average accuracy is up to 96.8%. In addition to
sharing files between devices, AirLink can also enable device
pairing. In future work, this system can decrease the impact

111909



IEEE Access

Z. Wang et al.: Hand Gesture Recognition Based on Active Ultrasonic Sensing of Smartphone: A Survey

Phone Phone Phone

Gesture A B ¢ Code word
(Left (Lozl\'\/ﬂddle) H . A-T-T
(LeﬂL(E Eight) ._l_' A-X-T
(M‘wd:l/(lezllo_ Left) H . T-A-A
(Midd’:ﬁoRnighn l H A-A-T
(R.ghﬁf mddle) . H TT-A
(Rig:foLLeﬂ) H_. T-X-A
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FIGURE 13. Gestures performed on the back of the smartphone [120].

of the nearby hand motions and reduce the energy consump-
tion of the mobile phone by configuring the smartphones to
transmit the ultrasound signal only in specific scenarios.

7) VSKIN [120]
In 2018, K. Sun et al. present a novel system called
VSkin [120], which can achieve fine-grained tapping events
and finger movement detection based on ultrasonic signal of
smartphone. Especially, these two gestures are performed on
the back surface of the mobile phone, as shown in Fig. 13.
The main idea of VSkin is that the speaker built in smartphone
emits a 17 kHz - 23 kHz narrow inaudible sound signal and
the microphones embedded in smartphone capture the echo
signals mixed with two types of sound signals, including
the structure-borne sound signal (the sound which travels
through the smartphone body structure) and the air-borne
sound signals (the sounds reflected by hand, wall, etc.). After
analyzing the received sound signals, the authors first sepa-
rate these sound signals according to their propagation path
and then measure the amplitude and phase of each path. For
finger movement calculation, they extract phase information
from the air-borne path sound signal reflected by the hand
and establish a finger movement model to measure the path
length. Specifically, the authors utilize the change of path
length to estimate the finger movement distance and achieve
swiping and scrolling gesture recognition. For finger touch
sensing, the authors use the structure-borne sound signal
and extract the delay samples and magnitude of differential
impulse response values to detect finger tapping.

In the experimental phase, extensive experiments are car-
ried out to evaluate the performance of VSkin. Four dif-
ferent smartphones are utilized to conduct the tests with
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10 students performing 3 gestures (see in Fig. 13) in typical
office and home environments. The results show that VSkin
can measure the finger movement distance (finger moves
6 cm) with an average error of 3.59 mm, detect finger tapping
events with an accuracy of 99.64%, and recognize swiping
gesture with an accuracy up to 94.5%. Moreover, VSkin can
achieve a low latency of 4.83 ms when performing gestures
on the smartphone. VSkin leverages one speaker and two
microphones to recognize hand gesture. One microphone is
close to the speaker and another one is at the opposite side
of the speaker. The implementation leads to this algorithm
unavailable for other smartphones because the positions of
microphones and speakers of the smartphones may be very
different from VSkin. The next work of VSkin is to improve
the algorithm to accommodate different types of smartphones
with their own speaker/microphone layout.

8) FORCEPHONE [121]

In 2016, Y.-C. Tung et al. propose ForcePhone [121], which
can realize the force measurement applied to the smart-
phone touch screen and identify the squeeze applied to the
smartphone body. Similarly, it turns the phone into an active
sonar that the speaker of smartphone emits an inaudible
sound signal and the microphone on the same phone cap-
tures the played sound signal. ForcePhone leverages the
structure-borne propagation property to measure the force.
When applying force to the touch screen, the restricted phone
body will degrade the sound signal traveling through phone
body (see in Fig. 14) and the changed signal can be uti-
lized to estimate the force. Meanwhile, ForcePhone uses the
accelerometer and gyroscope readings to remove the other
noises caused by movements. It establishes a linear regression
model to estimate the applied force. Besides force measure-
ment, this system can also detect the squeeze applied to the
phone body. However, it only recognizes predefined squeeze
behavior.

Extensive experiments are conducted to test the perfor-
mance of ForcePhone. One android smartphone and one i0OS
smartphone are used in experiments with 27 users performing
touching and squeezing gestures. The experimental results
show that ForcePhone can achieve two different levels of
touch force measurement with an accuracy of 97% and detect
the squeeze of the phone body with an accuracy higher
than 90%. Furthermore, the authors design ForcePhone-based
apps and the users are satisfied with these apps and think they
are useful and helpful. In future work, ForcePhone will focus
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on being implemented in some smaller and wearable devices,
such as smartwatch. Therefore, this approach can expand its
research areas and be applied to more applications.
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FIGURE 15. Six types of grip gestures [122].

9) GRIP SENSING FOR SMARTPHONE [122]

In 2017, Kim, N. et al. present a novel ultrasonic sensing
system based on the smartphone. This system can detect how
human grasps the smartphone. It first uses the speaker built in
the smartphone to transmit a linear chirp signal with the fre-
quency range 16 kHz - 24 kHz, then utilizes the microphone
embedded in the same smartphone to capture the echoes.
Since the echoes comprise the structure-borne sound (which
travels through the smartphone body) and the air-borne sound
(which travels through the air), the mixed echoes’ spectrum
of each grip is unique and it can be leveraged to recog-
nize the grips. After receiving the sound signal from the
microphone, the authors perform FFT algorithm to obtain the
frequency-domain data. Afterward, they extract 172 features
from the processed frequency-domain data and use them to
train SVM classifier to recognize grips.

In the experimental phase, one smartphone is used to eval-
uate the performance of this system in an office scenario and
10 users are required to perform 6 types of grips as shown
in Fig. 15. The experiments demonstrate that this system can
achieve identifying 6 types of grips with an average accuracy
of 93%. The future work of this system will concentrate on
improving the recognition accuracy and adapting itself to
various practical environments.

10) PATTERNLISTENER [124]

In 2018, M. Zhou et al. propose PatternListener [124], a novel
active sonar system that can infer the unlock pattern of the
smartphone. As shown in Fig. 16, there are some unlock
patterns with different number of lines. This system first
leverages the speaker built in the smartphone to transmit an
imperceptible audio with a frequency ranging from 18 kHz
- 20 kHz and the microphone on the same phone to record
the signals reflected by fingers. Then, this system demodu-
lates the recorded sound signals by using the coherent detec-
tion and utilizes a local extreme value detection (LEVD)
algorithm and linear interpolation algorithm to eliminate the
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FIGURE 16. Example patterns with different lines [124]. (a) Two lines;
(b) Three lines; (c)Four lines; (d)Five lines.

noises (e.g., signals reflected by the wall or other objects).
Afterward, PatternListener uses a designed turning points
identification (TPI) algorithm to segment the preprocessed
signal into fragments corresponding to each line. At last,
it uses the phase changes of the reflected signal to calculate
the path change length and establishes a pattern tree to infer
the unlock pattern.

In the experimental phase, two different types of android
smartphones are adopted to evaluate the performance of Pat-
ternListener in 2 environments and 5 participants are required
to draw the unlock pattern which they chose from the 130 pre-
defined patterns. Specifically, various effect is considered
when the authors assess PatternListener, including the pat-
tern complexity, unlock gestures, drawing speed, surrounding
objects, types of smartphones, and ambient noise. Extensive
experimental results show that PatternListener can infer more
than 90% unlock patterns within 5 attempts. Furthermore,
the authors propose two methods to defend against Pattern-
Listener’s attack, including prohibiting the usage of micro-
phone in the background and randomizing the layout of the
pattern grids.

11) ACOUDIGITS [125]

In 2019, Y. Zou et al. design a novel system called AcouDig-
its [125], which can recognize the basic digits and English
alphabets using the frequency shift caused by hand move-
ment. This system adopts a sin modulated sound signal
with a frequency of 19 kHz emitted by the smartphone’s
embedded-in speaker. After recording the reflected sound,
the authors use a band-pass filter to eliminate the noise
and enhance SNR and transform the time domain data into
frequency domain data to analyze the frequency shift. They
extract 5 time domain features and 4 frequency domain
features to train the classifiers including KNN, SVM, and
ANN. For KNN model, they directly feed the 9 features into
KNN model to train the KNN classifier. For SVM and ANN
models, they further extract 5 statistical features (e.g., range,
mean value, variance) from the 9 extracted feature data as the
input data to train these classifiers.

In the experimental phase, one android smartphone is
applied to test the AcouDigits with 10 volunteers and the
experiments last for 10 days. The authors collect 44000 sam-
ples of the basic digits and 15600 samples of the English
letters. To be specific, they utilize SVM, ANN, and KNN to
classify the basic digits, respectively, and leverage ANN to
recognize the English letters. Comprehensive experimental
results demonstrate that AcouDigits can recognize 10 basic
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FIGURE 17. (a)The six fundamental strokes of English alphabets; (b) The
English alphabets’ stroke order [126].

digits with an average accuracy of 91.7% and identify
26 English letters with an average accuracy up to 87.4%. The
authors also use a CNN model to assess AcouDigits and the
results show that AcouDigits can recognize the digits and the
letters with an accuracy of 94.9%.

12) ECHOWRITE [126]
In 2019, Y. Zou et al. present a training-free text-input system
called EchoWrite [126], which can recognize the in-air finger
writing based on ultrasonic signal of smartphone. This system
employs the speaker built in smartphone to emit a 20 kHz
acoustic signal and the microphone to capture the echoes.
After obtaining the echoes, EchoWrite first transforms the
time domain data into frequency domain data by performing
short-time Fourier transform (STFT). Then, it uses a median
filter and sets an energy threshold to eliminate noises. After
that, EchoWrite smooths the spectrogram by a Gaussian filter
and conducts normalization and binarization algorithms to
the smoothed data to get a clean spectrogram which depicts
the Doppler shift. At last, EchoWrite extracts Doppler shift
features, utilizes DTW to identify the strokes, and leverages
the Bayesian language model to realize input text inference.
In the experimental phase, the authors employ an android
smartphone to evaluate the performance of EchoWrite with
6 users in 3 environments. The participants are required
to perform 6 types of strokes (the strokes come from
the 26 uppercase English alphabets, as shown in Fig. 17)
and write 10 words. The experimental results show that
EchoWrite can achieve stroke recognition with average accu-
racies of 94.4%, 94.9%, 93.2% in the three scenarios, respec-
tively and can infer the input words with an accuracy
of 94.9%. Moreover, this system enables participants to input
texts at a speed of 7.5 words per minute (WPM) without prac-
tice, and 16.6 WPM after approximately 30-minute practice.
In the future work, EchoWrite will focus on the following
aspects, including availability of wearable devices, improve-
ment of its robustness to some burst noises (e.g., knocking the
table), and redefinition of their own input gestures.

13) C.YIALLOURIDES et al. [127]

In 2019, C. Yiallourides et al. propose a novel hand gesture
identification method. This system uses the two speakers built
in smartphone to transmit ultrasound signal with different
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frequency and utilizes two microphones embedded in the
same phone to record the echo signal. After obtaining the
echo signal, it removes the uninterested parts by a matched
filter and direct path (the sound signal propagates directly
from the speaker to microphone) removal algorithm. Then,
it estimates the signal to noise ratio and extracts four statisti-
cal moments as the features. Since this system leverages two
microphones to collect the reflected signal, an 8-dimensional
feature vector will be obtained for each gesture. At last,
the feature vectors will be employed to train the SVM classi-
fier to recognize gestures.

In the experimental phase, an android mobile phone is
used to evaluate the performance of this system. The authors
recruit 9 participants to perform 4 gestures in three envi-
ronments and collect a total of 400 samples (360 gestures
and 40 noise observations). Moreover, they use a computer
to start and end the sound signal recording. Comprehen-
sive experiment results demonstrate that this system can
achieve an average accuracy of 77.5% when choosing radial
basis function (RBF) kernel SVM and setting the parameters
C =70,y =0.01.

B. HAND TRACKING

Recently, research about hand tracking using ultrasonic signal
from smartphone is drawing more and more interest. These
systems focus on hand motions, e.g., drawing a shape or
writing a letter. The drawing can be utilized as effective
information input and expand the way of HCI. Specifically,
we can recognize hand writing and drawing by this tracking
technique. There are already many hand tracking systems
by using the ultrasonic signals of the smartphone, as shown
in Table 3. In this section, we introduce these systems, ana-
lyze the main contents and the performance of these systems,
and point out some remaining work for future studies.

1) LLAP [128]
In 2016, a hand trajectory tracking system based on ultrasonic
signal of smartphone, called LLAP, is proposed by W. Wang
et al. This system leverages the speakers to emit a 17 kHz -
23 kHz CW signal and the microphones to capture the sound
signals reflected by hand movements. The authors first collect
the sound data and extract the phase information because the
phase changes can identify fine distance variation compared
with Doppler shift. Concretely, they use I/Q demodulation
to obtain the complex signal and then separate it into static
vector and dynamic vector. The former stems from LOS path
or static objects and the later comes from the hand move-
ments. Then, they convert the phase information into dis-
tance information according to the dynamic vector to achieve
one-dimensional distance measurement (see in Fig. 18(a)).
Furthermore, they achieve 2D hand gesture tracking (e.g.,
hand drawing shapes or words as shown in Fig. 18(b)) by
combining the fine-grained phase and coarse-grained delay
measurements.

Two smartphones based on Android and iOS system are
used to evaluate LLAP with 5 participants in 4 scenarios.
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FIGURE 18. Applications of LLAP [128]. (a) Distance measurement;
(b) Hand tracking for drawing shapes and words.

Results show that this system achieves hand movement dis-
tance measurement and hand gesture tracking with higher
accuracy, lower latency, and much higher speed. Specifically,
LLAP evaluates the system performance using different cri-
teria for 1D and 2D tracking. It obtains mean movement
distance error of 3.5 mm when the hand moves 10 cm at a
distance of 20 cm and can reliably measure distance with
velocity from 4 cm/s to 25 cm/s. It is robust to ambient noises
and obtains a mean movement distance error of 5.81 mm.
Besides, it achieves a tracking error of 4.57 mm, 26 Latin
character recognition accuracy of 92.3%, and 11 words (e.g.,
yes, can) recognition accuracy of 91.2%, respectively. For
system responsiveness, its latency is less than 15 ms on the
implementation of smartphone. However, LLAP can only
realize tracking a single object. Thereby, it regards the fingers
and the hand as an integrated target and cannot identify
multi-finger movement, e.g., “pinch”. One of the future
works of LLAP will be distinguishing the multiple fingers to
realize multiple objects tracking by using more microphones.

2) FINGERIO [111]
In 2016, R. Nandakumar efr al. present FingerlO [111],
a device-free hand tracking system that can achieve
millimeter-level tracking accuracy. The main idea of this
system is to turn the smartphone into an active sonar system
by treating the speaker and microphone in smartphone as
sound transceivers. The speaker first emits an 18 kHz - 20 kHz
OFDM signal with cyclic suffixes. The cyclic suffixes can be
utilized for correcting sampling errors to achieve fine-grained
hand tracking. Then the microphones capture the echo signals
reflected by hand motions. The echo signals from two micro-
phones will be analyzed to compute the distances between
hand and microphones to realize 2D tracking.

In the experimental phase, a phone with two microphones
(13.5 cm distance between two microphones) is deployed to
evaluate FingerIO with 10 users in the office. The users are
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FIGURE 19. The tracking results and application scenarios [111]. (a) The
tracking accuracy, the black lines refer to the ground truth trace while the
green lines represent the trace that FingerlO tracks; (b) The application
scenarios with and without covering.

required to draw any shapes in a range of 10 cm x 10 cm
area. Extensive experimental results show that FingerIO can
achieve 2D hand tracking with an average 8§ mm error and the
recognition accuracy severely decreases when interference
occurs within 50 cm from the phone. Furthermore, the authors
design a smartwatch to extend the interaction area to a range
of 0.5 m x 0.25 m, and achieve 2D tracking with a mean error
of 1.2 cm. Fig. 19 shows some tracking results and application
scenarios. It can work well even when the device is in pockets.
This benefit extends its application area. The future work of
FingerlO will focus on realizing 3D tracking by using three
microphones, tracking multiple fingers to detect gestures
(e.g., zoom out, pitch), reducing the energy consumption of
the smartphone, and tracking object with a moving device.

3) STRATA [129]

In 2017, S. Yun et al. propose a device-free hand track-
ing scheme based on ultrasonic signal of smartphone called
Strata [129]. This system takes the multipath effect into
consideration; thereby, it estimates the CIR information to
track the hand trajectory. Strata first leverages the speaker
to transmit an 18 kHz - 22 kHz inaudible sound signal and
then uses the microphones to receive the reflected sound sig-
nal. After estimating the CIR information from the collected
sound signal, the relative distance changes and the absolute
distance information calculated using CIR are combined to
track the hand movements.

Extensive experiments are conducted to evaluate the per-
formance of this system. A smartphone with one speaker
and two microphones is deployed to test Strata with 5 par-
ticipants in a student office. The experimental results (see
in Fig. 20) show that Strata achieves a median error of 1.0 cm
for relative distance measurement under 1D tracking. To be
specific, 20 cm, 30 cm, 40 cm are the initial distance between
finger and the microphone and the finger moves 10 cm from
these initial positions towards the microphone, respectively.
And Strata obtains a median error of 1.01 cm for 2D track-
ing. Besides, it has favorite robustness and increases 1 mm
median error under music background. For shape recognition,
it obtains a median error of 0.57 cm for different shapes from
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5 users. Its latency is 12.5 mm because it processes the signal
for each this cycle. One of the future work of Strata is further
improving the tracking accuracy.

4) ECHOTRACK [130]

In 2017, H. Chen et al. present EchoTrack [130], a hand
tracking system based on ultrasound signal of smartphone.
The authors leverage the speakers to emit a 16 kHz - 23 kHz
chirp sound signal and the microphone to capture the echo
signal reflected by hand movements. They utilize the ToF to
measure the distance between hand and microphones to real-
ize hand localization and tracking by continually localizing
hand. Moreover, the authors leverage the Doppler shift com-
pensation and trajectory correction algorithms to improve
accuracy. The workflow is shown in Fig. 21(a). From this
architecture we can get that there are four processing parts to
realize hand tracking, including phase initialization, sensing
phase, position estimation phase, and trajectory estimation.
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In the experimental phase, a smartphone with two speak-
ers and a wood board which has a similar size with the
hand are used to test the performance in a laboratory. The
smartphone continuously locates the wood board to realize
the tracking, as shown in Fig. 21(b). Extensive experiment
results show that EchoTrack can achieve trajectory tracking
with an accuracy of 76% within 3 cm locating error and
48% within 2 cm locating error. Especially, the experiments
validate the probability to tracking the in-air hand movement
using smartphone-based ultrasonic signal. The future work of
EchoTrack will concentrate on tracking in multi-user scenar-
ios and improving energy efficiency by designing an effective
dynamic scheduling mechanism.

5) BATTRACKER [132]

In 2017, B. Zhou et al. propose an infrastructure-free object
location tracking system in 3D indoor space using inertial and
acoustic data, called BatTracker [132]. The speaker emits a
sound signal pulse of 17 kHz with 1 ms. BatTracker exploits
echoes reflecting from the object and utilizes distance mea-
surements to mitigate error accumulation. It eliminates the
noise from multi-path reflection and complex environment
and combines Doppler effect and echo amplitude to build the
relationship between echoes and objects. After finding the
initial position of an object according to reference object loca-
tion, this system updates the track along with time according
to inertial and acoustic sensors. The inertial data are used
for object position prediction and acoustic data are used for
position correction, which is implemented by motion model.
For more noise measurements, BatTracker utilizes direction
observation from position changes to suppress them, which
is achieved by the observation model. Then, it applies a
probabilistic algorithm to calculate the continuous location
of the object. Fig. 22(a) illustrates the tracking framework of
BatTracker.

Extensive experiments are carried out in a highly cluttered
lab to evaluate the performance of BatTracker. The results
show that it can achieve device movement tracking in a 3D
indoor space with the sub-cm accuracy and the 90-percentile
error is less than 1 cm in a quiet scenario. Besides, the authors
evaluate the performance in a 2D space by comparing Bat-
Tracker with CAT [78] and AAMouse [79]. The results of
Fig. 22(b) show that BatTracker can achieve a maximum
tracking error less than 1 cm and the tracking accuracy of Bat-
Tracker is higher than them. Moreover, the authors demon-
strate that BatTracker can track any motion in a 3D space (see
in Fig. 23). In the future work, BatTracker will concentrate
on enhancing the tracking robustness from four processes:
addressing the track loss issues, using effective information
from other targets, utilizing customized microphones, and
conducting more experiments on different types of mobiles.

6) STEERTRACK [131]

In 2018, X. Xu et al. present a device-free steering tracking
system called SteerTrack [131]. This system leverages the
ultrasonic signal of smartphone to track the hand trajectory
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and estimate the rotation angle of steering wheel according
to the tracked hand motions. It first utilizes the smartphone’s
embedded-in speaker to transmit a 20 kHz sinusoidal signal
and two microphones built in smartphone to capture the
echo signal reflected by hand motions. Then it uses relative
correlation coefficient (RCC) and reference frame to analyze
the echo signal to realize hand tracking. With the obtained
hand movement trajectory, the authors propose an approach
based on geometrical transformation that maps the steering
wheel in 3D to 2D ellipse to estimate the rotation angle of the
steering wheel. Fig. 24 shows the fundamental principle of
tracking the rotation angle of steering wheel in 2D plane and
the system framework of SteerTrack.

In the experimental phase, 5 different smartphones are
deployed to evaluate SteerTrack with 5 participants in two
real driving scenarios. The overall average absolute tracking
error of SteerTrack is 4.61 degree and its median error is
less than 4.79 for 5 drivers. It also assesses different steer-
ing maneuvers including Near hand, Farther hand, and both
hands. For these three maneuvers, the recognition accuracy
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is 97.73%. Besides, it analyzes system performance under
different road conditions (peak time and off-peak time) and
road types (local road and highway). The absolute error is
less than 10 degree under all four combination of road types
and traffic conditions. The authors also verify that SteerTrack
outperforms the other two methods, steering-wheel-mounted
sensor [134] and smartwatch-based [135]. Furthermore, they
study the influence of the smartphone position using 5 types
of vehicles, including two different jeeps, two distinct cars,
and van [136]. They place the smartphone on 5 positions (the
left side, the middle side, and the right side of the instrument
panel; near cab door; near cup-holder) in each vehicle, respec-
tively. The experimental results demonstrate that SteerTrack
performs well in all 5 vehicles when the smartphone is placed
near the instrument panel. The future work of SteerTrack
will further concentrate on improving the robustness of the
placement of smartphone.

V. DISCUSSION

In this section, we compare the two types of hand gesture
studies and emphasize the characteristics of their applica-
tions. We concentrate on the similarity and difference of
these applications and present the analysis of the system
performance from the following aspects, including signal
types, feature presentation, experimental environments, and
recognition accuracy. The findings facilitate the develop-
ment of potential applications and provide some insights
into this specific behavior recognition. The dynamic hand
gesture recognition can be treated as a classification problem
because we usually define a few specific hand gestures and
classify the unknown gesture into these predefined labels.
Differently, hand tracking usually comprises localization and
tracking. The former locates the position of hand while the
latter continuously determines the coordinate of hand in 2D
or 3D space. Therefore, hand tracking is more challenging
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because it must locate the position of hand more fined gran-
ularity to recognize some letters or shapes. We divide the
discussion into three parts including signal acquisition, signal
processing, and performance evaluation. After presenting the
common features of dynamic gesture recognition and hand
tracking, we illustrate the key characteristics of them and
make a comprehensive analysis of these applications based
on smartphone ultrasonic signals.

A. DYNAMIC GESTURE RECOGNITION

We investigate the gesture recognition and analyze various
factors that affect recognition accuracy. We focus on the
signal flow from ultrasonic signal collection to classification
methods.

1) SIGNAL ACQUISITION

Android is the most popular smartphone operating system
and has been adopted in numerous phone companies, such
as MI, Samsung, Vivo, HTC, Sony, and Huawei. As a result,
almost all dynamic hand gesture recognition systems choose
Android smartphone as the experimental devices. Due to
requirements of non-intrusive working pattern, we exploit the
ultrasonic signal to recognize hand gestures. The frequency
range varies from 16 kHz to 24 kHz, which can be excellently
supported by the popular smartphone. The sound waveforms
of these systems usually are continuous tones, such as sine
wave, which owns some advantages such as simple frequency
and low phase noise. Also, there are other types of modulation
signals, which depends on the specific applications.

2) SIGNAL PROCESSING

After collecting ultrasound data, we need to eliminate noises
from ambient factors and sensor devices and normalize the
data. From Table 1, we find almost all dynamic hand gesture
applications employ the Doppler effect. The possible reasons
may be that this effect has been widely studied and has
a satisfactory frequency resolution. Based on the principle,
we can obtain the spectrum including time, frequency, and
amplitude. The spectrum depicts the unique mapping rela-
tionship between the frequency variation and hand gestures.
As aresult, the specific gestures can be identified based on the
unique rule. Next, the data are fed into a classifier to catego-
rize the unknown hand gesture into a specific movement type.
As shown in Table 2, the classification methods comprise
common machine learning and deep learning algorithms,
such as HMM, SVM, RNN, and CNN. These systems fully
leverage the capability of general classification algorithms
to determine hand gesture. These systems employ favorite
classification algorithm based on the requirements of system
design and extracted features.

3) PERFORMANCE EVALUATION

We evaluate the system performance from the following
aspects including experimental environments, actions con-
ducted, and recognition accuracy. From Table 2, to vali-
date the algorithm performance, the experiments usually are
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carried out in various scenarios that keep different noise
levels. For example, the levels of noise usually include quiet,
normal, and noisy. And typical scenarios include home, lab,
outdoor, restrictions, etc. Besides, the system performs many
gestures to confirm the algorithm robustness. The least num-
ber of gestures of these systems is 5 and the largest number
is up to 24, which proves that these algorithms have more
adaptability. Besides, the number of participants varies from
3 to 11. The size of samples usually exceeds 900 and some
size of systems reach 36000. As shown in Table 2, these
systems achieve satisfactory accuracy, which is above 90%,
and some of them up to 97%.

B. HAND TRAJECTORY TRACKING

Hand tracking is a challenging problem using ultrasonic sig-
nal because we have to locate the position of finger con-
tinuously under the weak signal changes. Dynamic gesture
recognition systems usually leverage Doppler shift to extract
movement features because these motions hold a large range
of movements and can be easily distinguished. Different from
these systems, hand tracking continuously requires more fine-
grained localization and more low delay response. Therefore,
how to extract weak sound signal from echo profile and how
to convert these signals into hand movement trajectory are
the major challenges. Each system employs an appropriate
solution to address these problems. We investigate the state-
of-the-art applications and present the specific solution to
these difficulties. We reveal the crucial idea and analyze
the characteristics of hand tracking applications from the
following aspects: signal acquisition, signal processing, and
performance evaluation.

1) SIGNAL ACQUISITION

The hardware devices employed in these systems are similar
to that of dynamic gesture recognition. The experimental
devices of the tracking system usually apply Android system
from various companies. As we have analyzed, simple sinu-
soidal sound signal cannot provide enough resolution to the
hand tracking as the range of hand or finger may be very short
and the change of signal is too weak to be measured effec-
tively. Therefore, these systems usually employ special sound
signal modulation such as OFDM, BPSK, chirp, etc. because
these modulations provide more favorite features. Besides,
some systems leverage the two speakers or microphones to
track the finger in 2D or 3D space. Different from dynamic
gesture recognition that usually applies Doppler shift, these
tracking systems exploit many different features including
phase, ToF, CIR, and Doppler shift.

2) SIGNAL PROCESSING

Although different signal modulation methods are employed,
the means of signal preprocessing is similar. These prepro-
cessing methods include band-pass filter, noise elimination,
and data normalization. Besides, some specific approaches
are applied according to the signal types, such as I/Q demodu-
lation for FingerIO [111] and multipath effect elimination for
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EchoTrack [130]. The hand tracking systems usually lever-
age geometric models to achieve the last result rather than
common classifiers because it needs to continuously calcu-
late fine-grained location to identify some characters, words,
or shapes. Although some general methods such as particle
filter are widely used in various localization scenarios, they
usually are not employed in hand tracking scenarios due to its
computation cost for smartphone.

3) PERFORMANCE EVALUATION

We assess the performance of these systems from localization
in 1D space and tracking in 2D and 3D space, which is
a noticeable difference from dynamic gesture recognition.
Besides the common experimental environments, we con-
sider the additional criteria including time delay, power con-
sumption, and shape or character recognition in 2D and 3D
space. We evaluate the performance of these tracking systems
from these aspects.

The most systems apply laboratory as the test environment
and some systems use offices or outdoor with some noises
to validate the robustness of algorithms. Some systems apply
specific environment based on their application scenarios. For
example, SteerTrack [131] employs real driving environment
on local road and highway. From the number of participants,
the most are 20 users from EchoTrack [130]. Most of them
have 5 to 10 users. From tracking behavior, different appli-
cations validate performance using different hand behaviors.
For example, LLAP [128] uses 26 letters and 11 words,
which is the most complex hand recognition among these
studies. FingerIO [111] recognizes all kinds of shapes and
Strata identifies three types of shapes. Different from them,
StreeTrack [131] tracks the angle of steer rotating. We find it
is difficult to compare these algorithms because they perform
various behaviors under different environments.

From the analysis of Section IV, we find that hand tracking
involves many aspects and they affect recognition accuracy.
Firstly, different evaluation metrics usually are employed
because these applications need to estimate algorithm perfor-
mance. For example, LLAP [128] estimates system perfor-
mance from many aspects from 1D and 2D spaces. For 1D
space, the assessment criteria of LLAP [128] includes move-
ment distance error, absolute path length error, and movement
detection precision. For 2D space, it uses tracking error and
character recognition accuracy as metrics. Differently, Finge-
rIO [111] applies cumulative distribution functions (CDFs)
of 2D tracking errors as evaluation metrics. These metrics
illustrate system performance based on the characteristics of
applications. Secondly, it is challenging to compare different
algorithm performance because many systems have specific
functions. For example, although Strata [129] compares the
distance error and trajectory error with LLAP [128] and
FingerIO [111], the letter recognition in LLAP [128] and
occluded scenario in FingerIO [111] are not provided because
they are the pivotal features different from other systems.
Thirdly, some systems track hand movement in 3D space
while other systems in 2D. Therefore, the former has to face
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more difficulties due to more dimension of the movement,
which leads to the decrease of tracking precision. Lastly,
although many systems evaluate recognition accuracy using
noise environment, the source and the level of noise are
different. Therefore, the performance comparison in these
scenarios just confirms the effectiveness of the algorithm
under their environment, which may not be suitable for other
scenarios or studies.

VI. CHALLENGES

Currently, smartphone has become the most popular elec-
tronic device for most people because it provides us with
various functions and enriches our lives. Besides common
related sound functions, the built-in speakers and micro-
phones can emit and receive ultrasonic signal, which can
make smartphone serve as an active sonar sensing sys-
tem. Recently, many interesting applications of hand gesture
recognition based on this sensing system has been developed
and deployed in many scenarios. Although these systems
achieve good recognition performance, there are many issues
to be addressed to improve identification accuracy. In this
section, we will present some main issues and possible solu-
tions to the active sonar hand gesture sensing applications
based on smartphone.

A. MULTI-DATA FUSION

Most applications in this paper adopt one or two microphones
and speakers built in the smartphone to recognize hand ges-
ture. The number of sensors limits the size of the measure-
ment data and constrains the types of gestures. Therefore,
these systems recognize a few types of dynamic gestures and
track hand in 1D and 2D space. UltraGesture [118] proves
that adding extra sensors can achieve fine-grained gesture
recognition and identify more hand postures. To recognize
more hand postures and track hand in a 3D space, using more
speakers and microphones would be a fine solution [131].
Besides, the fusion of many features, including Doppler shift,
phase, ToF, and CIR would be another simple and effective
method. Other sensors embedded in the smartphone (e.g.,
accelerometer [137], gyroscope) can also provide more useful
information to improve the quality of HCI and recognition
accuracy.

B. ROBUSTNESS

Current studies validate system performance under various
environments which have different noise levels. However,
it seems difficult to compare these levels of noise because
they are much different. Besides, human movements near
the participant severely affect recognition accuracy because
the movements generate complicated multipath effect [111].
In addition, the distance between the smartphone and the
user is also an important factor that affects the recogni-
tion performance [128]. Moreover, the hand size, the hand
that participants used (left or right), the hand with or with-
out occlusion can also impact the accuracy of the appli-
cation [118]. Therefore, how to eliminate the impacts of
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nearby environmental changes and interference is a challeng-
ing problem.

C. STANDARD DATASET

Currently, many systems evaluate the performance by using
different types of actions. For dynamic gesture recognition,
the number of gestures is very different [112], [113]. It varies
from 5 to 24. For hand tracking, the shapes drawn by hand
contain some simple shapes (e.g., diamond, triangle, circle)
or letters and words [128], [129]. The variation of the shapes
generates significant difficulty when evaluating the system
performance because of the difference of the experimental
conditions. To effectively compare the performance of var-
ious algorithms, the standard dataset is required.

D. LOW-LATENCY

For gesture recognition applications, latency usually is not a
crucial metric because we pay more attention to recognition
accuracy. However, for hand tracking applications, we may
concentrate on the latency since many applications require a
swift response to hand position. For example, low-latency is
a crucial factor for real-time game control. However, a few
applications consider latency feature when evaluating system
performance, such as Strata [129] and LLAP [128]. Most
others do not analyze the latency factor when testing sys-
tem performance. Besides that, the signal types and feature
calculation are must be considered when developing a hand
tracking algorithm.

E. SECURITY ISSUES

Hand gesture recognition based on the ultrasonic signal of
smartphone brings us a novel method for HCI. Since the sys-
tems do not require any extra hardware devices and provide us
with convenient interaction means for users, researchers pay
more attention to the development of applications based on
ultrasonic signal. However, this method is also accompanied
by security issues. Because the hearing range of the average
people is within 16 kHz [133] and our presented systems
adopt the sound signal with frequency ranging 16 kHz -
24 kHz, a potential attack using ultrasonic signal can be
launched. At the same time, this method might be utilized
to steal people’s information, infer Android unlock pat-
terns [115], [124], even carry out inaudible sound attack [39].
Therefore, some practical approaches need to be studied in
the future to tackle these issues.

VIl. CONCLUSION

With the rapid development of hardware and software tech-
nology, smartphone is becoming a powerful communication
and entertainment tool and has become an indispensable
electric device in daily lives because it provides us with
various functions to facilitate our work, lives, entertainment,
and mutual communications. Nowadays, the speakers and
microphones built in smartphone have better performance
than before; therefore, many researchers explore the active
sonar technique using the smartphone’s built-in speakers and
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microphones to recognize hand gestures. This active sonar
sensing system uses smartphone to emit and capture ultra-
sonic signal and analyzes the echo signal to realize dynamic
hand gesture recognition and hand tracking. Since the ultra-
sonic signal would not interfere with people’s normal life,
using smartphone-based ultrasonic signal to classify hand
gestures can facilitate the development of the general and
long-term tracking system. Besides, this system provides us
with a convenient and natural HCI method and enriches the
IoT applications.

The purpose of this paper is to present a comprehensive
survey on the state-of-the-art applications of hand gestures
based on active sonar sensing system using smartphone.
This paper concentrates on the crucial characteristics of the
framework of the ultrasonic sensing system and analyzes the
related applications from dynamic gesture recognition and
hand trajectory tracking. Firstly, we review some common
hand gesture recognition systems based on acoustic signal
and categorize the smartphone-based audio sensing systems
into two groups including passive acoustic sensing and active
acoustic sensing. Secondly, we propose a typical framework
based on the hand recognition applications by using ultra-
sonic signal and analyze the basic principles of the hand ges-
ture recognition system based on ultrasonic signal of smart-
phone. Thirdly, we introduce some processing techniques
adopted in hand gesture recognition, including signal gener-
ation, signal extraction, noise elimination, and hand gesture
recognition methods. Next, this paper investigates the state-
of-the-art applications about dynamic hand gesture recogni-
tion and hand tracking. For each application, we review the
key features and analyze the system performance. Then we
make a detailed discussion about these systems from signal
acquisition, signal processing, and performance evaluation.
Finally, based on current study trends, we discuss the lim-
itations and open issues involved in human hand gesture
recognition based on the ultrasonic signal of smartphone and
present some potential solutions to these issues.
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